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Background: Radiomics features have been used in a variety of studies to predict patient outcomes or 
aid in the diagnosis of non-small cell lung cancer. However, no guidelines exist for the best way to calculate 
these features to maximize their prognostic potential. The purpose of the current study was to evaluate how 
different image pre-processing techniques may impact both the volume dependence and prognostic potential 
of the features in univariate analyses.
Methods: Radiomics features from the histogram, co-occurrence matrix, neighborhood gray-tone 
difference matrix and run-length matrix were calculated from a set of computed tomography (CT) images 
of 107 non-small cell lung cancer tumors with volumes ranging from 5 to 567 cm3. Features were calculated 
from the images with no pre-processing, 8 bit depth resampling, Butterworth smoothing, or both 8 bit 
depth resampling and Butterworth smoothing. To determine which features were correlated with volume, 
we calculated the Spearman rank correlation coefficient (rs) for each feature and preprocessing combination. 
For features that had very high volume correlations (rs >0.95) regardless of which preprocessing algorithm 
was used, we normalized the algorithm for volume and recalculated the volume correlation. To determine 
whether the preprocessing technique affected the usefulness of the feature, we fitted univariate Cox 
proportional hazards models for all four preprocessing techniques for each feature and calculated the P 
value. Additionally, univariate cox models were recalculated using leave-one-out cross validation to generate 
risk predictions for each patient. As a result, each patient had a predicted outcome for each model in which 
the patient was not involved in the model building. The prediction accuracy was assessed using Harrell’s 
concordance index (c-index). Finally, the ability of each feature to improve model fit was examined using the 
P value of the log-likelihood ratio between a model built using volume only and a model built using volume 
and one radiomics feature. The Benjamini-Hochberg procedure was used for multiplicity correction.
Results: Five features were entirely volume dependent (busyness, coarseness, grey-level non-uniformity, 
run-length non-uniformity, and energy) and new algorithms were proposed for these features. Both the 
correlation with volume and the prognostic value of individual features changed substantially with different 
preprocessing techniques. In general, preprocessed features that were at least slightly correlated with volume 
(rs >0.5) were more likely to be significant in the univariate analysis. Additionally, Butterworth smoothing, 
used either alone or in conjunction with 8 bit depth resampling, most often yielded features that were 
significant in univariate analysis.
Conclusions: Preprocessing can have a strong impact on the volume dependence of a feature, and its 
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Introduction

Recently, several research groups have explored the 
potential of quantitative imaging (radiomics) features to 
predict patient outcomes prior to treatment (1-10). These 
quantitative features are calculated from image data already 
being acquired for clinical purposes. The calculated features 
may represent the relative heterogeneity of a tumor, capture 
the spatial relationships of pixels within the tumor, or be 
calculated from a histogram of image pixel values. Models 
built upon these features and clinical factors, if successful, 
could aid physicians in identifying high- and low-risk 
patients and thus help inform treatment decisions.

The body of literature suggesting that radiomics features 
may be prognostic in patients with non-small cell lung 
cancer (NSCLC) has been steadily growing over the past 
few years. Features extracted from computed tomography 
(CT) images have been claimed to be correlated with 
overall survival (1,2,4,5), gene expression patterns (1,4,6), 
pathologic findings (7), and stage (3). A recent study showed 
that models built on texture features and clinical factors 
can improve patient risk stratification for overall survival, 
local regional control, and freedom from distant metastases 
compared with models built on clinical factors alone (10).

Although these results are intriguing, the rush to 
determine whether radiomics features have a useful role in 
tumor analysis has left many of the fundamental questions 
surrounding them overlooked or only partially answered. 
Chief among these is how to determine whether a feature 
is being calculated correctly. In radiomics, no ground truth 
exists for the features themselves, and as a consequence 
most studies have settled for selecting features with high 
reproducibility in patient test-retest sets and then using a 
machine-learning algorithm to determine which features 
are useful for a particular research question. However, this 
approach can lead to high false-positive rates (11), and has 
resulted in variability in both the features that are used and 
how they are calculated (e.g., feature parameters and image 

preprocessing).
Further, while a feature should be reproducible, 

reproducibility itself does not guarantee that a feature is 
informative. For example, a highly smoothed image is much 
more likely to return the same value for a feature on a retest, 
but it is also likely to have lost the original spatial differences 
that the feature was selected to identify. Also, because most 
of the quantitative imaging features used in radiomics today 
were initially developed to analyze aerial photographs 
(12-14), in which only two-dimensional rectangular 
photographic images of the same pixel dimensions were 
compared, normalization for area or volume differences 
was not originally necessary. However, in tumor analysis, 
the regions of interest (ROIs) are the irregular contours 
of three-dimensional tumors. As a result, the volumes of 
tumor ROIs have substantial inter-patient variability. A 
feature that is correlated with volume would be likely to 
have high reproducibility when tested and retested in a set of 
patients with a wide range of ROI volumes. This correlation 
can dominate the useful spatial distribution or intensity 
information in the feature that we hope to measure. The 
impact of these volume differences on features measured 
from CT images has never been systematically investigated. 
However, a few recent studies have demonstrated the effects 
of volume on features in fluorodeoxyglucose-positron 
emission tomography (FDG-PET) images in which the 
total number of voxels per tumor was much smaller, and 
have concluded that radiomics features offer complementary 
information only above volume thresholds as large as 10 or 
45 cm3 (15,16).

In order to determine how best to calculate features, it is 
first necessary to determine which features are susceptible to 
changes in image preprocessing or wide variations in tumor 
volume. This work has investigated this issue by assessing 
changes in the correlations between features and volume, as 
well as the univariate prognostic potential of features, as a 
function of three different preprocessing techniques.

significance in univariate models. To create standardized features useful for multivariate modeling, it will be 
important to balance the usefulness of features with their volume dependence.
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Methods 

Images

We retrospectively reviewed clinical data and outcomes 
for 134 NSCLC patients treated at our institution with 
radiation therapy and concurrent chemotherapy as part of 
a clinical trial with IRB approval (17). The pretreatment 
simulation 4DCT images and the three-dimensional 
treatment plan gross tumor volume (GTV) contours 
were acquired and used as the ROIs for radiomics feature 
extraction. Tumors were removed from this dataset if they 
had an ROI volume of less than 5 cm3 (n=18) or if they 
were imaged using breath hold instead of 4DCT (n=9) 
which left 107 images for analysis. The characteristics for 
the resulting study population are summarized in Table 1. 
The scan parameters for the 4DCT images included a peak 
tube voltage of 120 kVp, tube current of 100 or 200 mA, 
and rotation time of 0.5 or 0.8 second. The end-of-exhale 
phase images were used in our analysis because they are 
considered the most reproducible (18) and have been used 
in other texture analyses (10). Reconstructed axial images 
were 512×512 pixels with an in-plane resolution of 0.98 mm  
and image thickness of 2.5 mm. These acquisition and 
reconstruction parameters are our institutional standards 
for CT imaging.

Image pre-processing

A lower intensity threshold of −100 and upper intensity 
threshold of 200 Hounsfield Units were applied to all 
images before feature calculation to ensure that no voxels of 
the surrounding normal lung tissue or bone were included 
in the GTV. Images were then further pre-processed with 
either 8 bit depth resampling, a Butterworth smoothing 
filter with an order of 2 and a cutoff frequency of 125, 
both Butterworth smoothing and 8 bit depth resampling, 
or no additional pre-processing. When both Butterworth 
smoothing and 8 bit depth resample were used, the 
Butterworth smoothing was performed first. The general 
effect of each of these techniques should be to reduce 
noise in the image and thus improve the overall signal 
to noise ratio of any radiomics feature. These particular 
preprocessing options were selected to represent some of 
the variety available and are not meant to be exhaustive. 
The bit depth resample changes the images from 12 bit 
to 8 bit, effectively creating pixel intensity bins of 16 as  
12 bit images have 4,096 possible intensity values and 8 bit 
images have 256 possible intensity values. Because several 
of the radiomics features are calculated from matrices that 
track how often pixels of one intensity are next to each of 
the other intensities, this resample also removes the need to 
select an appropriate bin size for these matrices, and instead 
bins of 1 can be used. For example, a 12 bit image would 
have a COM of 4,096 by 4,096 while an 8 bit image would 
have a COM of 256 by 256. The range of values in NSCLC 
tumors is typically much less than the range of values in the 
entire image. Thus for a hypothetical tumor with values 
from only 1 to 100 HU, only a 100 by 100 subsection of the 
12 bit COM would be used to calculate the feature since 
the rest of the COM would be filled with zeros. For the  
8 bit image, the 1–100 HU range would be resampled to 1–7, 
and the informative subsection of the COM would thus 
be a 7 by 7 matrix. By using resampling, the 7 by 7 COM 
would be less likely to be sparsely populated than the 100 
by 100 COM especially if the tumor is small and thus may 
better represent the spatial patterns in the image and be 
more informative. The choice of 8 bit was selected because 
the effect of noise in CT for soft tissue and tumor should 
be less than 16 HU and because this value had been used 
in other radiomics analyses (10,16,19,20). The Butterworth 
smoothing filter acts as a low pass filter to remove high 
frequency noise. This filter has the advantage of acting 

Table 1 Summary of the clinical characteristics of the study 
population, n=107.

Characteristic No. (%)

Median age (range) 66 years (47–80 years)

Median gross tumor volume (range) 39.6 cm3 (5.4–567 cm3)

Sex

Male 62 [58]

Female 45 [42]

Tumor stage

II 12 [11]

III 93 [87]

IV 2 [2]

Tumor histologic findings

Squamous cell carcinoma 46 [43]

Adenocarcinoma/other 61 [57]
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in the frequency domain, so it is not limited by the size 
of the filter matrix. Additionally, Butterworth filters have 
the benefits of reduced ringing and gradual attenuation of 
higher frequencies. In comparison, Gaussian filters would 
likely have a similar impact on the image but with a less 
steep cutoff. Figure 1 shows the visible result of each of 
these pre-processing techniques on a sample tumor ROI. 
The radiomics features were calculated from the tumor 
ROIs using each of these pre-processing techniques.

Features

Radiomics features from the histogram, co-occurrence 
matrix (COM), neighborhood gray-tone difference matrix 
(NDM), and run-length matrix (RLM) were calculated 
and are summarized in Table 2. The abbreviations used 
for each feature for the figures are also listed in Table 2. 
The histogram features summarize characteristics of the 
intensity distribution for each tumor. The COM, NDM, 
and RLM features all contain information about the spatial 
distribution of the pixel intensities within a tumor. All 
textures were calculated using the open-source Imaging 
Biomarker Explorer (IBEX) software (21). 

Volume-dependence

To determine whether the features became more or less 
correlated with volume as a result of image pre-processing, 
we used the spearman rank correlation coefficient (rs) 
to calculate the correlation with volume of each feature 
after each preprocessing technique. The Spearman rank 
correlation coefficient ranges from −1 to 1 and evaluates 
whether a value decreases or increases monotonically; 1 
and −1 represent a perfect correlation and 0 represents 

no correlation. Because the feature algorithms used for 
tumor analysis in current radiomics studies were originally 
designed for comparing equally sized photographs (12), 
it was possible that some algorithms might be inherently 
dependent on volume and may require correction for the 
number of voxels in the image. Features with extremely high 
values (rs >0.95) for all four preprocessing techniques were 
identified and new normalized versions of the algorithms 
for these features were created and added to the feature set 
for analysis. The Spearman correlation coefficient for the 
normalized features was calculated for each preprocessing 
technique. For completeness, we did not remove the 
features that exhibited these extremely strong correlations 
with volume from the remainder of the analysis.

Prognostic potential

To determine the impact of preprocessing on the usefulness 
of radiomics features, we fitted univariate Cox proportional 
hazards models for overall survival. P values for the fit using 
the likelihood-ratio test were calculated for each model. 
P values were corrected using the Benjamini-Hochberg 
process to control for the false discovery rate (type 1 error). 
Corrected P values <0.05 were considered significant.

Each univariate model was then recalculated using 
leave-one-out cross validation to generate predictions 
for each patient in each model. In this framework, each 
patient’s prediction is calculated using a model in which 
that patient was left out of the coefficient fitting process. 
Harrell’s concordance index (c-index) was then calculated 
using the predicted risks. The c-index is similar to the area 
under the curve and evaluates, for each combination of two 
patient predictions, how often the patient with the higher 
predicted risk actually experiences the event (death) before 

No preprocessing 8 bit depth resample Butterworth smoothing
8 bit depth resample & 
butterworth smoothing

Figure 1 Sample image of a patient tumor ROI using each preprocessing technique.
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the patient with the lower predicted risk. A c-index value of 
≤0.5 indicates that the model does not perform better than 
random chance and a value of 1.0 indicates a perfect model. 

The c-index for a model with volume as the only covariate 
was also calculated for comparison.

Last ly,  to determine whether features actual ly 
outperformed volume alone, we calculated the log-
likelihood ratios between Cox proportional hazards models 
for overall survival fitted with volume only and models 
fitted with volume and one radiomics feature at a time. The 
P values for the log-likelihood ratios were then determined 
and corrected using the Benjamini-Hochberg process. A 
P value <0.05 would mean that including that particular 
feature significantly improved the model’s fit to the data 

Table 2 Radiomics features analyzed in this study and their 
abbreviations

Feature category Feature
Feature 
abbreviation

Histogram Variance HISTvar

Uniformity HISTunif

Standard deviation HISTstd

Skewness HISTskew

Minimum HISTmin

Median HISTmed

Mean HISTmean

Maximum HISTmax

Kurtosis HISTkurt

Entropy HISTentropy

Energy HISTenergy

Run-length matrix Short run low gray-level 
emphasis

RLMsrlgle

Short run emphasis RLMsre

Run percentage RLMrunperc

Run-length non-uniformity RLMrlnu

Long run low gray level 
emphasis

RLMlrlgle

Long run high gray level 
emphasis

RLMlrhgle

Long run emphasis RLMlre

Low gray-level run 
emphasis

RLMlglre

High gray-level run 
emphasis

RLMhglre

Gray-level non-uniformity RLMglnu

Neighborhood 
gray-tone 
difference matrix

Texture strength NDMtexstr

Contrast NDMcontrast

Complexity NDMcomp

Coarseness NDMcoarse

Busyness NDMbusy

Table 2 (continued)

Table 2 (continued)

Feature category Feature
Feature 
abbreviation

Co-occurrence 
matrix

Variance COMvar

Sum variance COMsumvar

Sum entropy COMsument

Sum average COMsumavg

Max probability COMmaxprob

Inverse variance COMinvvar

Inverse difference norm COMinvdifn

Inverse difference moment 
norm

COMinvdifmn

Information measure 
correlation

COMinfomc

Information measure 
correlation 2

COMinfomc2

Homogeneity COMhomog

Homogeneity 2 COMhomog2

Entropy COMentropy

Energy COMenergy

Dissimilarity COMdissim

Difference entropy COMdiffent

Correlation COMcorrel

Contrast COMcontrast

Cluster tendency COMclustend

Cluster shade COMclusshade

Autocorrelation COMautocorrel

NDM, neighborhood gray-tone difference matrix; RLM, run-
length matrix; COM, co-occurrence matrix.
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when compared with the fit of a model using volume only.

Results

Volume dependence

The absolute values of the Spearman correlation coefficients 
for each feature after each tested preprocessing technique are 
plotted in Figure 2. Five features demonstrated a very strong 
volume correlation, with Spearman correlation coefficients 
absolute values >0.95 regardless of which preprocessing 
technique was used. These features included energy from 
the histogram, coarseness and busyness from the NDM, and 
grey-level non-uniformity and run-length non-uniformity 
from the RLM. After close investigation, we found that 
these high levels of volume correlation were due to the 
feature algorithms, which did not normalize for the number 
of voxels or matrix elements summed. This means that if 
these features were measured from two ROIs of different 
sizes but with pixels of only one intensity, two different 
values would be obtained. Factors that mitigate this source 
of volume dependence were introduced for each of these 
feature algorithms (Table 3), and new Spearman correlation 
coefficients were calculated. The algorithms for energy, grey-
level non-uniformity, and run-length non-uniformity were 
edited by dividing their values by the total number of voxels 
in the ROI. The algorithms for busyness and coarseness were 
changed by normalizing the sums of the average difference 
around each intensity [the NDM values, s(i)] by the number 
of voxels of that intensity. The maximum of the Spearman 
correlation coefficients for the normalized features was 0.79 
(Figure 2). All of the normalized features preprocessed with 
resampling had correlations <0.5.

In general, features were more correlated with volume 
after either Butterworth smoothing or both Butterworth 
smoothing and bit depth resampling, and were less 
correlated with volume after bit depth resampling (Figure 3). 
A few features demonstrated strong (rs >0.85) correlations 
with volume for only one or two pre-processing techniques. 
Both information measure correlation and information 
measure correlation 2 from the COM had high correlations 
with volume after no preprocessing or Butterworth 
smoothing (>0.90), but were not correlated with volume 
when bit depth resampling was used, either alone or with 
Butterworth smoothing (rs <0.5). Inverse difference moment 
norm from the COM had a correlation of 0.88 with 
volume after Butterworth smoothing or after Butterworth 
smoothing and bit depth resampling. Texture strength 

from the NDM had correlation coefficients of −0.94, −0.87, 
−0.90, for Butterworth smoothing, bit depth resampling, 
and both Butterworth smoothing and bit depth resampling 
respectively, but when no pre-processing was used the 
coefficient was less than 0.5.

Prognostic potential

The P values for the Cox proportional hazard models are 
plotted in Figure 4 for each feature and pre-processing 
combination, as well as for volume. Almost every feature 
(39/55) had at least one preprocessing technique that 
resulted in statistically significant stratification (P value 
<0.05 after Benjamini-Hochberg correction). A few features 
from each category were never significant in this univariate 
analysis: normalized busyness, the original (volume-
dependent) busyness, complexity, and contrast from the 
NDM; maximum, minimum, and the original energy from 
the histogram; long-run emphasis, run percentage, and 
the original forms of grey-level non-uniformity and run-
length non-uniformity from the RLM; correlation, energy, 
information measure correlation 2, and max probability 
from the COM; and volume. Features that were always 
significant regardless of the preprocessing technique were 
high and low gray-level run emphasis from the RLM, 
mean from the histogram, and the original algorithm for 
coarseness. In general features were more likely to have a 
significant P value after Butterworth smoothing or both 
Butterworth smoothing and 8 bit depth resampling.

The c-indices calculated from the predicted values for 
each univariate model are plotted in Figure 5. The c-index 
for volume was 0.56. The largest calculated c-index was 0.65 
for the median from the histogram after both Butterworth 
smoothing and 8 bit depth resampling. The next highest 
c-index was 0.60 for both high gray-level run emphasis and 
short run high gray-level run emphasis from the RLM. In 
general, using Butterworth smoothing either alone or with  
8 bit depth resampling resulted in c-indices close to or 
slightly larger than the c-index for volume, whereas using  
8 bit depth resampling on its own or not using any image 
pre-processing resulted in c-indices <0.5. With the exception 
of minimum intensity, for every feature at least one 
preprocessing technique resulted in a c-index greater than 0.5.

The Benjamini-Hochberg corrected P values for the 
log-likelihood ratios comparing Cox proportional hazards 
models for overall survival fitted with volume only and 
fitted with volume and one of the radiomics features are 
plotted in Figure 6. Of the 54 features, 25 had at least one 



355Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):349-363 tcr.amegroups.com

Figure 2 The volume correlation for the features was measured using the spearman rank correlation coefficient. The absolute value of the 
coefficients for each feature and preprocessing technique are plotted here. The volume correlation for most of the features was substantially 
changed with different image pre-processing. Five features were extremely correlated with volume regardless of the preprocessing technique 
used and were recalculated with a normalizing factor. The normalized version of these algorithms are noted with an asterisk.
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Table 3 Algorithms for features highly correlated with volume before and after normalization

Feature Original algorithm Corrected algorithm
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The algorithms for the volume-dependent features from the literature were changed by introducing a normalization term for the number of 
voxels of each intensity, i, in the image, N(i), or the total number of voxels Nv. Other terms are: pi-probability of intensity i in the image; s(i)-
sum of the average difference value around voxels of intensity i; Gh-Highest gray-level intensity; Ng-Number of gray levels; Nr-Number of 
run levels; p(i,j)- probability of gray-level i having a run of length j; X(i)-the intensity of the ith voxel in the image, X.

Figure 3 The absolute value of Spearman correlation coefficients are plotted as a histogram here for each preprocessing technique. 
Butterworth smoothing either alone or combined with 8 bit depth resample increased the strength of the correlation between most of the 
features and volume. When only 8 bit depth resample was used, the overall volume correlation decreased for the features.

6

4

2

0

6

4

2

0

6

4

2

0

6

4

2

0

COM

Hist

NGTDM

RLM

Feature type

C
ou

nt

None

Smooth

0.00

0.00

0.00

0.00

0.25

0.25

0.25

0.25

0.50

0.50

0.50

0.50

0.75

0.75

0.75

0.75

1.00

1.00

1.00

1.00

Spearman correlation coefficient

Spearman correlation coefficient

Spearman correlation coefficient

Spearman correlation coefficient

Resample

Both

C
ou

nt

C
ou

nt
C

ou
nt

Effect of preprocessing on volume correlation



357Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):349-363 tcr.amegroups.com

Figure 4 The P values after Benjamini-Hochberg correction for the univariate cox proportional hazards model for each feature and 
preprocessing combination. The green region of the plot indicates significant values: P value <0.05. Volume was included in the feature set 
for comparison. 
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Figure 5 Harrell’s concordance index (c-index) was calculated for each of the features after each type of pre-processing using the predictions 
generated for each patient during leave-one out cross validation. With the exception of minimum intensity, for every feature at least one 
preprocessing technique resulted in a c-index value greater than 0.5, though only one was larger than 0.6.
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Figure 6 The Benjamini-Hochberg corrected P values for the log-likelihood ratio between cox proportional hazards models with only 
volume as a covariate and models with volume and one radiomics feature at a time are plotted. The region in green highlights significant 
P values <0.05. Features were most likely to be significant if they had been preprocessed with Butterworth smoothing either alone or in 
conjunction with 8 bit depth resample.
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significant P value from this test. Most of the significant 
features were calculated with either Butterworth smoothing 
or Butterworth smoothing and 8 bit depth resampling. 
Short run high gray-level emphasis energy added significant 
value to the model when no preprocessing was used, texture 
strength from the NDM added significant value when  
8 bit depth resampling was used, and the volume-corrected 
version of energy from the histogram was significant when 
either no preprocessing or 8 bit depth resampling was 
used. Approximately half of the features (29/54) were not 
significant regardless of which preprocessing technique was 
used. This subset included at least one feature from each of 
the feature categories and all 5 of the uncorrected, volume 
correlated features identified in the previous section. 

Prognostic potential versus volume dependence

The corrected P values for the log-likelihood ratio 
between Cox proportional hazards models fit with volume 
as their only covariate and models fit with both volume 

and one radiomics feature are plotted against the volume 
correlation for each feature after each preprocessing 
technique (Figure 7). All but one of the features with a 
significant P value for the log-likelihood ratio had at least 
a slight correlation with volume (rs >0.5). However, many 
features with equally high or higher correlations with 
volume did not have significant P values. Thus, features 
with significant P values and some correlation with volume 
are likely providing complementary information. The 
only feature with a significant P value and a correlation 
coefficient less than 0.5 was the minimum of the histogram 
after Butterworth smoothing. Features with very high 
volume (rs >0.95) correlations were not able to add 
significant value to models built using volume. These 
features included all of the preprocessing versions of the five 
original, volume correlated algorithms from the first section 
of the results, as well as the unpreprocessed versions of the 
information measure correlation and information measure 
correlation 2 from the COM and the smoothed version of 
the information measure correlation 2.

Discussion

Our analysis demonstrated that preprocessing can have a 
strong impact on the volume dependence and univariate 
significance of many radiomics features. Specifically, 
Butterworth smoothing increased the likelihood that a 
feature was significant in univariate Cox proportional 
hazards models and significantly improved the model fit 
in Cox proportional hazards models that included volume 
as a second covariate. This may be because smoothing 
removes some of the noise in the image and thus allows 
the measured features to better represent the tumor’s 
relative heterogeneity and thus its likelihood of responding 
to treatment. However, this preprocessing technique 
also increased the correlation with volume of a feature, 
suggesting that preprocessing techniques must be chosen 
carefully.

Recent  s tudies  o f  pat ients  wi th  NSCLC have 
demonstrated the potential of image texture analysis to aid 
physicians in identifying high-risk patients (4), diagnosing 
lesions (7,22,23), and predicting overall survival (1,3,5). 
By providing prognostic or diagnostic information that is 
complementary to current clinical data, quantitative imaging 
features could impact clinical decisions prior to treatment. 
Quantitative imaging techniques have the added benefits of 
being non-invasive and not time-intensive because they use 
images that are routinely acquired as the standard of care.
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Effect of preprocessing on volume correlation 
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Figure 7 This graph shows the relationship between the volume 
dependence measured with the spearman correlation coefficient 
and the added prognostic value of the features (measured with the 
log-likelihood ratio between cox proportional hazards models for 
overall survival using only volume and models using volume and 
one radiomics feature). The green area highlights features whose P 
value was <0.05 and thus significant. 
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However, although various studies have identified 
features that on their own or as part of a model may yield 
prognostic information, very little research has been done 
on the physical basis for high or low feature values. As 
observed in the present study, one tumor characteristaaic 
that can influence feature values is tumor volume. We 
identified 5 features that were highly correlated with 
volume owing to terms in the feature algorithms that are 
directly affected by the number of voxels in the entire 
image. This dependence would not have been an issue 
in the original design of these features, which were used 
only to compare aerial photographs that were the same 
size. However, in tumor analysis, patients with the same 
relative heterogeneity can have substantially different 
tumor sizes and thus widely different values for a radiomics 
feature if it is dependent on the number of voxels. In our 
analysis, simple normalizations of the original algorithms 
were able to lower these correlations. Additionally, we 
showed that the original versions of the algorithms for 
these 5 features were not able to add significant value to 
outcome models that already had volume as a covariate. 
While for two of these features (energy and grey-level non-
uniformity), normalizing them did result in significant P 
values. Because the direct dependencies we discovered were 
inherent to the texture equations and not the images, the 
same relationships are likely to exist in images of different 
types of cancer, especially those that span a large range of 
volumes. Similarly, although we used three-dimensional 
ROIs to capture the full heterogeneity of the tumor, several 
previous studies have used only the largest axial image 
slice when determining their ROI (23,24). The strong 
dependencies we found for these five features will also apply 
to two-dimensional slice studies because the algorithms are 
inherently volume-dependent. Thus, we recommend that 
future studies consider including these modified algorithms 
in their future feature sets in place of the original volume-
dependent features.

A large fraction of the features studied in this work both 
with and without image preprocessing were at least slightly 
(rs >0.5) correlated with volume. These relationships 
are not necessarily problematic, as the features may still 
provide information that is complementary to volume. 
For example, surface area is known to be correlated with 
volume, yet provides important new information. This 
idea was supported by the fact that almost all of the 
features with a significant P value for the log-likelihood 
test comparing models with volume as a covariate to 
models with volume and a radiomics feature were at least 

slightly correlated to volume (rs >0.5). These correlations 
may be due to actual differences in the heterogeneities of 
large versus small tumors on average which the features 
are designed to measure. To reiterate, a feature correlated 
with volume should not necessarily be excluded from a 
dataset, but a feature calculated with an algorithm that 
is inherently dependent on the number of voxels should 
be changed or removed. Otherwise, that feature would 
return two different values when measured from two ROIs 
of different sizes even if both have the same intensity in 
each pixel, e.g., two circles filled with pixels of intensity 
20 but one has a radius of 5 pixels and one has a radius of  
10 pixels.

In this study we also examined the impact of different 
preprocessing techniques on both the correlation with 
volume and prognostic significance of each radiomics 
feature. For some features an increase in the correlation 
with volume due to preprocessing may represent the 
amount of information lost in the image. For example, an 
image that has been overly smoothed eventually has only 
one intensity value in all of its voxels. Then, because all of 
the texture information captured by radiomics features has 
been erased, the feature could represent only the volume 
information, which is not affected by image preprocessing. 
However, using no preprocessing at all can also result 
in meaningless feature values because the values can be 
dominated by noise in the image. The ideal preprocessing 
technique for a particular feature would reduce this 
image noise while maintaining the tumor’s actual 
relative heterogeneity to generate useful information 
for modeling. Because a ground truth is not known for 
radiomics features, we used the significance of the features 
in univariate analysis to evaluate the usefulness of each 
feature. If a feature was significant in the univariate 
analysis, then the preprocessing was concluded to have 
helped it. We found that, in general, using a Butterworth 
smoothing filter, either on its own or in conjunction 
with 8 bit depth resampling, resulted in the ability to 
extract statistically significant features from tumor ROIs. 
However, the specific trends were feature- dependent. 
Thus, feature-specific image preprocessing may be 
required to maximize the usefulness of each radiomics 
feature. This is perhaps not surprising considering the 
differences in specific features. For example, the mean 
intensity from the histogram would change less with 
smoothing than a feature from the COM, which could 
benefit from appropriate bin sizes in the calculation of the 
matrix and thus the right choice for bit depth rescale. 
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One limitation of the current study is that only 3 different 
preprocessing techniques were tested. It is possible that 
superior preprocessing techniques could exist, such as using 
voxel size resampling or edge-detection filtering, or that fine-
tuning the parameters could improve these techniques, such 
as a 6 bit depth resample in place of 8. The preprocessing 
techniques used in this study did not comprise an exhaustive 
set but instead were selected to demonstrate the large 
changes in a feature’s univariate significance that can occur 
by using different methods for noise-reduction before feature 
calculation. Because studies have been published with the 
same features but different preprocessing techniques and 
parameters for their feature matrices (COM, NDM, and 
RLM) this is an important result that must be investigated 
in order for these features to eventually be standardized and 
used clinically. Similarly, although it is likely that many of the 
specific trends described in the current study will be different 
for other image modalities or tumor sites, the overall 
conclusion that image preprocessing can substantially affect 
the overall usefulness of a feature should apply in any case. 
Thus, we highly recommend that future studies examine the 
most appropriate features to be used for a particular patient 
population and the calculation parameters accompanying 
those features before including the features in prognostic 
models.

Conclusions

Radiomics features calculated from a variety of imaging 
modalities are being widely studied for potential to help 
predict patient outcomes or aid physicians in diagnosis. 
However, so far studies have calculated features using a 
wide range of software, parameters, and pre-processing 
techniques. The aim of the current study was to demonstrate 
the effect that different pre-processing techniques can have 
on the usefulness of radiomics features by measuring the 
volume-dependence and prognostic value of each feature in 
univariate models. We proposed normalization factors for 
five features that were highly volume-dependent regardless 
of the preprocessing technique used. Additionally, we found 
that most features benefited from image smoothing using 
a Butterworth filter, either alone or in conjunction with  
8 bit depth resampling. While smoothing was more likely to 
make a feature statistically significant in a univariate model, 
smoothing also tends to increase the volume dependence of 
the feature. It is important to balance these two effects in 
order to determine the optimal preprocessing technique for 
each feature.

Acknowledgments

The authors would like to acknowledge Erica Goodoff for 
help with manuscript preparation.
Funding: This work was supported by the National 
Institutes of Health (grant number 5U19CA021239); and 
the Cancer Prevention Research Institute of Texas (grant 
number RP110562-P2).

Footnote

Provenance and Peer Review: This article was commissioned 
by the editorial office, Translational Cancer Research for the 
series “Radiomics in Radiation Oncology”. The article has 
undergone external peer review.

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/tcr.2016.07.11). The series “Radiomics in 
Radiation Oncology” was commissioned by the editorial 
office without any funding or sponsorship. Court LE served 
as the unpaid Guest Editor of the series. The authors have 
no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study received institutional review 
board approval and individual consent for this retrospective 
analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding 
tumour phenotype by noninvasive imaging using 
a quantitative radiomics approach. Nat Commun 

http://dx.doi.org/10.21037/tcr.2016.07.11
http://dx.doi.org/10.21037/tcr.2016.07.11
https://creativecommons.org/licenses/by-nc-nd/4.0/


363Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):349-363 tcr.amegroups.com

2014;5:4006.
2. Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility 

and Prognosis of Quantitative Features Extracted from 
CT Images. Transl Oncol 2014;7:72-87.

3. Ganeshan B, Panayiotou E, Burnand K, et al. Tumour 
heterogeneity in non-small cell lung carcinoma assessed 
by CT texture analysis: a potential marker of survival. Eur 
Radiol 2012;22:796-802.

4. Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive 
image texture analysis differentiates K-ras mutation from 
pan-wildtype NSCLC and is prognostic. PLoS One 
2014;9:e100244.

5. Win T, Miles KA, Janes SM, et al. Tumor heterogeneity 
and permeability as measured on the CT component of 
PET/CT predict survival in patients with non-small cell 
lung cancer. Clin Cancer Res 2013;19:3591-9.

6. Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung 
cancer: identifying prognostic imaging biomarkers 
by leveraging public gene expression microarray 
data--methods and preliminary results. Radiology 
2012;264:387-96. 

7. Basu S, Hall LO, Goldgof DB, et al. editors. 
Developing a classifier model for lung tumors in 
CT-scan images. Systems, Man, and Cybernetics 
(SMC), 2011 IEEE International Conference On. 
Anchorage:IEEE;2011:1306-12.

8. Ganeshan B, Goh V, Mandeville HC, et al. Non-small 
cell lung cancer: histopathologic correlates for texture 
parameters at CT. Radiology 2013;266:326-36. 

9. Al-Kadi OS, Watson D. Texture analysis of aggressive and 
nonaggressive lung tumor CE CT images. IEEE Trans 
Biomed Eng 2008;55:1822-30.

10. Fried DV, Tucker SL, Zhou S, et al. Prognostic value and 
reproducibility of pretreatment CT texture features in 
stage III non-small cell lung cancer. Int J Radiat Oncol 
Biol Phys 2014;90:834-42.

11. Chalkidou A, O'Doherty MJ, Marsden PK. False Discovery 
Rates in PET and CT Studies with Texture Features: A 
Systematic Review. PLoS One 2015;10:e0124165.

12. Haralick RM, Shanmugam K, Dinstein IH. Textural 
features for image classification. IEEE Trans Syst Man 
Cybern B-Syst Man Cybern 1973;6:610-21.

13. Amadasun M, King R. Textural features corresponding 
to textural properties. IEEE Trans Syst Man Cybern 
1989;19:1264-74.

14. Galloway MM. Texture analysis using gray level run 
lengths. Comput Graph Image Process 1975;4:172-9.

15. Hatt M, Majdoub M, Vallières M, et al. 18F-FDG 
PET uptake characterization through texture analysis: 
investigating the complementary nature of heterogeneity 
and functional tumor volume in a multi-cancer site patient 
cohort. J Nucl Med 2015;56:38-44.

16. Brooks FJ, Grigsby PW. The effect of small tumor 
volumes on studies of intratumoral heterogeneity of tracer 
uptake. J Nucl Med 2014;55:37-42.

17. Image-Guided Adaptive Conformal Photon Versus Proton 
Therapy. Available online: https://clinicaltrials.gov/ct2/
show/study/NCT00915005?view=record

18. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and 
real-time measurement of 3D tumor motion in lung due 
to breathing and heartbeat, measured during radiotherapy. 
Int J Radiat Oncol Biol Phys 2002;53:822-34.

19. Fave X, Mackin D, Yang J, et al. Can radiomics features 
be reproducibly measured from CBCT images for 
patients with non-small cell lung cancer? Med Phys 
2015;42:6784-97.

20. Yang J, Zhang L, Fave XJ, et al. Uncertainty analysis of 
quantitative imaging features extracted from contrast-
enhanced CT in lung tumors. Comput Med Imaging 
Graph 2016;48:1-8.

21. Zhang L, Fried DV, Fave XJ, et al. IBEX: an open 
infrastructure software platform to facilitate collaborative 
work in radiomics. Med Phys 2015;42:1341-53. 

22. Wang H, Guo XH, Jia ZW, et al. Multilevel binomial 
logistic prediction model for malignant pulmonary nodules 
based on texture features of CT image. Eur J Radiol 
2010;74:124-9.

23. Bayanati H, E Thornhill R, Souza CA, et al. Quantitative 
CT texture and shape analysis: can it differentiate benign 
and malignant mediastinal lymph nodes in patients with 
primary lung cancer? Eur Radiol 2015;25:480-7.

24. Cunliffe A, Armato SG 3rd, Castillo R, et al. Lung texture 
in serial thoracic computed tomography scans: correlation 
of radiomics-based features with radiation therapy dose 
and radiation pneumonitis development. Int J Radiat 
Oncol Biol Phys 2015;91:1048-56.

Cite this article as: Fave X, Zhang L, Yang J, Mackin D, 
Balter P, Gomez D, Followill D, Jones AK, Stingo F, Court LE. 
Impact of image preprocessing on the volume dependence and 
prognostic potential of radiomics features in non-small cell lung 
cancer. Transl Cancer Res 2016;5(4):349-363. doi: 10.21037/
tcr.2016.07.11


