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Introduction

Radiomics is concerned with the high-throughput extraction 
of large amounts of quantitative features whose subsequent 
analysis and selection can be incorporated in clinical 
decision-making. Radiomics complements, facilitates, and 
accelerates the advancement towards cancer precision 
medicine, as it is able to (I) non-invasively characterize the 
overall tumor accounting for heterogeneity; (II) produce 
prognostic and/or predictive biomarker value derived from 
routine, standard of care imaging data as-is; and (III) allow 
for a fast, low-cost, and repeatable means for longitudinal 
monitoring (1,2). Head and neck cancer presents a unique 
set of diagnostic and therapeutic challenges, including 
but not limited to the complex regional anatomy, the 

minute scale of critical structures, the variable appearance 
of primary and recurrent tumors, significant anatomic 
changes related to tumor response, and high intratumoral 
heterogeneity that varies depending on anatomic site.

In turn, radiomics holds the potential to address these 
barriers to personalized therapeutics. Contrast-enhanced 
computed tomography (CT), magnetic resonance (MR), 
and positron emission tomography (PET) imaging are 
routinely acquired during the diagnosis and staging process 
in head and neck cancer, and the immense data volume 
gathered from multiple imaging modalities in existing 
clinical datasets can greatly facilitate exploratory radiomic 
analysis. Also, the heterogeneous composition of head and 
neck cancers can be captured non-invasively, which can 
serve as an essential adjunct to clinical decision-making. 
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In addition, radiomics can provide important day-to-day 
information regarding rapid anatomic change and tumor 
response during the course of treatment.

However, several key components are necessary to 
transition radiomics in head and neck cancers from 
exploratory studies to large-scale implementation as a 
clinical toolset. We first present an introductory overview 
of the radiomics workflow, texture analysis methods, and 
available software infrastructure. We then review key 
developments in head and neck cancer radiomics followed 
by a discussion of unmet challenges in its logistical and 
clinical application.

The radiomics workflow

To realize clinical application, an efficient series of iterative 
processes is required for reproducible and consistent 
extraction of radiomics data (Figure 1). This “radiomics 

workflow” begins with acquisition of high quality images 
with a standardized protocol. Segmentation of the tumor 
is then performed, followed by feature extraction from 
the defined tumor region. The extracted features that 
demonstrate the best performance, stability, or other 
defining metric are then selected for incorporation towards 
clinical applications (3).

An overview of texture analysis methods and 
available software infrastructure for radiomics 
exploration

Methods for texture analysis in head and neck cancers are 
more or less the same as those used in other organ sites. 
These include first- and second-order texture methods as 
well as various transform-based methods. The most “direct” 
features are those based simply on intensity values within 
a region of interest (ROI). Similar but unique features 

Figure 1 The “radiomics workflow” involves a series of iterative steps for reproducible and consistent extraction of imaging data. These 
steps include image acquisition, tumor segmentation, feature extraction, and feature selection. The selected features can then be analyzed 
for outcome correlation and potential incorporation into predictive models. Additionally, validations should be done against completely 
independent large datasets, preferably from other institutions.

Cohort level

Image acquisition

Individual level

Clinical application

Registration (optional)

Feature selection

Feature extraction

2 3 4 3 4
3 4 2 4 3
2 1 3 2 4
1 2 2 3 4
2 1 1 4 2

Clinical 
data

Iterative  
re-evaluation

0.06

0.05

0.04

0.03

0.02

0.01

0
700     800      900    1000    1100    1200   1300

Histogram (probability vs. value)

Validation 
independent dataset 

preferred

Preprocessing
&

Segmentation

Analysis
Ex: outcome 
correlation 

multivariate model 
constrution



373Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):371-382 tcr.amegroups.com

may also be extracted from histograms of intensity values 
and Gaussian functions fitted to these histograms. Other 
“direct” features may be calculated from the shape of the 
ROI. Texture features in the head and neck are based on 
the same parent matrices that are utilized in other sites. 
Examples of these include the gray-level co-occurrence 
matrix (GLCM), the gray level run length matrix (GLRLM), 
the neighborhood intensity difference matrix (NIDM), 
neighborhood gray-level dependence matrix (NGLDM), 
and the intensity size-zone matrix (ISZM) (4-9). Other 
feature extraction methods are based on filters such as 
Fourier transform, Gabor transform, Laplacian of Gaussian 
filter (LoG), and multiscale wavelet decompositions (10-13). 
After processing the ROI according to the parent matrix 
or filter method, features such as coarseness, business, 
correlation, entropy, and energy are calculated. Details of 
these individual features are available in their respective 
references, and due to their multitude and complexity, will 
not be delineated in this article.

In addition to texture analysis methods, there exist 
multiple open-source, in-house developed, and commercial 
software solutions that facilitate the exploration and 
development of radiomics in head and neck cancer. A prime 
example of available open-source software is the Imaging 
Biomarker Explorer (IBEX) by Zhang et al., described as 
an “open infrastructure software platform that flexibly supports 
common radiomics workflow tasks such as multimodality image 
data import and review, development of feature extraction 
algorithms, model validation, and consistent data sharing among 
multiple institutions.” (14). IBEX is compatible with CT, 
PET, and MR modalities, and is available at http://bit.
ly/IBEX_MDAnderson. MazDa is another open-source 
solution for texture analysis that has been validated through 
multi-institutional studies (15). This software is built 
primarily for magnetic resonance imaging (MRI) texture 
analysis and supports various feature selection methods 
for model generation. MazDa is available at http://www.
eletel.p.lodz.pl/programy/mazda/index.php?action=mazda. 
CGITA is yet another open-source texture analysis tool, 
built in the MATLAB environment. The software supports 
numerous heterogeneity indices, user-defined calculations, 
and batch processing with a focus on molecular imaging. 
CGITA supports CT, PET, and MR images and is available 
at http://code.google.com/p/cgita (16).

Beyond open-source software tools, a number of groups 
have also developed in-house tools for radiomic analyses, 
most often in the MATLAB environment, but these 
softwares are not publicly available to our knowledge (17-21).  

One such example is a modified version of Computational 
Environment for Radiotherapy Research (CERR) used for 
texture analysis.

Lastly, numerous commercial solutions for radiomic 
analyses are also emerging. For instance, TexRAD is a 
commercial software which uses a LoG special filter to 
delineate fine, intermediate, and coarse textures in a ROI 
for subsequent analysis. This software contains various 
decision support tools for thoracic and gastrointestinal 
imaging and has also demonstrated applicability in head and 
neck cancer textural analysis (22). 

Novel applications of texture analysis methods and the 
emergence of new software tools have both spurred on 
developments in radiomics for head and neck cancer.

A review of recent developments in radiomics 
for head and neck cancer

Specific applications for texture analysis and radiomics 
in head and neck tumors have, to date, demonstrated 
exciting promise in several distinct arenas. We elaborate 
on the preliminary applications of these techniques in the 
following areas for head and neck cancer:

(I)	 Tumor segmentation and pathologic classification;
(II)	 Risk stratification, as prognostic and/or predictive 

biomarker(s);
(III)	 Monitoring of alteration in normal tissue as a 

sequelae of radiotherapy dose deposition.
A summary of the mentioned studies in this section can 

be found in the Table S1.

Radiomics for tumor segmentation and 
classification

Textural analysis has demonstrated preliminary evidence 
suggesting clinical utility in the classification of and 
segmentation process for head and neck cancers (Table 1).

For instance, a number of studies have sought to classify 
head and neck cancers by human papillomavirus (HPV) 
status with textural analysis. Buch et al. investigated the 
use of texture analysis to distinguish between HPV(+) and 
HPV(−) status in 40 patients with primary oropharyngeal 
squamous cell carcinomas on contrast-enhanced CT 
(CE-CT) images. They identified three textural features 
(histogram median and entropy and GLCM entropy) that 
could make the distinction with statistical significance and 
concluded that textural analysis has the potential to be 
used as an adjunct to evaluate HPV status in squamous cell 

http://bit.ly/IBEX_MDAnderson
http://bit.ly/IBEX_MDAnderson
http://www.eletel.p.lodz.pl/programy/mazda/index.php?action=mazda
http://www.eletel.p.lodz.pl/programy/mazda/index.php?action=mazda
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Table 1 Studies on radiomics for segmentation and classification

Authors (study) Publication date Modality # of patients Anatomic site, if specified Analyzed endpoint

Raja et al. (23) Sep 2012 CT 21 Oral cavity Tumor grade classification

Buch et al. (17) Jul 2015 CT 40 Oropharynx HPV status

Fujita et al. (24) Jan 2016 CT 46 Oropharynx (25); 
larynx (17); 
hypopharynx (5)

HPV status

Yu et al. (26) Mar 2009 FDG-PET/CT 20 – Normal vs. abnormal tissue classification

Yu et al. (27) Oct 2009 FDG-PET/CT 10 Oropharynx and 
nasopharynx

Normal vs. abnormal tissue classification

Vallieres et al. (25) Oct 2013 FDG-PET 67 – HPV status; 
loco-regional failure; 
distant metastasis

Fruehwald-
Pallamar et al. (28)

Nov 2013 MRI 38 Parotid Benign vs. malignant status; 
tumor type differentiation

Yang et al. (29) Dec 2014 MRI 15 Parotid Parotid vs. surrounding tissue differentiation

Brown et al. (15) May 2015 DW-MRI 26 (training) 
18 (validation)

Thyroid Thyroid nodule classification

Jansen et al. (21) Jan 2016 DCE-MRI 19 Oropharynx Local control; 
local failure

Park et al. (30) Feb 2016 MRI 27 Oropharynx Tumor type differentiation

Fruehwald-
Pallamar et al. (31)

Feb 2016 MRI 100 – Benign vs. malignant status

CT, computed tomography; HPV, human papillomavirus; FDG-PET, fludeoxyglucose-positron emission tomography; MRI, magnetic 
resonance imaging; DW, diffusion-weighted; DCE, dynamic contrast-enhanced.

carcinomas (17). A follow-up study by Fujita et al. sought 
to distinguish the HPV status of 46 patients with non-
oropharyngeal carcinoma using texture analysis extracted 
from CE-CT images. They identified three features 
demonstrating statistical significance after false discovery 
rate (FDR) correction (GLCM contrast, GLCM correlation 
and law L8). Consequently, they suggested that there are 
morphologic feature differences based on HPV status 
even in non-oropharyngeal cancer (OPC) patients (24). 
Exploring beyond CE-CT, Vallieres et al. aimed to evaluate 
whether features derived from fludeoxyglucose-positron 
emission tomography (FDG-PET) could be used as non-
invasive biomarkers of HPV status. The study, including 
67 patients with head and neck squamous cell carcinoma 
(HNSCC) and known HPV status, demonstrated that 
multivariate models built via logistic regression (LR) and 
support vector machine (SVM) using five features could 
reliably classify HPV status [area under curve (AUC) of 

0.64 and 0.72 for LR and SVM, respectively] and had the 
potential to predict treatment failure (AUC 0.66) (25).

In addition to classification methodologies, segmentation 
(in particular, distinguishing between normal and abnormal 
tissue) has been another application of textural analysis for 
head and neck cancers. For instance, Yu et al. conducted a 
study examining 20 patients with head and neck cancer with 
20 matched controls and found that neighborhood gray-
tone difference matrix (NGTDM) features including PET 
coarseness, PET contrast, and CT coarseness extracted 
from co-registered FDG-PET/CT images yielded good 
discriminatory performance. Their multivariate model, 
constructed via a decision tree-based K-nearest neighbor 
(DT-KNN) classifier, was able to successfully discriminate 
between normal and abnormal ROIs [receiving operator 
characteristic area under the curve (ROC Az) of 0.95±0.007, 
Az90 of 0.087±0.003]. It was found that the combination of 
PET and CT features outperformed either PET or CT 
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features individually in discriminatory ability. In addition, 
they found that features based on the NGTDM and 
SGLDM (spatial gray level dependence method) could 
classify ROIs with comparable accuracy to that of a human 
expert, suggesting that implementation of such analyses at 
the voxel level could lead to improvement in the accuracy 
of automated segmentation in head and neck cancer (26). 
To that end, Yu et al. published on such an implementation 
titled “co-registered multimodality pattern analysis 
segmentation system” (COMPASS) for ten head and neck 
cancer patients. They found that COMPASS outperformed 
other simpler PET-based thresholding methods for tumor 
segmentation and yielded contours that were quantitatively 
and qualitatively similar to those created manually by expert 
radiation oncologists (specificity 95%±2%, sensitivity 
90%±12%) (27). In addition to studies that broadly 
examined segmentation of head and neck cancers, other 
studies have sought to segment tissue in specific anatomic 
regions, as Raja et al. aimed to do with regards to the buccal 
mucosa subsite of the oral cavity (23).

Much like the aforementioned studies performed in the 
CT and PET modalities, numerous investigations focused 
on the MR imaging modality have applied textural analysis 
towards classification and segmentation processes in head 
and neck cancer. Some of these MR imaging based studies 
(28-31) that differentiate between benign and malignant 
status and amongst different types of head and neck masses 
will not be elaborated upon in this text, but relevant 
findings and their statistical significance can be found in the 
Table S1.

MR imaging merits a distinct interest in radiomics. 
While CT Hounsfield units represent a standard physical 
phenomena, the dynamic range of information possible with 
distinct MRI sequences may allow greater imaging flexibility 
(in terms of voxel and subvoxel physiologic parameters) as 
well as the potential for multi-parametric texture/radiomics 
dataset acquisition in a single imaging series. Therefore, 
texture analysis of advanced MR sequences has generated 
interest for further investigation. For instance, in a multi-
institutional study focused on preoperative stratification 
of thyroid tumors using diffusion-weighted (DW) MRI, 
Brown et al. reported that an algorithm constructed using 
linear discriminant analysis (LDA) with t21 features yielded 
an ROC AUC 0.97 (sensitivity 92%, specificity 96%) in a 
training dataset of 26 patients and correctly classified 89% of 
tumors in an 18 patient independent validation dataset (15).  
As expected, a significant difference in the ADC was 
observed between benign and malignant lesions, but ADC 

alone was not as effective in classification (AUC 0.73, 
sensitivity 70%, specificity 63%) as the model generated 
from radiomic analysis of the diffusion-weighted echo-
planar imaging (DW-EPI) sequence. Furthermore, texture 
analysis of quantitative and semi-quantitative MRI data 
has also shown potential value. In a recent study of 19 
HNSCC patients with pretreatment and intra-treatment 
dynamic contrast-enhanced (DCE), or DCE-MRI available, 
Jansen et al. analyzed the parametric maps of Ktrans

 and ve, 
which are measures of tumor vascularity. It was reported 
that the energy feature from the ve map was significantly 
higher on intra-treatment scans (0.41±0.22 vs. 0.30±0.11; 
P<0.04). The findings suggest that texture analysis may 
provide complementary information in addition to standard 
DCE-MRI measurements that have been shown to be 
predictive of treatment response in head and neck cancer  
patients (21,32,33).

Radiomics as prognostic and predictive 
biomarkers

Another application of radiomics is the development and 
refinement of radiomic signatures that can improve upon 
prognostic and/or predictive models for specific cancers, 
including those of the head and neck (Table 2). Heading 
the effort in this area, Aerts et al. conducted a radiomic 
analysis of 440 features extracted from a pre-treatment CT 
database of 1,019 patients with either lung or head and 
neck cancer. The features described tumor phenotype in 
four categories (tumor image intensity, shape, texture, and 
wavelet decomposition) and the strongest radiomic features 
from each of the four feature groups were identified to 
create a signature: statistics energy, shape compactness, 
gray level non-uniformity, and wavelet (HLH) gray level 
non-uniformity. A multitude of features were found to 
have association with oncologic outcomes in independent 
datasets of lung cancer and head and neck cancer patients. 
Of interest, a radiomic signature that was trained using a 
dataset of non-small cell lung cancer patients was found 
to have impressive translatability in two independent head 
and neck cancer validation datasets. They also suggested 
that the prognostic significance of the features can capture 
underlying intratumor heterogeneity and is associated with 
gene-expression patterns (34).

In a subsequent study, the aforementioned radiomic 
signature was externally validated on an independent 
cohort of oropharyngeal squamous cell carcinoma patients  
(542 patients) (37) .  The signature validated well , 
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demonstrating good model fit and preservation of 
discrimination (Harrell’s c-index 0.628; P=2.72e-9). 
Interestingly, it was also found that the signature retained 
discriminatory ability in the presence of visible CT artifacts, 
which are often present in head and neck CT sequences due 
to dental hardware (Harrell’s c-index 0.647; P=5.35e-6).

In yet another application of radiomics as a predictive 
marker, Zhang et al. analyzed the predictive value of texture 
and histogram features in 72 HNSCC patients treated with 
induction chemotherapy. In multivariate Cox regression 
analysis incorporating both clinical and imaging variables, 
they found that in addition to expected factors such as 
tumor volume and N stage, primary mass entropy [hazard 
ratio (HR) =2.10 for each 0.5-unit increase; P=0.36] and 
histogram skewness (HR =3.67 for each 1.0-unit increase; 
P=0.009) were independent predictors of overall survival 
(OS) (22).

A common challenge in radiomics is to define a 
non-redundant set of imaging biomarkers from the 
vast amount of extracted features. An investigation by 
Parmar et al. examined the role of consensus clustering 
in reducing redundant features into a few robust and 
compact feature clusters. Upon analysis of features 
extracted from pre-treatment CT images from four 
independent lung and head and neck cancer cohorts  
(878 patients total), they showed that lung and head 
and neck radiomic clusters are significantly associated 
with patient survival and tumor stage. In addition to 
demonstrating prognostic value to clinical endpoints, 
their results revealed that clustering and the prognostic 

radiomic features are cancer specific (35).
Machine-learning methods have also been investigated 

for prognostic value as biomarkers for head and neck 
cancers. From two independent head and neck cohorts 
totaling 196 patients, Parmar et al. investigated 13 feature 
selection methods and 11 machine-learning classification 
methods chosen for simplicity, efficiency, and popularity in 
the literature. Specifically, they identified three classifiers 
and feature selection methods that demonstrated high 
performance and stability for predicting 3-year OS in head 
and neck cancer, suggesting that these machine learning 
methods should be the starting point for radiomics-based 
prognostic analyses due to their consistency. Identifying 
optimal machine-learning methods for radiomic analysis 
is a prerequisite to the development of a robust, clinically-
applicable radiomic workflow. These findings provide 
valuable information for methodology selection in future 
radiomics investigations. Such methods could allow for 
improvements in cancer biomarker identification and 
personalized medicine in oncology (36).

In addition to CT, applying radiomics for prognostic 
and/or predictive purposes for head and neck cancer has 
been investigated in the PET, MR, and histopathologic 
imaging modalities as well. For example, one study by  
El Naqa et al. examined shape and textural features as well 
as intensity volume histogram metrics extracted from pre-
treatment PET images on nine head and neck cancer 
patients. Using the highest predictive features, they were 
able to construct a two-metric LR model predicting OS 
with an AUC of 1.0 (20). In addition, certain studies aim 

Table 2 Studies on radiomics for prognostic and predictive biomarkers

Authors (study)
Publication 
date

Modality # of patients Anatomic site, if specified Analyzed endpoint

Zhang et al. (22) Dec 2013 CT 72 Oral cavity (28); larynx (21); 
hypopharynx (14); oral cavity (8)

Overall survival

Aerts et al. (34) Jun 2014 CT 474 (training); 545 (validation) Lung or head and neck Median survival

Parmar et al. (35) Jun 2015 CT 878 Lung or head and neck Survival; tumor stage; HPV 
status

Parmar et al. (36) Dec 2015 CT 101 (training); 95 (validation) – Overall survival

Leijenaar et al. (37) Aug 2015 CT 542 Oropharynx Median survival

El Naqa et al. (20) Jun 2009 FDG-PET 9 – Overall survival

Dang et al. (38) Jan 2015 MRI 16 Oropharynx p53 status

CT, computed tomography; HPV, human papillomavirus; FDG-PET, fludeoxyglucose-positron emission tomography; MRI, magnetic 
resonance imaging.
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to predict p53 status, as a positive status is associated with 
poor prognosis in certain subsets of HNSCC patients  
(39-41). Dang et al. demonstrated that MRI texture analysis 
could predict p53 status in oropharyngeal squamous cell 
carcinoma with 81.3% accuracy (P<0.05). In a retrospective 
study of 16 patients, they identified and incorporated seven 
significant texture features into a predictive model. The 
variables featured significantly were those derived from 
post-gadolinium T1W1, T2W1, and ADC map, noted to 
be possibly due to differences in vascularity between p53(+) 
versus p53(−) status (38). In addition to PET and MR 
imaging, histopathological imaging coupled with textural 
analysis has demonstrated prognostic potential as well. For 
instance, a study of 53 cases of HNSCC was characterized 
by quantitative histologic texture analysis by generating 
a 2D planar tessellation of the tumor and then analyzing 
the reconstructed image using spatial statistics. Ultimately, 
mean nuclear area was found to be significant predictor of 
lymph node metastasis (42).

Radiomics for longitudinal monitoring of therapy 
response in non-tumor tissues

Several groups have compiled data indicative of the 
potential capacity for radiomics/texture techniques to afford 
longitudinal monitoring of tumor response. However, in 
addition to tumor imaging, the same approaches can readily 
be utilized to detect normal tissue physiologic alteration 
(Table 3). This is particularly beneficial for head and neck 
cancers, which exhibit significant anatomical changes with 
radiotherapy doses delivered to functional normal tissues. 
As an instance of this application, texture analysis has been 
applied to CT images to assess change in parotid gland 
structure during radiotherapy. In this study, a general 
decrease in parotid tissue complexity and heterogeneity 
was observed at different time points of radiotherapy. 
Also, volume and mean intensity variation were found to 
be correlated with pre-treatment dosimetric parameters, 
suggesting a relationship between dose plan and structural 

variation estimated after radiotherapy (44). The same group 
further investigated whether early variations of textural 
parameters [i.e., mean intensity and fractal dimension (FD)] 
could predict parotid shrinkage at the end of treatment. 
The study examined textural parameters extracted from CT 
images of 42 parotids of 21 nasopharyngeal cancer patients 
treated with IMRT. Using discriminant analysis based on 
volume and fractal dimensionality, they were able to predict 
final parotid shrinkage with 71.4% accuracy (43).

Unmet challenges for head and neck cancer 
radiomics

With respect to head and neck cancer radiomics, we first 
discuss the technical challenges inherent to the young field 
of big data, followed by the clinical challenges inherent to 
cancer medicine. The unmet technical challenges present 
today in the field of head and neck cancer radiomics are 
mostly similar to those in other disease sites. Technical 
challenges in radiomics for head and neck cancer include 
requirements for processing large amounts of high-
quality imaging data, reproducibility in data processing, 
an assessment of radiogenomic associations, a suitable 
informatics infrastructure, and standardized reporting 
guidelines.

Radiomics inherently depends on large amounts of 
high quality imaging data. Results are highly dependent 
on segmentation, which can be a time-intensive process if 
carried out manually. However, manual segmentation adds a 
level of quality assurance and confidence in delineation that 
is not matched by auto-segmentation solutions, especially in 
the head and neck.

Reproducibility of results is another unmet need in this 
field. Not only do radiomic features need to demonstrate 
reproducibility in the same patient through test-retest 
studies, but these features need to be evaluated across 
different device manufacturers, imaging acquisition 
parameters, and institutions. Several studies have been 
done on test-retest variability of radiomic features in other 

Table 3 Studies on Radiomics for longitudinal monitoring

Authors (study) Publication date Modality # of patients Anatomic site, if specified Analyzed endpoint

Scalco et al. (43) Dec 2013 CT 21 Parotid Parotid volume

Scalco et al. (44) Aug 2015 CT 37 Parotid Various parameters

CT, computed tomography.
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disease sites (19,45-48). Recently, Mackin et al. published a 
study on feature variability utilizing a phantom imaged by 
16 CT scanners from four manufacturers at four separate 
facilities (48). They found that feature values tended to 
cluster by manufacturer and that the variability between 
manufacturers was not insignificant and even of comparable 
size to the variability among different non-small cell lung 
cancer tumors themselves. The findings highlight the need 
for collaboration among institutions to study the plethora 
of variables that may contribute to radiomic values and to 
develop a framework to minimize the variability.

Another major unmet goal specific to head and neck 
radiomics is in the radiogenomic assessment of head and 
neck cancers. In other disease sites including brain, breast, 
lung, and liver, studies have shown various associations 
between genomic expression patterns and radiographic 
features for a number of cancers (49-54). Such findings are 
supportive of the central hypothesis of radiomics that the 
genotype of a tumor is associated with the radiographic 
phenotype of a tumor. Researchers in other sites have 
leveraged genomic information from The Cancer Genome 
Atlas (TCGA) in combination with imaging data from The 
Cancer Imaging Archive (TCIA) for such studies. In the 
head and neck space, a radiogenomic assessment of the 
TCGA head and neck cohort is underway by the authors of 
this review.

From a practical standpoint, integration of radiomic 
data into the clinical workflow will require facilitation 
by software. An electronic health record (EHR) software 
and picture archiving communication system (PACS) that 
integrate radiomic analysis with all pertinent imaging 
metadata and clinical information will greatly enhance both 
the feasibility of a radiomics workflow and the potential 
value of acquired images. With respect to creating a 
standard methodology for analyzing and reporting radiomic 
data, two national collaborative efforts have been created 
to address this issue: the Quantitative Imaging Network 
(QIN), sponsored by the National Cancer Institute (NCI), 
and the Quantitative Imaging Biomarker Alliance (QIBA), 
sponsored by the Radiological Society of North America 
(RSNA) (55,56). In addition to these efforts, the NIH 
has required a plan for data sharing in all major research 
funding applications since 2003; ideally these efforts will 
spur sharing of datasets and methodologic transparency, in 
addition to increasing access to direct software resources 
developed for radiomics applications.

There are also several challenges unique to cancer 
medicine that must be addressed in radiomics. In clinical 

oncology, the ultimate goal of radiomics is to apply 
standardized signatures towards specific oncologic functions 
and outcomes, thereby enabling personalized cancer care 
that can be directly actionable. However, the literature 
investigating actionable radiomic signatures have not yet 
developed to a level sufficient for broad implementation. 
For instance, studies have examined the role of texture 
analysis in differentiating HPV status and p53 status in 
subpopulations of head and neck cancer patients. While the 
ability to infer oncology-specific parameters from imaging 
is promising, further investigations and collaborations are 
needed to incorporate these findings into a management 
scheme that can directly impact decision-making. 

There is a need for radiomic signatures with specific 
oncologic function (i.e., defining oncologic pathophysiology 
such as metastasis). The complex management of each and 
every cancer patient also mandates radiomic signatures 
specific for clinical parameters tell-tale for different phases 
of treatment (i.e., pre- vs. post-procedure, during and 
after chemotherapy, and at different timepoints during 
radiation therapy). In addition, we must also refine clinical 
endpoints specific to oncology. For instance, in addition 
to investigating general outcomes like OS, radiomic 
signatures specific to the nodal metastasis probability would 
be clinically useful towards clinical management. In order 
to realize cancer-specific radiomics, we need extensive 
prospective multicenter trials and external validation to 
begin standardizing and refining radiomic signatures.

To that end, one fruitful and practical approach may 
be to leverage imaging data from ongoing and proposed 
randomized clinical trials which contain a well-defined 
imaging component. Validations should be done against 
completely independent large datasets, preferably from 
other institutions. A prime example of this process gaining 
ground is demonstrated in the efforts of Leijenaar et al. (37), 
whose group externally validated a prognostic radiomic 
signature on an independent cohort of oropharyngeal 
squamous cell patients. In addition, recent investigations 
revealing that radiomic signatures have translational 
capacity between cancer types, yet retain cancer-specific 
cluster features, are highly promising towards the effort to 
standardize and refine radiomic signatures (34,35). Finally, 
another means to accelerate developments in head and 
neck cancer radiomics takes the form of formal challenges 
posed to the research community to solve defined issues. 
The Medical Image Computing and Computer Assisted 
Interventions (MICCAI) challenge is one such challenge 
that bridges international solutions to user feedback. Their 
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challenges have sought solutions applicable to obstacles in 
cancer imaging, including those of head and neck cancer. 
The potential for radiomics to realize personalized cancer 
care has been demonstrated by numerous investigations. 
The field and its applicability to oncology promise to 
develop with time, but only if we direct our efforts to 
specific oncologic function and oncologic outcomes, with 
external validation through multi-institutional collaborative 
efforts.

Moving the field forward

The data summarized herein suggest cumulatively that 
there is great potential for radiomics and texture analysis 
techniques to improve upon multiple aspects of the tumor 
assessment, risk stratification, and outcome evaluation 
aspects in head and neck cancer therapy. However, at 
present the vast majorities of these studies are primarily 
exploratory, or at best, seek to perform model refinement 
and validation methods. At present, there is a fundamental 
need for several key efforts as an oncologic community 
which will solidify the role of radiomics in texture analysis 
techniques in a manner that can realize clinical utilization.

First,  there needs to be a global effort towards 
standardization. This effort requires standardization not 
only of individual radiomics algorithms, but also of specific 
acquisition parameters. Fundamentally, performance quality 
assurance and quality improvement must be utilized such 
that a specific imaging acquisition protocol matched with 
a specific texture and analytic protocol (see Figure 1) can 
be shown to perform within an estimated error range as a 
diagnostic, predictive, and evaluative tool. It is only when 
such data are well defined that we will truly be able to 
implement radiomics and texture analytic techniques in the 
clinic.

Individual work at the level of algorithm standardization 
is already underway, with the recent publication by Parmar 
et al. (57) serving as an excellent model. In this seminal head 
and neck radiomics manuscript investigating the quality 
assurance/quality improvement methodology, Parmar et al. 
carefully and rigorously evaluated the process variability 
in their radiomics development process, discovering that 
the majority of performance variation could be identified 
in the classification process. Only by similar efforts in 
investigating the relative performance characteristics and 
error estimators in each individual step of the radiomics 
process will we achieve reliable and reproducible tools 
which can scale across institutions and imaging data sets. 

Additionally, individual image acquisition protocols should 
be standardized in a similar manner. For example, it is 
unclear at present whether there is comparability between 
individual predictive/prognostic features in inter-/intra-
sequence MRI data sets, and between similar textural 
features in CT or PET-CT datasets. Ideally, multimodality 
data sets should be interrogated to determine whether 
similar and/or related textual features can be representative 
across imaging modalities.

Finally, the bulk of our efforts should be directed towards 
determining the underlying mechanistic underpinnings of 
the observed clinical findings demonstrated by radiomics 
and texture analyses. For example, it is unclear specifically 
which features are individually representative of what 
underlying physiological processes drive tumor response 
or normal tissue injury changes observed in the affirmation 
data sets. While the leading candidates represent measures 
of tumor heterogeneity, or vascular perfusion differentials 
across tumor lines, it is imperative that future efforts 
derived at clinical, radiologic, histopathologic, or genomic 
characterization interrogate the underlying molecular 
physiologic processes which drive the meso/macro-scale 
features observed in clinical datasets. One of the most 
compelling examples of how to approach such studies is 
that of Panth et al. (58), who grew colon cancer-derived 
xenografts with doxycycline-inducible (GADD34) cells 
in the flanks of nude mice. As GADD34 overexpression 
decreases hypoxic fraction, changes in gene function and 
hypoxia could be observed through serial CT imaging 
over time. Radiomics analyses were performed at 40 kVp  
and again at 80 kVp for validation, before and after 
radiotherapy. These data showed not only reproducible, 
robust changes seen at multiple kVp levels, but that specific 
temporal kinetic differences could be observed with regard 
to genotypic and phenotypic radiomics signatures. Work of 
this quality and scope will need to be undertaken in head 
and neck specific models to interrogate the mechanistic 
underpinnings of radiomics in vivo.

Conclusions

In summary, we believe that the preponderance of evidence 
suggests that radiomics is in fact revealing real information 
regarding tumor and normal tissue information that is above 
and beyond visual analysis However, these quantitative 
methods require further hardening of the underlying 
methodologic processes, as well as a greater coupling of 
quantitative imaging phenomena to the underlying biologic 
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processes. Our hope is that these needs can be met sooner 
than later. 
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Table S1 Summary of studies on radiomics and head and neck cancer

Authors (study) Modality Findings pertinent to radiomics Statistical findings

Brown et al. (15) DW-MRI Texture analysis can perform preoperative stratification of thyroid nodules with 

high sensitivity and specificity on multi-institutional DW-MRI datasets. Correctly 

classified 89% ROIs from 18 patients from an independent validation dataset

Training dataset stratification using 

LDA: AUC 0.97, sensitivity =92%, 

specificity =96%

Buch et al. (17) CT Identified two textural features that demonstrated significant differences after FDR 

correction in distinguishing HPV+ versus HPV− status in OPC patients

Histogram feature: median  

P=0.036; histogram feature: entropy 

P=0.048

El Naqa et al. (20) FDG-PET Using highest predictive features from IVH metrics, shape and texture features 

extracted from pre-treatment FDG-PET, constructed a two-metric LR model 

predicting overall survival with an AUC of 1.0. g(x) = −3566 × V90 + 78.5 × Shape_

Extent + 23.9

Rs =0.87 (P=0.0012)

Jansen et al. (21) DCE-MRI Texture analysis may provide complementary information in addition to standard 

DCE-MRI measurements which have been shown to be predictive of treatment 

response in HNC patients. Energy feature from the ve map was significantly higher 

on intra-treatment scans than pre-treatment scans (0.41±0.22 vs. 0.30±0.11)

P<0.04

Zhang et al. (22) CT Identified two texture and histogram features to be independent predictors of 

overall survival in HNSCC patients treated with induction chemotherapy

Primary mass entropy: HR =2.10 

(0.5 unit increase); P=0.36;  

histogram skewness: HR =3.67  

(1 unit increase); P=0.009

Fujita et al. (24) CT Identified three textural features that demonstrated significant differences after 

FDR correction in distinguishing HPV+ versus HPV− status in non-OPC patients

GLCM contrast q =0.004;  

GLCM correlation q =0.006;  

law L8 q =0.034

Vallieres et al. (25) FDG-PET Multivariate models built via LR and SVM using five features (textural entropy and 

homogeneity, SUV %inactive volume, volume, and solidity) could reliably classify 

HPV status and has potential to predict treatment failure

HPV status using LR: AUC =0.64;  

HPV status using SVM: AUC =0.72; 

treatment failure using: LR: 

0.660±0.004

Yu et al. (26) FDG-PET/

CT

NGTDM features including PET coarseness, PET contrast, and CT coarseness 

extracted from co-registered FDG-PET/CT images yield good discriminatory 

performance between normal and abnormal tissue. Multivariate model constructed 

via DT-based KNN classifier able to discriminate between normal and abnormal 

ROIs

Az of DT-based KNN: classifier: 

0.950±0.007

Yu et al. (27) FDG-PET/

CT

Extracting and selecting textural features from PET and CT voxels, COMPASS 

yielded contours that were quantitatively and qualitatively similar to manual 

segmentation by expert radiation oncologists and was able to distinguish HNC 

with variable (18)F-fluoro-deoxy glucose uptake from adjacent normal tissues with 

high physiologic uptake

COMPASS auto-segmentation: 

specificity 95%±2%; 

sensitivity 90%±12%

Raja et al. (23) CT Texture analysis on CT images of oral cancers involving buccal mucosa revealed 

no observed significant difference between the three grades of tumour for any of 

the parameters. Difference between mean FD and GLCM parameters of the lesion 

vs. the normal ROI were statistically significant

FD mean P=0.001;  

GLCM angular second: moment 

P=0.004; 

GLCM contrast P=0.02; 

GLCM inverse difference 

GLCM entropy P=0.002

Fruehwald-

Pallamar et al. (31)

MRI MRI 2D and 3D texture analysis can discriminate between benign and malignant 

HNC if performed on one scanner with the same protocol

–

Fruehwald-

Pallamar et al. (28)

MRI Texture analysis can differentiate benign from malignant parotid lesions, as well 

as pleomorphic adenomas from Warthin tumors based on standard T1-weighted 

sequences (+/− contrast). Mean ADC between Warthin tumors and pleomorphic 

adenomas (P=0.03) and between those of Warthin tumors and benign masses 

(P=0.042) are significantly different

–

Yang et al. (29) MRI Automated parotid segmentation method using feature-trained SVM can accurately 

quantify radiation-induced parotid gland change using pre- and post-treatment 

MRI. Successful parotid segmentation achieved for all 42 post-RT MRIs from 15 

patients

–

Park et al. (30) MRI Histogram analysis of DCE-MRI parameters based on whole tumor volume 

can differentiate squamous cell carcinoma from malignant lymphoma of the 

oropharynx. Kurtosis of ve had best discriminative value

Kurtosis of ve: 

AUC =0.865 

sensitivity =83.3% 

specificity =90.5%

Aerts et al. (34) CT Radiomic analysis of 440 features found that a large number of features have 

prognostic power in independent datasets of lung and HNC patients. Radiomic 

signature trained using a dataset of NSCLC patients was found to have 

translatability in two independent HNC validation datasets

–

Leijenaar et al. (37) CT Radiomic signature defined by Aerts et al. externally validated well on independent 

cohort of oropharyngeal squamous cell carcinoma patients, demonstrating good 

model fit and preservation of discrimination. Signature retained discriminatory 

ability in the presence of visible CT artifacts

Harrell’s c-index 0.647; P=5.35e-6 

(with artifact)

Parmar et al. (35) CT Consensus clustering resulted in 13 stable radiomic feature clusters for HNC. 

Clusters were externally validated using rand statistic. Lung and head and neck 

radiomic clusters are significantly associated with patient survival and tumor stage. 

Clustering and the prognostic radiomic features are cancer specific

HNC RS =0.092, P<0.001 

HNC prognosis CI =0.68±0.01 

HNC stage AUC =0.77±0.02

Parmar et al. (36) CT Identified prognostic and reliable machine-learning methods (three feature selection 

and three classifiers) for prediction of OS in head and neck cancer patients

–

Dang et al. (38) MRI MRI texture analysis could predict p53 status in oropharyngeal squamous cell 

carcinoma with 81.3% accuracy. Texture variables that featured significantly were 

derived from post-gadolinium T1W1, T2W1, and ADC map

P<0.05

Scalco et al. (44) CT A general decrease in parotid tissue complexity and heterogeneity was observed 

at different time points of radiotherapy. Volume and mean intensity variation were 

found to be correlated with pre-treatment dosimetric parameters

–

Scalco et al. (43) CT Using discriminant analysis based on volume and fractal dimensionality, final 

parotid shrinkage at end of RT treatment was predicted with 71.4% accuracy

–

DW, diffusion-weighted; MRI, magnetic resonance imaging; LDA, linear discriminant analysis; AUC, area under curve; CT, computed tomography; FDR, 

false discovery rate; HPV, human papillomavirus; OPC, oropharyngeal cancer; FDG-PET, fludeoxyglucose-positron emission tomography; IVH, intensity-

volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head-and-neck cancer; HNSCC, head 

and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, 

standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, 

co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-

modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.
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