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Abstract: Prostate cancer exhibits intra-tumoral heterogeneity that we hypothesize to be the leading 
confounding factor contributing to the underperformance of the current pre-treatment clinical-pathological 
and genomic assessment. These limitations impose an urgent need to develop better computational tools 
to identify men with low risk of prostate cancer versus others that may be at risk for developing metastatic 
cancer. The patient stratification will directly translate to patient treatments, wherein decisions regarding 
active surveillance or intensified therapy are made. Multiparametric MRI (mpMRI) provides the platform to 
investigate tumor heterogeneity by mapping the individual tumor habitats. We hypothesize that quantitative 
assessment (radiomics) of these habitats results in distinct combinations of descriptors that reveal regions 
with different physiologies and phenotypes. Radiogenomics, a discipline connecting tumor morphology 
described by radiomic and its genome described by the genomic data, has the potential to derive “radio 
phenotypes” that both correlate to and complement existing validated genomic risk stratification biomarkers. 
In this article we first describe the radiomic pipeline, tailored for analysis of prostate mpMRI, and in the 
process we introduce our particular implementations of radiomics modules. We also summarize the efforts in 
the radiomics field related to prostate cancer diagnosis and assessment of aggressiveness. Finally, we describe 
our results from radiogenomic analysis, based on mpMRI-Ultrasound (MRI-US) biopsies and discuss the 
potential of future applications of this technique. The mpMRI radiomics data indicate that the platform 
would significantly improve the biopsy targeting of prostate habitats through better recognition of indolent 
versus aggressive disease, thereby facilitating a more personalized approach to prostate cancer management. 
The expectation to non-invasively identify habitats with high probability of housing aggressive cancers would 
result in directed biopsies that are more informative and actionable. Conversely, providing evidence for 
lack of disease would reduce the incidence of non-informative biopsies. In radiotherapy of prostate cancer, 
dose escalation has been shown to reduce biochemical failure. Dose escalation only to determinate prostate 
habitats has the potential to improve tumor control with less toxicity than when the entire prostate is dose 
escalated.
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Introduction

Prostate cancer is the most prevalent male malignancy in the 
US, with more than 1 in 6 men expected to be diagnosed with 
the disease in their lifetime. Treatment recommendations 
are currently based on risk stratification using PSA, 
Gleason score and T-category, which categorize men as 
low, intermediate, and high risk (1). Typically, men with low 
risk are offered active surveillance rather than immediate 
definitive treatment and most of these men do well in long 
term (2,3). However, some of these men may harbor more 
aggressive disease that remains undetected. Recently, an 
analysis of 17,943 patients with low-risk prostate cancer 
(i.e., candidates for active surveillance) treated with radical 
prostatectomy (RP) in the US between 2010–2011 showed 
that upgrading, upstaging, or nodal metastases occurred in 
45% of men and that the deferral of radical prostatectomy 
for more than 12 months was associated with an 1.7-fold 
increased risk of non-organ confined disease after surgery (4).  
Additionally, in men with low risk prostate cancer, the 
deferral of radical prostatectomy is associated with 
significantly worse radical prostatectomy outcomes, 
including more pathology upgrading and a higher rate 
of biochemical progression (5). Therefore, additional 
tools beyond clinical staging are needed to improve 
risk stratification and optimize effective use of active 
surveillance (3). Similarly, patients at risk for developing 
metastatic cancer would benefit from intensified therapy at 
an earlier time point. For the radiotherapy (RT) patient, RT 
technique and the use and length of concurrent/adjuvant 
androgen deprivation therapy (ADT) would be optimized. 
Up to 50% of these men demonstrate biochemical failure 
suggesting that additional strategies for defining and 
treating patients based on improved risk stratification are 
required (6,7).

Genomic analyses have significantly increased our 
understanding of prostate cancer heterogeneity and greatly 
improved patient risk classification thus directly impacting 
treatment decision-making [Decipher (8), Myriad (9,10), 
Genomic Health Institute (GHI)]. Gene expression 
signatures have demonstrated effective personalization 
of therapy by genetic risk stratification of the patient, 
these coupled with clinical risk factors can be useful in 
predicting biochemical failure and early metastasis post 
radical treatment (8,11,12). These approaches help select 
men that may benefit most from adjuvant RT after radical 
prostatectomy (13).

Prostate cancer, however, exhibits spatial heterogeneity 

that can confound current pre-treatment clinical-
pathological and genomic assessment. The use of 
multiparametric MRI (mpMRI) is rapidly gaining 
momentum in the management of prostate cancer because 
of its improved diagnostic potential and its ability to 
combine functional and anatomical information. mpMRI 
is widely used to measure perfusion via dynamic contrast 
enhanced (DCE)-MRI, diffusion via diffusion weighted 
imaging (DWI) and anatomical information [T2-weighted 
(T2w) MRI]. There is no other imaging modality that has 
shown the same sensitivity and specificity for distinguishing 
intraprostatic cancer of higher grade (GS 7 or above) when 
combined with mpMRI guided prostate biopsies (14,15). 
The automated analysis and interpretation of mpMRI, 
however, is quite challenging as each exam results in 
thousands of images and there is lack of consensus of how 
to optimally extract the relevant information.

“Radiomics”, as it refers to the extraction and analysis 
of large number of advanced quantitative imaging features 
from medical images using high throughput methods 
(16,17) is perfectly suited to extract and provide an engine 
for effective sifting through the multiple series of prostate 
mpMRI and quantify the regions of interest. The central 
hypothesis of the radiomic approach is that the imaging 
features capture distinct phenotypic differences of tumors 
and may have prognostic power (18). Radiomics offers 
important advantages for assessment of tumor heterogeneity 
and the approach has the potential to enable quantitative 
measurements for intra- and intertumoral heterogeneity. 
Consequently, the concept of using imaging data to identify 
sub-regions, or ‘habitats’, within tumor lesions has been 
described (19). MR-based habitat imaging is accomplished 
by combining images acquired with different pulse 
sequences. Radiomics of these habitats results in distinct 
combinations of quantitative parameters that reveal regions 
with different physiologies and phenotypes. 

Radiomics is a quite young discipline, but there are series 
of efforts in the community for addressing the clinical issues 
about (I) detection/segmentation of the suspicious lesion; 
and (II) assessment of the aggressiveness of prostate cancer. 
The goal of the latter is in particular to identify patients 
who can be spared biopsies and/or patients at high risk for 
metastatic disease; and the aim of the former is to diagnose 
cancerous vs. non-cancerous tissue and thus provide targets 
for biopsies or radiation boost. While there are few examples 
of radiogenomics, a discipline connecting radiomic and 
genomic data, in glioblastoma (GBM) (20-22), renal cell 
carcinoma (23), hepatocellular carcinoma (24), lung and head 
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and neck cancers (18), our group at University of Miami 
is taking the lead to use the concepts of radiogenomics in 
prostate cancer.

The article is structured as follows: first, we introduce the 
radiomics pipeline, tailored for analysis of prostate mpMRI; 
in the process we describe our particular implementations 
of radiomics modules. Second, we summarize the efforts 
in the radiomics field related to prostate cancer diagnosis 
and assessment of aggressiveness. Finally, we describe our 
results from radiogenomic analysis, based on MRI-targeted 
biopsies and the potential of future applications of the 
technique.

Radiomics pipeline

The steps of the radiomics process for analysis of prostate 
mpMRI are shown in Figure 1.

mpMRI exam of the prostate

mpMRI exam of the prostate typically includes acquisition 
of T2w, DWI and DCE-MRI data. An Apparent diffusion 
coefficient (ADC) map is calculated on the MRI scanner’s 
console. The acquired images are transferred to an image 
processing station. There is a variety of medical image 
computing platforms, both commercial [MIM (MIM, 
Cleveland, Ohio, USA) and Mirada (Mirada Medical 
USA, Denver, CO, USA) and open source [3D SLICER, 
http://slicer.org and electronic Physician Annotation 
Device (ePAD)] (25). In our study, we used MIM imaging 
workstation to implement custom routines in the platform.

Volume selection and segmentation

Selection of the volumes for the analysis impacts the entire 

Figure 1 Schema of radiomics process for prostate mpMRI. (A) A typical mpMRI exam of the prostate consists of: T2weighted (T2w) MRI; 
diffusion weighted imaging (DWI) and the calculated apparent diffusion coefficient (ADC) maps; dynamic contrast enhanced (DCE)-MRI; (B) 
identification of volumes of interest and segmentation. For the prostate these volumes are: prostate, peripheral zone (PZ) [and subsequently, 
transition zone (TZ)], urethra, normal appearing tissues (NAT) in PZ and TZ and tumor region(s) of interest (ROI); (C) quantitative 
imaging features are extracted related to volume/shape, intensity volume histogram (first order features); texture features (second order 
features) and transform analysis features; (D) radiomic data is integrated with clinical, genomic, proteomic and metabolomic data; (E) the 
integrated dataset is mined to develop diagnostic, predictive, or prognostic models.

mpMRI Segmentation Feature extraction Data integration Data miningA B C D E
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downstream process. Prostate is a unique organ with 
distinct zonal morphology. As a consequence, the peripheral 
(PZ) and transition (TZ) zones have different imaging 
characteristics. In Figure 2, the T2w and ADC values in 
PZ and TZ were analyzed and the distribution of values 
are different for the two prostate regions. Thus PZ and 
TZ should be considered separately in identification of the 
prostate habitats. The peri-urethral area is characterized 
by high vascularity, which can generate false positives on 
DCE. In our implementation, the urethra is contoured 
and excluded from subsequent analysis. Tumor regions 
of interest (ROIs) are either automatically delineated 
or manually drawn based on radiologists’ assessment or 
pathology evaluation. Regions of normal appearing tissues 
(NAT) in PZ and TZ are selected outside of the ROIs. 

Segmenting the volumes of interest is of critical 

importance as the subsequent radiomics features are 
generated from the segmented volumes. In our radiomics 
pipeline in MIM, we manually contour the prostate, PZ 
and urethra. TZ is determined algebraically by subtracting 
the PZ from the prostate volume. Efforts are underway for 
automation of this process by utilizing a prostate atlas. In a 
collaborative efforts with MIM, we developed an automated 
atlas-based segmentation method for generating prostate 
and PZ contours (26).

Tumor (ROI) delineation is challenging both for 
automatic or manual methods because tumors may have 
indistinct borders. In our implementation we utilize the 
habitats concept to identify the suspicious lesions map the 
tumor heterogeneity. The approach is based on combination 
of co-registered images from multiple modalities, with 
each one contributing a piece of orthogonal information. 

Figure 2 Imaging characteristics of peripheral and transition zones of the prostate. Axial, sagittal and coronal views of contoured prostate, 
peripheral zone (PZ), transition zone (TZ) and urethra. Histograms of ADC and T2 intensities indicating differential distributions in PZ 
(blue) and TZ (cyan).
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In mpMRI, DCE-MRI identifies regional distributions 
of blood flow, and lack of blood flow. On the other hand, 
ADC, measured via diffusion MRI, is a powerful method to 
interpolate the density of diffusion barriers (i.e., cells) and 
hence provides information that may be biologically, but 
not physically, related to DCE-MRI.

In our implementation, we combine DCE-MRI and 
ADC to construct habitat maps which represent high, 
medium and low risk for cancer. First, an unsupervised 
pattern recognition approach is used to decompose DCE-
MRI data as a product of several temporal patterns and their 
relative contribution (27). The ‘tumor’ pattern, associated 
with rapid washin and gradual washout of the contrast is 
identified. Let A be the map of distribution of this pattern: 
thresholds for areas of high, mid and low risk for aggressive 
tumor are estimated as [mean(A) + k*stdev(A)], where k=2, 
1.5 and 1. Similarly, the ADC map is thresholded at 800, 
1,000 and 1,200 µm2/s based on literature and empirical 
observations in our group (28-33). Finally, the areas of 
intersections between the corresponding maps from DCE-
MRI and ADC are considered the volumes of high, mid and 
low probability for high risk cancer.

Radiomic features

Extraction of the radiomics features is the engine of the 
radiomics process. The broad categories of radiomics 
features as applied to prostate are summarized in Table 1. 
These features can be generally divided in 4 categories: the 
first category (C1) summarizes features descriptive of the 
volume size, shape, etc.; the second (C2), third (C3) and 
fourth (C4) category can be described as first-, second- and 

higher order statistical outputs. First-order statistic features 
are related to the intensity histogram of a given volume: 
mean, median, standard deviation, minimum, maximum, 
quartiles, kurtosis, skewness, etc. The second-order statistics 
are related to texture analysis features, also known as Haralick 
texture descriptors (34). On the grey level co-occurrence 
matrix (GLCM), various statistics can be computed: energy, 
entropy, correlation, homogeneity, contrast, etc. GLCM 
captures the frequency of co-occurrence of similar intensity 
levels over the region, which describes the texture of the 
region of interest. Another technique in this category is 
fractal-based texture analysis (35) which examines the 
difference between pixels at different length scales (offset 
differences). And lastly, the higher-order methods extract 
repetitive or non-repetitive patterns using kernel functional 
transformation. Some popularly used texture descriptors 
are Wavelets, Laplace, Fourier transforms; Gabor filters, 
Minkowski functionals, etc.

We have implemented texture features extraction 
using a MIM Java plugin that interfaces to an in-house 
software developed in C++ using Insight Segmentation 
and Registration Toolkit (ITK) (36,37). The ITK is an 
open-source, cross-platform system developed in C++ that 
provides tools for the development of image analysis. In 
our implementation, the maps of the calculated texture 
features are returned MIM, co-registered with mpMRI and 
characterized within the volumes if interest.

Data integration

Integrating imaging with clinical and molecular data in 
contemporary clinical databases is crucial for clinical 

Table 1 Broad radiomics feature categories for mpMRI of the prostate

Category Name Description Image modality Volumes

C1 Region size/shape/location Volume descriptors/roundness/circularity 
descriptors

T2w Prostate, PZ, TZ, ROIs

C2 Histogram of volume intensity Mean, median, standard deviation, kurtosis, 
skewness, quartiles, min, max

T2w 
ADC 
DCE

ROIs, NAT-PZ, NAT-TZ

C3 Texture analysis: gray level co-
occurrence matrix and fractal analysis

Contrast, energy, entropy, correlation, inertia, 
cluster prominence, cluster shade, etc.

T2w 
ADC

ROIs, NAT-PZ, NAT-TZ

C4 Transform analysis Wavelets, Gabor, Kirsch, Fourier T2w 
ADC

ROIs, NAT-PZ, NAT-TZ

mpMRI, multiparametric MRI; T2w, T2weighted; PZ, peripheral zones; TZ, transition zones; ROI, tumor regions of interest; ADC, apparent 
diffusion coefficient; DCE, dynamic contrast enhanced; NAT, normal appearing tissues.
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decision making. The challenge is that the information in 
the images is neither explicit nor in standard computer-
accessible formats. We partnered with MIM to develop 
a systematic procedure for semi-automated processing 
of mpMRI into an explicit, standard computer accessible 
format. The goal is to integrate the quantitative imaging 
features in an existing clinical RedCap database. We are 
refining quantitative imaging methods that enhance tumor 
characterization and biopsy positioning through the 
application of spatially explicit quantitative image analysis 
that recognizes tumor heterogeneity and defines regionally 
distinct habitats (18).

Data mining

Radiomics data are in a format that is amicable for building 
descriptive and predictive models relating image features 
to outcome, as well as gene-protein signatures. Resultant 
models may include imaging, molecular, and clinical data, 
and provide valuable diagnostic, prognostic or predictive 
information. The process of conversion of digital medical 
images into mineable high-dimensional data is motivated 
by the concept that biomedical images contain information 
that reflects underlying pathophysiology and that these 
relationships can be revealed via quantitative image analyses.

Review of applications of radiomics to prostate 
cancer

The published manuscripts, related to radiomics of prostate 
mpMRI are summarized chronologically in Table 2. The 
data is grouped based on selected volumes for analysis, 
type of segmentation (manual vs. automatic), mpMRI 
modality, types of extracted features, and overall goal of the 
analysis. Below we discuss the papers, grouped based on 
the analysis goal: prostate cancer diagnosis, assessment for 
aggressiveness or both. 

Prostate cancer diagnosis

Algorithms for automatic identification of the prostate 
cancer usually compute series of features and develop a 
supervised classifier based on ‘ground truth’ volumes. The 
classifier is first trained on subsets of the data and then 
applied to the rest. 

Madabhushi et al. (38) presented a method for detecting 
prostate cancer from high resolution MRI of prostatectomy 
samples. Besides first and second-order statistical methods, 

the authors used Gabor filters, Gradient based features and 
discrete cosine transform to achieve high specificity (98%), 
but low sensitivity (36–42%).

These ideas were further developed in subsequent 
work by Litjens et al. (48,49) where a new classifier 
was introduced to separate prostate cancer and benign 
confounders on MRI. The pathology annotations were 
propagated to MR images by registration of whole-mount 
slides and manual annotation of cancer, benign prostatic 
hyperplasia (BPH), prostatic intraepithelial neoplasia 
(PIN), inflammation. Signal intensities and texture features 
(Gauss, Gabor and Hess filters) were extracted from T2w, 
ADC, b-value =800 sec/mm2 and series of DCE maps. The 
authors conclude that the best features for discrimination 
depend on the benign disease and cancer grade.

Texture features, based on local binary patterns (50) 
are used in the computer-aided diagnosis system (CAD) 
in Kwak et al. (43) based on T2w and high b-value 
(=2,000 sec/mm2) in DWI. MRI-US fusion targeted 
biopsies results are used as “ground truth”. A three-stage 
feature selection method was used to determine the most 
discriminative features. The Area under ROC curve (AUC) 
in distinguishing cancer from MR-positive benign lesions 
was 0.83. The performance of the CAD was independent 
from the prostate zone.

Khalvati et al. (44) presented a study using computed 
high b-value DWI (CHB-DWI) and new diffusion imaging 
modality, called correlated diffusion imaging (CDI) in 
addition to T2w and DWI in a cohort of 20 patients. In this 
study, four first-order features (mean, standard deviation, 
skewness and kurtosis), 72 second-order features (from 
texture analysis), 8 features from Kirsch filters and 12 from 
Gabor filters were computed in a 3×3 pixels sliding window. 
The voxels were tagged as cancerous or non-cancerous and 
96 features were computed. A feature selection analysis for 
each individual modality was used to select the features which 
gave the best tissue type discrimination. The results show 
that in all the cases, adding CDI, CHB-DWI and the b-values 
images increased significantly the sensitivity and specificity.

The aim of the Cameron et al. (45) paper was to provide 
a computer-aided detection of the prostate cancer lesion 
using a large number of quantitative imaging features. 
High-level feature categories, including Morphology, 
Asymmetry, Physiology and Size (MAPS) were combined. 
Using a cohort of 13 patients, the initial identification of 
candidate tumors was automatically performed using ADC 
first: all voxels with and ADC value less than 700 µm2/s 
were grouped into connected volumes. Forty-two imaging 
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features were used to train a naive Bayes classifier. The 
performance was evaluated using leave-one cross validation, 
resulting in accuracy, sensitivity and specificity of 87%, 86% 
and 88%, respectively.

Prostate cancer aggressiveness

In a review article, Gillies et al. (51) state: “It is axiomatic 
that images can be used to guide biopsies”. Quantitative 
imaging directed biopsies are expected to reduce 
underdiagnosis, with the potential to limit biopsies to 
regions at significant risk of containing determinate disease, 
thereby reducing the potential morbidity and frequency of 
the procedure. Moreover, since mpMRI directed biopsies 

result in higher rates of detection of significant cancers, 
the association between prostate biopsy results and patient 
outcome should be strengthened over time. The papers 
below are enabling diagnosis by utilizing radiomic analysis 
to determine the aggressiveness of the cancer. 

Lv et al. (39) explored the potential of quantitative 
characterization of prostate MR images by extracting 
fractal features of texture and intensity distributions for 
differential diagnoses of prostate cancer. In a retrospective 
study of 55 subjects who underwent biopsy, 27 histologically 
positive prostate cancer patients were identified along with 
28 controls with no histological abnormality. Manually 
segmented ROIs were placed on T2-weighted MR images 
in low signal regions in sextants with positive biopsy. 

Table 2 Summary of manuscripts related to radiomics of prostate mpMRI

References Volumes Segmentation of tumor Modality
Feature 
category

Analysis endpoint

Madabhushi et al. (2005) (38) Prostate, 
ROI

Automatic T2w C2, C3
C4

Diagnosis

Lv et al. (2009) (39) NAT, ROI Manual T2w C4 Diagnosis

Lopes et al. (2011) (40) NAT, ROI Automatic T2w C3, C4 Diagnosis

Tiwari et al. (2014) (41) ROI Automatic T2 C2, C3, C4 Diagnosis 
Aggressiveness: GS ≤7 vs. GS >7

Wibmer et al. (2015) (42) NAT, ROI Manual T2w 
ADC

C2 
C3

Aggressiveness: 
GS (3+3) =6 vs. [GS (4+3) =7 and GS (3+4) =7] 
GS (3+3) =6 vs. GS ≥7 
GS ≤3+4 vs. GS >3+4

Kwak et al. (2015) (43) NAT, ROI Manual T2w 
DWI

C3 Diagnosis

Khalvati et al. (2015) (44) NAT, ROI Manual T2w 
ADC 
DWI*

C2
C3
C4

Diagnosis

Cameron et al. (2015) (45) ROI Automatic T2w 
ADC 
DWI*

C1
C2
C3

Diagnosis

Vignati et al. (2015) (46) ROIs Manual T2w 
ADC

C2
C3

Aggressiveness: 
GS (3+3) = 6 vs. GS ≥7

Fehr et al. (2016) (47) ROI Manual T2w 
ADC

C2
C3

Aggressiveness:
GS (3+3) =6 vs. GS ≥7 
GS (3+4) =7 vs. GS (4+3)=7

Litjens et al. (2014, 2016) 
(48,49)

NAT, ROI Manual T2w, ADC, 
b-800, 
DCE-MRI

C2, C3, C4 Diagnosis

NAT, normal appearing tissues; ROI, region of interest; GS, gleason score, C1–C4, broad radiomics feature categories for mpMRI of the 
prostate (Table 1). *, Correlated diffusion imaging (CDI) and individual b-value images are used.
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There were a total of 130 ROIs: 65 cancerous and 65 
controls. Texture fractal dimension (TFD), a measure of 
image roughness, was applied to the 2D ROIs. In addition, 
histogram fractal dimension (HFD) was recorded as a 
measure of the complexity of the image histogram. As 
expected, TFD and HFD were lower in cancerous ROIs, 
reflecting the typically lower heterogeneity in those regions 
compared to normal peripheral zone tissue AUC was used 
to evaluate the ability of TFD and HFD to distinguish 
cancerous from normal tissue, resulting in AUCs of 0.691 
and 0.966, respectively.

Lopes et al. (40) likewise used fractal analysis to classify 
voxels as tumor or non-tumor on prostate T2-weighted 
MR images of 27 patients. In addition to utilizing fractal 
dimension (FD) and multifractional Brownian motion 
(mBm) modeling features, classical Haralick textural 
features were calculated along with Gabor filtering and 
wavelet frame decomposition. Voxel classification was 
performed using two different classification algorithms 
(SVM and AdaBoost), with ground truth provided by 
histologic maps of prostate specimens. Classification using 
mBm combined with FD resulted in AUC =0.92, compared 
to AUC =0.75 using FD alone [which may be compared to 
the TFD AUC result of Lv et al., (39) above]. Furthermore, 
classification results using fractal geometry were found to 
be superior to those using classical texture features, Gabor, 
and wavelet, which together had a lower AUC =0.88.

Wibmer et al. (42) investigated Haralick texture features 
of prostate mpMRI for diagnosis purposes. Using T2-
weighted and diffusion-weighted MRI from 147 patients, 5 
different features described in Table 1, C3 (entropy, inertia, 
energy, correlation and homogeneity) were computed in 
cancerous tissue, reported on MRI using pathology as 
reference, and in non-cancerous tissue. Three different 
types of analyses were carried out using the generalized 
estimating equations (GEE) method: GS 3+3 =6 vs. GS (3+4) 
=7 or GS (4+3) =7, GS (3+3) =6 vs. GS >7 and GS ≤ GS (3+4) 
=7 vs. GS > GS (4+3) =7. The results showed that all the five 
features differed significantly between cancerous and non-
cancerous tissue in PZ on both T2w and ADC and. In TZ, 
inertia and correlation on T2w and all the features on ADC 
differed significantly (P value <0.05).

The follow-up study by Fehr et al. (47) on the same 
cohort of patients used a software-based automatic 
classification by GS using T2w and ADC. First-order 
features, related to the intensity volume histogram 
(mean, standard deviation, skewness and kurtosis) were 
also included. To balance the sample in terms of GS 

distribution, two oversampling methods, synthetic minority 
oversampling technique (SMOTE) and Gibbs sampling 
(sample generation through conditionally independent 
features) were used. Finally, 3 main feature selection and 
classification methods were evaluated: t-test Support Vector 
Machine (t-test SVM), Adaptive Boosting (AdaBoost) 
and Recursive Feature Selection Support Vector Machine 
(RFE-SVM). The authors report accuracy of 93% in 
discrimination of GS (3+3) =6 versus GS ≥7 for the RFE-
SVM method using SMOTE (AUC of the same classifiers 
for PZ=0.99). The same methods resulted in a 92% 
accuracy and an AUC of 0.99 for PZ for discrimination of 
GS (3+4) =7 vs. GS (4+3) =7.

The aim of the article by Vignati et al. (46) was to use 
contrast and homogeneity from the computation of texture 
features on T2w and ADC to predict prostate cancer 
aggressiveness and to compare to traditional ADC metrics 
(mean, median, 10th and 25th percentile). A cohort of 93 
patients who underwent mpMRI before prostatectomy 
were used and clinically significant tumors (≥0.5 mL) were 
outlined on histological sections and transferred to contours 
in T2w and ADC (ROIs). Spearman correlation between 
features in ROIs with the corresponding GS was computed. 
Homogeneity and contrast on T2w were found to be 
much better than ADC classic parameters in correlating 
with GS: −0.654 for contrast and 0.645 for homogeneity 
compared to −0.569 to ADC 10th percentile which is the 
highest correlation value for ADC first-order statistics 
parameters. AUC values for differentiating tumor foci with 
pathologic GS 6 from those with pathologic GS ≥7 gave 
the same conclusion with 0.945 and 0.962 for contrast and 
homogeneity on T2 and 0.854 for 10th percentile ADC.

Prostate cancer diagnosis and aggressiveness

Tiwari et al.  (41) combined radiomics information 
with metabolic data from MR Spectroscopy (MRS) to 
develop computerized decision support system (DSS) for 
distinguishing (I) benign vs. cancerous and (II) high- (GS 
>7) vs. low- (GS ≤7) Gleason Score prostate cancer. The 
radiomic features are similar to the ones in Madabhushi 
et al. (38). The study reported accuracy of the detection 
of 86% (whole mount prostatectomy samples are used as 
“ground truth”). 

Radiogenomics

The integration of quantitative imaging data (radiomics) to 
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detect correlations with genomic signatures is commonly 
known as radiogenomics (51). The underlying hypothesis 
is that mpMRI radiomics features can be used to derive 
“radiophenotypes” that both correlate to and complement 
existing validated clinical and genomic risk stratification 
biomarkers. We performed an integrated analysis of 
quantitative mpMRI and gene expression in prostate cancer 
samples from patients undergoing mpMRI-US guided 
fusion prostate biopsies. This retrospective study was Health 
Insurance Portability and Accountability Act (HIPAA) 
compliant and approved by the institutional review board 
at University of Miami with a waiver of written informed 
consent. Between September 2012 and March 2014, 37 
patients underwent MRI-US guided prostate biopsies at the 
University of Miami and 20 (54%) patients were positive 
for prostate cancer. Six patients had more than 2 positive 
biopsies and were selected for this study. The patients 
ranged in age from 61-85 years old and PSA values ranged 
from 4.2 to 10.8. Five of 6 patients had T1c and one patient 
had a cT2b tumor by palpation. Biopsies were reviewed by 
a board certified genitourinary pathologist at the University 
of Miami. The mean time-interval between mpMRI and 
biopsy was 49±16 days. 

MRI-US guided fusion biopsy

The key in radiogenomic analysis is to be able to connect 
the gene expression of the prostate tissue with the radiomics 
features from the location of the tissue. The co-registration 
of the two types of features is of paramount importance as 
the prostate tumors are heavily heterogeneous. We utilize 
MRI-US image fusion biopsies carried out in Artemis 
system (Eigen, CA, USA) (52). The procedure is illustrated 
in Figure 3. Regions of Interest (ROIs) based on established 
mpMRI analysis criteria and informed by software showing 
habitats suspicious for harboring tumor were contoured 
in ProFuse (Eigen, Sun Valley, CA, USA) multi-modality 
image fusion software, Figure 3A. The prostate volume is 
outlined (yellow). A 3D transrectal ultrasound (TRUS) 
is acquired just prior to biopsy by reconstructing sweeps 
of 2D to 3D. The prostate volume is semiautomatically 
segmented (53) on TRUS and both these volumes are fused 
after specification of four or more corresponding points 
along the gland boundary and MRI targets are visualized on 
TRUS (Figure 3B). The lesion is targeted using ultrasound 
monitoring and the needle trajectory is visualized  
(Figure 3C). Tissue from identified targets was obtained for 
pathology and gene expression analysis. 

RNA extraction and microarray hybridization

From the original study (n=19), RNA was available for 
microarray from 17 biopsies (6 unique patients). As 
previously described (8,54), after histopathological re-
review by an expert genitourinary pathologist, tumor was 
macro-dissected from surrounding stroma from 3–4 10-µm 
tissue sections from a region with maximum tumor content 
for total RNA extraction. RNA extraction and microarray 
hybridization was performed as previously described (8,54). 
Human Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, 
CA, USA) were utilized that profile coding and non-
coding regions of the transcriptome using approximately  
1.4 million probe selection regions (PSRs), hereinafter 
referred to as features.

All of the samples with available tissue and RNA, passed 
initial quality control. The positive versus negative AUC 
was used as an additional metric to assess microarray 
quality by measuring the signal between positive control 
probes, which measure the expression of housekeeping 
genes, and negative control probes, which measure anti-
genomic sequences and hence should exhibit background 
intensity levels. The percent present observed in these 
biopsy samples was higher than the typical range seen 
in formalin fixed paraffin embedded FFPE radical 
prostatectomy samples.

Radiomics features

The analysis followed the radiogenomic workflow 
presented in Figure 1. Using propriety extensions in 
MIM, we created a radiomics pipeline for extraction of 
49 features: The volumes of prostate, PZ, TZ and ROI 
were estimated in MIM (n=4); Mean, median and stdev of 
the intensities of T2w and ADC in NAT_PZ, NAT_TZ 
and ROI were calculated (n=18). In addition for the ROI, 
the top and bottom 5 percentile (Q5 and Q95), skewness, 
kurtosis and integral were recorded for both T2w and 
ADC (n=10). The ‘extended Tofts model’ (55,56) was 
applied to the averaged DCE-MRI curves within NAT_
PZ, NAT_TZ and ROI. Using synthetic Parker fixed 
population average Arterial Input Function (AIF) (57) 
we have shown that a valid compartmental modeling can 
be carried out even at the lower temporal resolution of 
the data (58). Three features from the pharmacokinetic 
analysis (Ktrans – Volume transfer constant between plasma 
and Extracellular Extravascular Space (EES), kep – Rate 
constant between EES and plasma and ve – the fraction 
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of the EEC) were estimated for NAT_PZ, NAT_TZ and 
ROI (n=9). The volumes of the probability maps and their 
intersections with ROI were also included (n=6). Two 
features were also included in the analysis: extra capsular 
extension and location of the lesion (n=2). Each of these 
parameters was used in combination to define specific 
nomenclature for each unique feature. (For example, NAT.
PZ_ADC_Mean refers to the mean ADC value in the 
contour of NAT in PZ).

Radiogenomic analysis

The Decipher prostate cancer classifier was developed to 
predict early metastasis in patients that have undergone 
radical prostatectomy. Decipher has undergone extensive 
validation in a number of independent cohorts from 
several institutes(8,13,59-63) and shown clinical utility 
in the stratification of at-risk patients who may benefit 
from radiation therapy from those who may benefit from 

Figure 3 Delineation of biopsy targets on mpMRI and fusion of targets on 3D TRUS. (A) Screenshots from ProFuse software (Eigen, 
Grass Valley, CA, USA) for fusion of mpMRI delineated prostate Regions of Interest (ROIs) for targeted biopsy. Two axial slices, going 
from base (top) to apex (bottom) are displayed. The prostate volume is outlined (yellow contour); (Left) T2-weighted MRI; (Center) 
Apparent diffusion coefficient (ADC) derived from Diffusion Weighted Imaging (DWI); and (Right) Early enhancing image from Dynamic 
Contrast Enhanced (DCE-) MRI. The volumes in red and green are assigned high and low probability for cancer; (B) a screenshot from 
Artemis (Eigen, Grass Valley, CA, USA), displaying the 3D TRUS views corresponding to the axial slices in A. after non-rigid fusion of the 
prostate boundaries on MRI and ultrasound. The targets are transferred from mpMRI to real-time ultrasound biopsy system; (C) schematic 
representation of the prostate and target volumes. Yellow lines indicate needle biopsy tracks.

A

B C
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deferring the secondary therapy (9,64-66). Expression 
patterns of the 22 gene Decipher panel in the biopsies from 
the analyzed cohort are illustrated as a heatmap in Figure 4. 
Hierarchical clustering of the gene probes segregated the 
patient cohort into samples with Gleason 6 and Gleason 
8–9 disease. Gleason 7 samples segregated in both low and 
high risk clusters, in keeping with the genetic heterogeneity 
of this subtype. In addition to GS, the Decipher expression 
patterns also segregated by risk category, suggesting strong 
correlation between Gleason and Decipher score. Decipher 
scores and Gleason score were also consistent with previous 
evaluations of tumor specimens from RP (59). These 
results indicate that mpMRI habitat guided biopsies capture 
distinct phenotypic differences of tumors. 

Genes from Decipher were assessed for their relationship 
to the radiomic features. To reveal the relationship between 
genomic and radiomic features, Pearson’s correlation 

distances between the genomic and radiomics features were 
calculated. Two-way hierarchical clustering of these distances 
is illustrated as a heatmap in Figure 5. This analysis grouped 
Decipher genes into two groups of expression patterns 
with the left side containing mostly those markers that 
were previously shown to be associated with tumors from 
patients that developed metastasis after RP, and the right side 
containing mostly those markers associated with tumors from 
patients that did not develop metastasis after RP.

This is the first demonstration of a correlation between 
quantitative imaging features and genomic risk stratification 
in prostate cancer. This method provides a novel approach 
for targeting diagnostic biopsies that can directly impact 
clinical treatment strategies by defining highest risk disease. 
This data supports validation of MP-MRI based radiomics 
as a novel method for characterizing prostate cancer multi-
focality in a large independent cohort.

Figure 4 Hierarchical clustering on expression of the Decipher genes and patient samples. Note how biopsies are grouped by Gleason 
Score. Decipher genes, known to be up-regulated in more aggressive cancers (marked in dark red) are more highly expressed in higher GS 
samples and vice versa.
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Discussion

If a patient’s prostate cancer is indolent, he could be 
assigned to an active surveillance protocol and thus be 
spared from treatment-induced morbidity and avoiding 
significant costs. If a patient’s disease is aggressive, an 
appropriate treatment option must be chosen—radiotherapy 
or prostatectomy? Finally, if a patient is at risk of developing 
metastatic disease, can a precision-tailored, intensified 
treatment be assigned at an earlier time? Urologists and 
radiation oncologists struggle with these questions as the 
standard clinical prognostic factors of Gleason score (GS), 
PSA and tumor-category are insufficient for selecting an 
optimal patient management strategy.

The nascent field of radiomics has the potential to 
describe the tumor morphology using computer accessible 

imaging features that can be directly related to diagnosis 
or risk assessment. The goal of the “MRI-Guided 
Biopsy Selection of Prostate Cancer Patients for Active 
Surveillance versus Treatment: The Miami MAST Trial” 
(ClinicalTrials.gov: NCT02242773) is to investigate the 
impact of mpMRI and MRI-US fusion biopsy to identify 
higher grade or volume tumors early on for better selection 
of patients for active surveillance. This single arm trial 
is generating data from MRI-US fusion biopsies that are 
targeting the suspicious areas seen on mpMRI as well as 
standard template biopsies, sampling the remaining gland. 
The rationale is that follow-up patient data (imaging and 
biopsy) in clinical trials like the Miami MAST Trial will add 
additional information that may lead to better stratification, 
treatment, and prognosis of patients as well as gaining 
better insights into imaging features that are non-invasive 

Figure 5 Hierarchical clustering on Pearson’s correlation distance using Decipher genes and radiomic features. Decipher genes are grouped 
in up- and down-expression in aggressive cancers.
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biomarkers of underlying molecular pathways. These 
integrated markers will improve patient risk assessment and 
in general, improve prospective clinical trials.

As with any developing discipline, it is possible that 
the field will undergo a process of evolution as radiomics 
classification schemes are further validated and applied to 
larger clinical patient datasets at multiple institutions. There 
is large variability in imaging hardware in clinic: different 
MRI instruments (field strength and manufacturers); coils 
(endorectal or body coils). There is even larger variability 
in imaging sequences and methods for data reconstruction. 
And finally—there is a plethora of image processing 
approaches. For instance, the same DCE-MRI data was 
distributed among several academic medical centers. The 
participants applied pharmaco-kinetic modeling and the 
estimation of Ktrans, the volume transfer coefficient that 
measures capillary permeability (55), resulted in within-
subject coefficient of variation of 0.59 (67). As the radiomics 
field matures, the level of standardization across medical 
centers will increase. There are multiple on-going efforts 
for standardization and for a full list of the organizations 
and initiatives, please refer to Gillies et al. (51).

Radiogenomics provides a noninvasive and repeatable 
way for investigating phenotypic information. This is the 
basis of the increasing role of radiomics in personalized 
medicine. While traditionally the discussion about 
personalized medicine has been centered around genomic 
and proteomic characterization of the tumor, the 
application of these techniques is hindered by uncertainties 
related to the location of the investigated tissue. Tumors 
are spatially and temporally heterogeneous; acquiring a few 
tissue samples without imaging guidance does not allow for 
complete characterization of the tumor. Prostate cancer is 
multifocal and heterogeneous, and thus it is challenging to 
determine prostate regions to biopsy that are most likely to 
be determinate of outcome.

We describe the extraction of quantitative mpMRI and 
gene expression features from prostate regions of interest 
informed by mpMRI directed habitat biopsies. Radiomic 
features are extracted from habitat biopsy location and 
considered in combination with features outside of the 
biopsy locations. The described radiogenomics pipeline will 
accelerate required future validation studies. The number 
of extracted radiomic features is also small relative to other 
published studies (18). With an increase in the dataset, other 
features such as tumor shape and texture might be added 
to the radiomic characterization of prostate habitats. The 
data indicate that our platform would significantly improve 

the biopsy targeting of prostate habitats through better 
recognition of indolent versus aggressive disease, thereby 
facilitating a more personalized approach to prostate cancer 
management. On the one hand, the expectation of non-
invasively identifying habitats with high probability of 
housing aggressive cancers would result in directed biopsies 
that are more informative and actionable. Conversely, 
providing evidence for lack of disease would reduce the 
incidence of non-informative biopsies. In RT of prostate 
cancer, dose escalation for prostate cancer has been shown 
to reduce biochemical failure (68). While dose escalation 
also has been shown to reduce the need for androgen 
deprivation in intermediate to high risk patients (69-71), 
when the entire prostate is dose escalated, the complication 
risk rises. Dose escalation only to determinate prostate 
habitats has the potential to improve tumor control with 
less toxicity than when the entire prostate is dose escalated.
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