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Introduction

Grade IV glioblastoma multiforme (GBM) are the 
most aggressive brain tumors,  with an extremely 
poor prognosis, dismal median overall survival rate of 
approximately 12–15 months with standard treatment, 

and a relative 2-year survival of only 30% (1). Lower-
grade gliomas (grades I,  II  and III)  comprise the 
remainder of primary malignant gliomas, and have a 
relative 2-year survival rate of 70–90% (2). Approximately 
17,000 new cases of malignant gliomas are diagnosed each 
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year in children, adolescents and adults, at an occurrence 
rate of about 5 in 100,000. Of these cases, 60–70% are 
GBM, which result in a mortality rate of over 10,000 
deaths each year (3). Some GBM tumors manifest as 
primary tumors, and others show signs of progression from 
a lower-grade glioma (4). The aggressiveness of GBM 
has driven development of new surgical techniques, anti-
angiogenic therapies, immunotherapies, and improved 
radiotherapies. The response to treatment has been 
correlated with molecular classification and subtyping based 
on genetics and expression data (5-7). Despite these efforts 
to better understand the underlying biology of GBM and 
advancements in the clinical treatment of this disease, it 
remains one of the most recalcitrant tumor types.

Like other solid tumor types,  GBM develops a 
heterogeneous pattern of mutations (5). GBM does not 
feature sequential characteristic driver mutations, with 
multiple alterations occurring early in tumor pathogenesis, 
making the development of targeted therapies particularly 
challenging (8). Individual mutations or chromosomal 
alterations have not been linked with stages in tumor 
progression, unlike colorectal (9) and prostate cancers (10).  
In contrast, progression of colorectal cancer (CRC) 
has been associated with step-wise mutations and 
chromosomal alterations (9). Similarly, evidence from 
mouse models of prostate cancer as well as clinical 
observations indicate that sequential alterations in p27, 
NKX3.1, PTEN, and androgen receptor drive the 
pathogenesis of the disease (10). Women are more likely 
to have mutations in TP53, since these mutations are more 
prevalent in secondary GBM, which is more common in 
women (11), and IDH mutations are more common in 
adult secondary GBM than in children (12,13). Recent 
efforts have shown the predictive and prognostic utility 
of genetic characterization of GBM (14,15). Mutation, 
copy number, and expression data have been used to 
segregate GBM into four genomically-defined subtypes: 
classic, mesenchymal, neural, and proneural (7). Mutation 
and expression data can predict patient response to  
therapy (16), and correlations have been drawn between 
response to therapy and MGMT promoter methylation 
(17,18). The molecular heterogeneity represents a major 
challenge to the development of novel targeted therapies 
for GBM and evidence-based clinical decision-making (19).  
High-resolution genetic, epigenetic, and molecular 
descriptions of the range of GBM phenotypes will likely 
provide the basis for future improvements in treatment 
and the development of novel therapies.

Radiomics workflow

As discussed above, solid tumors have heterogeneous 
mutations, copy number alterations, and chromosomal 
aberrations across the tumor volume (20). This intrinsic 
property has made characterization of tumor phenotypes 
and the development of targeted therapies particularly 
challenging (21). Given the heterogeneity of GBM and other 
cancer types, numerous imaging approaches have been taken 
to comprehensively characterize tumors (22). In the last 
decade, radiomics has emerged as the concept of extracting 
quantitative radiologic features and drawing associations 
with clinical outcomes in tumors of the breast (23),  
brain (24), head and neck (25). Imaging data is acquired 
through the application of a variety of techniques and 
variants of X-ray computed tomography (CT), positron 
emission tomography (PET), and magnetic resonance 
imaging (MRI) (Figure 1A,B). The goal of this approach 
is to inform clinical decision-making by providing semi-
automatically and automatically extracting radiologic 
features (Figure 1C,D) and associating these factors 
with outcomes like progression and survival. Clinical 
and biological associations are made through data 
mining, hypothesis generation, and biomarker discovery 
(Figure 1E). Given the complex intra-tumoral and inter-
patient heterogeneity characteristic of GBM, and the 
difficulty in obtaining representative biopsies from which 
detailed molecular information can be extracted (26), 
sophisticated imaging approaches have the potential 
to address the tumor heterogeneity problem (27). It 
is hypothesized that it is possible to extract detailed 
phenotypic information by processing radiological 
imaging data (22). Determining tumor genetics and 
expression patterns from radiologic features,  and 
developing these features as prognostic and predictive 
markers is an exciting possibility (28). Additionally, 
radiomics analysis has the potential to distinguish those 
low-grade gliomas which will progress to GBM from 
those which will not by determining the underlying 
genetic and molecular indicators of progression (4).  
Thus radiomics provides an avenue to tackle the formidable 
challenges of cancer treatment based on image-derived 
appearance, especially in the case of GBM.

In the past, radiology was analyzed qualitatively, 
following clinical algorithms to determine patient response 
to therapy and disease progression (29). Standardized 
measures of tumor volume by MRI, CT and ultrasound 
were incorporated into the RECIST criteria for tumor 



385Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):383-397 tcr.amegroups.com

response (30), and advances in the use of PET modalities 
have been used in the more recently published PERCIST 
tumor response criteria (31). Developments in image 
analysis have allowed quantitative information to be derived 
from medical imaging. One-dimensional histogram-based 
and two-dimensional co-occurrence texture analyses (32) 
were developed to study and compare MRI (33) and other 
diagnostic images (34). Texture analysis has been used to 
predict clinical responses in non-small cell lung cancer 
patients (35) and was shown to be capable of discriminating 
between prostate tumor Gleason scores (36). This approach 
has been taken further by making associations between 
GBM tumor morphology as seen in MRI and underlying 
genetics (37) and expression data (38). Analysis of GBM 
tumor MRI imaging revealed novel imaging biomarkers 
capable of predicting clinical outcomes (39). These studies 
illustrate the potential of imaging data to overcome the 
limitations of traditional biomarkers.

Strategies—qualitative and quantitative measurement 
methods

Two main approaches have been taken to develop features 
for radiomic studies in GBM. The first has been to create 
standardized semantic features (Figure 2) which can be 
reproducibly scored by radiologists. This data is generated 
manually or by semi-automated methods. The second 
approach has been to derive fully computational features 
using imaging and statistical techniques. Both semantic 
and computational radiomic features are derived from 
multiple imaging techniques and modalities, including 
MR, PET, and CT. Semantic and computational features 
must take consideration of their dependence on scanning 
and acquisition protocols, signal-to-noise ratio and image 
resolution variations, properties unique to each modality 
and technique.

Several studies have correlated semantic features with 
clinical outcomes. Necrosis and tumor enhancement were 
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Figure 1 Radiomics workflow. GBM, glioblastoma multiforme.
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identified as prognostic indicators (40). Non-contrast-
enhancing tumor, multifocality, necrosis, satellites, and 
edema correlated with prognosis and survival (41). Iterative 
scatter search combined with an induction learning 
algorithm correlated imaging features with clinical data to 
predict survival in high-grade gliomas (42). The Visually 
Accessible Rembrandt Images (VASARI) feature set 
(Figure 2), comprising thirty semantic features developed 
to standardize radiological assessment of GBM, predicted 

survival and molecular subtype (29). These studies indicate 
the feasibility of developing standardized semantic feature 
sets and the efficacy of associating semantic features with 
prognostics and molecular descriptions in GBM.

While the studies outlined above focused on associating 
semantic features with clinical outcomes and tumor genetics, 
other studies have derived computational features computed 
from 2D/3D tumor regions (Figure 3) and related them to 
the molecular characteristics of GBM. Haralick features 

Some common VASARI (visually 

accessible rembrandt images) features – 

Tumor Location

Lesion Size

Proportion Enhancing

Proportion Necrosis

Proportion Edema

Definition of the Enhancing Margin

Semi-automated segmentation in FLAIR 
MRI of a GBM patient Edema

Necrosis

Non-enhancing tumor

Enhancing tumor

Figure 2 Illustration of semantic features.

Red = Low T1c, Low FLAIR

Green = High T1c, Low FLAIR

Cyan= Low T1c, High FLAIR

Yellow = High T1c, High FLAIR

“Spatial-habitat features”

A “Haralick-texture features”

Correlation – 0.21491
Energy – 0.05528

Correlation – 0.55593
Energy – 0.022236

B

Figure 3 Illustration of computational features extracted from MRI. (A) Spatially-derived habitats from the imaging modalities to define the 
characteristics of the tumor region; (B) texture features derived from haralick computations to compare tumor characteristics such as homogeneity, 
entropy, correlation, etc. Below, two types of Haralick features, namely—correlation (measure of homogeneity) and energy (measure of angular 
moment) are computed on two different GBM patients. MRI, magnetic resonance imaging; GBM, glioblastoma multiforme.
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are first-order statistics which discriminate images based on 
texture are calculated from a co-occurrence matrix of pixel 
intensities within a region-of-interest (32). The original 
set of Haralick texture features was two-dimensional, and 
the approach has been adapted for segmenting 3D CT 
data by mathematically re-defining each feature in three  
dimensions (43). This method was used to accurately 
segment structures within the abdominal cavity (44). Spatial 
habitats are tumor-subregions computed across multi-
modality imaging sequences [e.g., T1-post contrast, T2 and 
fluid attenuated inversion recovery (FLAIR) sequences], 
where each habitat represents a region with a unique 
combination of “high” and “low” pixel intensities in each 
imaging sequence, and have been associated with gene 
expression status of epidermal growth factor receptor and 
12-month overall survival status (24) in GBM. Imaging 
habitats are correlated with GBM molecular subtype 
status (neural, pro-neural, mesenchymal and classical) and 
survival status (45). Imaging habitats quantify the grey-
level heterogeneity in GBM MR scans (46) and track tumor 

evolution driven by detecting variations in tumor blood 
supply (47).

The majority of radiomics studies in GBM have focused 
on MRI images (27) derived from T1-weighted acquisitions, 
T2-weighted, and FLAIR (Figure 4). Gadolinium contrast 
agent is often administered following T1-weighted 
acquisition. Following this acquisition sequence, GBM 
generally appears as a non-enhancing region ringed with 
enhancing signal, with the area surrounding the tumor 
(peritumoral) being bright in the T2 and FLAIR scans 
(48,49). The signal acquired by each modality indicates the 
presence of vasogenic edema, tumor infiltration, peritumoral 
tissue, etc. (50). T1-T2-T1c-FLAIR modalities were used 
to develop computational features which correlated strongly 
with the VASARI semantic feature set (37), and in multiple 
radiogenomics studies (51) which correlated VASARI 
features with mRNA expression (38), mutational status (29),  
dysfunctional metabolism (52), molecular subtype and 
survival (53). The mesenchymal GBM subtype was identified 
using T1c-FLAIR images (54). Another study using T1, 

Figure 4 Understanding tumor regions from radiology (MR modalities) and pathology images for radiomics pipeline: (A) pre-contrast T1; (B) 
DTI; (C) perfusion; (D) diffusion; (E) T2; (F) post-contrast T1; (G) FLAIR.
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T1c, T2 modalities correlated semantic features with 
epigenetic status in GBM (55). A comprehensive review 
and tabulation of radiogenomics studies can be found in Bai  
et al. (51). Diffusion weighted imaging (DWI) and perfusion 
MR (MRP) variants (Figure 4) provide additional tumor 
characteristics at the tissue level. Varied combinations of MR 
modalities have been used to construct radiological feature 
combinations that highlight distinct portions of the tumor 
and surrounding tissue. Magnetic resonance spectroscopy 
imaging (MRSI) proved useful in guiding radiotherapy by 
defining a molecular signature distinguishing tumor and 
non-tumor brain tissue (56).

Semantic and computational (57) feature sets have 
been derived from CT and PET. Like MR, they can be 
performed using contrast agents or tracer compounds to 
gain additional physiological information. When CT is 
performed using a contrast-enhancement, the GBM tumor 
region presents as an area of low density ringed by an 
enhancing region (58). PET scans can measure metabolic 
activity in GBM, but it has not yet been determined 
whether combined PET/MRI improves diagnostics (59). 
A number of variants of PET use molecular tracers to 
derive additional information based on metabolic activity 
quantified by glucose uptake. FDG PET, which utilizes 
the fluorodeoxyglucose tracer, has been investigated as an 
alternative to gadolinium enhancement, but reports conflict 
as to its efficacy in diagnosing recurrent GBM (60,61). 
FDG is the most widely used PET tracer (62), and several 
studies have developed semantic and computational feature 
sets using FDG-PET (63,64). Computational features from 
FDG PET/CT images were used to stage lymphoma (65)  
and non-small cell lung cancer patients (66), and to 
predict response to radiation therapy in lung cancer (67). 
In addition to FDG, a large number of alternative tracer 
compounds have been investigated (62), although there 
have been few radiomic studies from these less commonly 
used contrast methods. The FDOPA PET technique, 
which is based on the DOPA-decarboxylase pathway and 
amino acid transport, has not been used in radiomics 
studies to-date, but has been shown to have predictive value 
in the recurrence of LGG (68,69). Thymidine and FLT  
PET (70) and amino acid PET have not been studied using 
the radiomics approach, but these variants of the imaging 
technique may provide additional prognostic and predictive 
information. FET PET, which uses a 18-F-fluoroethyl-
tyrosine tracer, has been used to determine the extent 
of invasion of glioma cells into the surrounding brain  
matter (71). In PET scans with 18F-FMISO, GBM is 

characterized by higher uptake values relative to the grey 
matter at the boundary of the tumor, and the central 
necrotic tissue of GBM tumors will accumulate less tracer 
(72,73). Compared to other imaging modalities, PET 
better differentiates recurrent or residual GBM tumor from 
edema and scar tissues after resection (74). However, for 
initial diagnosis of GBM, PET scans in general have low 
sensitivity and specificity (74). As a result, the availability 
of pre-treatment GBM PET images is also limited for 
radiomic analysis.

Challenges and opportunities

Medical Image acquisition and standardization

Medical image acquisition is routine for standard MR 
sequences, but acquisition/scanning protocols vary 
among institutions, leading to challenges in comparing 
or combining data gathered in multi-center clinical trials. 
There are several components of the image acquisition 
process that lead to variation in the data. These include 
scanner variability, variation in the specifications of an 
imaging device involved, and procedures followed by a 
particular radiologist or imaging physicist/technician. 
The protocol defined by the physicist/radiologist can 
vary in terms of image resolution, slice thickness, cut 
angles and washout period for the contrast imaging. 
Hence, standardization of image acquisition is central to 
the integrity of the entire radiomics pipeline. If common 
standards of acquisition cannot be achieved, the imaging 
pipeline should incorporate methods standardizing the 
imaging prior to computational/semantic/volumetric 
feature extraction. There are some solutions in this 
space, such as intensity normalization, registering multi-
parametric data to a specific anatomical plane, isotropic 
pixel or voxel re-slicing. Standardized image formats allow 
data to be readily processed across all steps of the radiomics 
pipeline. The Neuroimaging Informatics Technology 
Initiative (NIFTI) format provides support for functional 
MRI, a coordinate system linked to voxel indices, and dual 
file storage (75). The Digital Imaging and Communications 
in Medicine (DICOM) engineering standard provides a 
system facilitating communication between medical imaging 
devices and software from multiple vendors (76). DICOM 
objects contain metadata with patient identification, 
acquisition device information and printing parameters (77).  
The Nearly Raw Raster Data NRRD format support 
multiple compression algorithms and data represented as 
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integer and floating point variants (http://teem.sourceforge.
net/nrrd/index.html). These measures must be taken 
during image acquisition to maintain consistency in image 
preprocessing, feature extraction and classification to ensure 
that the acquired images are comparable. Standardizing 
signal intensity prior to image registration prevents the 
registration from being distorted by intensity variations (78). 

Modalities examined on the basis of the intensity of 
multi-parametric MR data are combined to classify GBM 
patients based on clinical and genomic data (24,47). Most 
radiomic studies in glioma have most routinely centered 
on two MR modalities, FLAIR and T1-post contrast. 
Advancements in MRI and PET technologies have allowed 
radiomics analyses to gain further biological insight: 
diffusion-weighted MRI measures cellular density, whereas 
PET and MRS reveal metabolic activity and vascular 
proliferation (79,80). Dynamic susceptibility, contrast-
enhanced T2 MR imaging measuring relative cerebral blood 
volume, predicted overall survival of GBM patients (81). 
Including the non-enhancing region and EGFR mutational 
status improved prognostics in a retrospective study of 
45 The Cancer Genome Atlas (TCGA) patients (82).  
When combining different modalities, an inter-modality 
registration algorithm with respect to one anatomical plane 
is required to ensure proper alignment (83), as motion 
during acquisition can cause distortions (84). Inter-modality 
spatial alignment is straightforward for modalities such 
as T1, T1-post contrast, FLAIR, while for perfusion and 
diffusion images, the algorithms cause geometric distortions 
to the regions of interest (80). These errors increase when 
registering an MR image to CT image or registering a 
histopathology to radiology image. Thus, developing 
registration algorithms that are suitable across multiple 
MR-modalities would significantly improve the pipeline 
by reducing registration error (85,86). Applying Pearson 
correlation (87), voxel-based registration with thresholding 
and volumetrics (88), and constraining errors in high-
similarity regions improved registration of multi-modality 
imaging sets (89). 

Tumor segmentation 

Following acquisition, the tumor images can be segmented 
through a manual, semi-automated or fully-automated 
procedure. Since there is no defined ground truth, this 
process will not be perfectly accurate. Consistency of 
segmentation process plays a significant role in the 
radiomics pipeline, as variations in processing steps such 

as thresholding can affect segmentation (90) by altering 
how the tumor is delineated (91). Fully-automated 
segmentation pipelines are available for GBM (92), and are 
under development for LGG. Random forest classifiers 
were applied to segment GBM tumor volumes for feature 
extractions (93). Automation improves reproducibility 
and concordance, since feature generation and the further 
downstream analysis are dependent on the quality of the 
initial segmentation. Manual delineation is time-consuming 
and further increases the chances of inter-observer 
variability. When manual contouring was compared to 
a semi-automated approach using 3D-Slicer, the semi-
automated approach (94) improved reproducibility and 
robustness. Pattern recognition software and techniques 
reduce observer effects by automating the segmentation 
pipeline, increasing the robustness of derived results. 

Feature Interpretation and analysis

High-throughput feature extraction is at the core of the 
radiomics process. As described above, there are two types 
of features—semantic and computational. The definition 
of these features is dependent on the hypothesis of the 
project. The numerous methods to obtain the features 
result in thousands of complex descriptions of the region 
of interest. Moving from manual to automated methods 
of feature extraction, automated feature extraction 
complements manual analysis and reduces variation in 
scoring semantic features. However, automated feature 
extraction is still vulnerable to site-specific variations 
in image acquisition, and any automated method may 
require modifications when implemented at a study site. 
Due to different methodologies, reproducibility and 
robustness of these extracted features is vital as these 
features will directly determine the correlation drawn 
to tumor genomic, expression, and microenvironment 
phenotypes. For example, differences in thresholding 
stringency can alter the number and attributes of extracted 
features (95). Outcome modeling based on computational 
features is a complex, multi-step process starting with 
pre-processing, followed by feature estimation, feature 
selection, classification, and finally evaluation by validation 
studies (96). Robustness of features can be analyzed on 
the basis of factors such as geometric transformations of 
the regions of interest and intensity variability (97). We 
analyzed the robustness of texture features through 8 
different geometric transformations of ROIs (horizontal 
translation by 2 pixels, horizontal and vertical translation 
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by 2 pixels, rotation by 1-degree, rotation by 5-degree, 
moving each point on the outline on the horizontal and 
vertical axes by a zero-median random number with a 0.1 
and 0.5 pixel standard deviation, shrinking the ROI by 1 
pixel and dilating the ROI by 1 pixel) (37). Eighty-two 
TCGA GBM cases were used, using the original as well as 
the transformed ROI for texture analysis. A set of thirteen 
Haralick feature ratios with 2 filters [Laplacian of Gaussian 
(LOG) (98) and Gaussian (99)] at 5 filter widths (0.2, 0.4, 
1.5, 2.5, 5) and 4 pixel distances (1, 2, 4 and 8 mm) (32) 
were computed. Besides this, histogram-based features 
(uniformity, mean-intensity and entropy) were computed. 
Additionally, some regional properties such as area, 
minimum, mean and maximum intensity were computed 
from the tumor region. All of these features (2,236 for T1-
post contrast and 2,236 features for FLAIR) were computed 
for each of the 9 ROIs (original and 8 transformations) per 
case in the 82 dataset. Feature extraction was followed by 
assessment of robustness via intraclass correlation (ICC), 

with ICC computed between the various features. The 
correlation cut-off was set as 0.6 and 22 FLAIR and 26 T1-
post contrast features were found to be robust. Heatmaps 
were generated to depict this high correlation. Figure 5 
summarizes the results of this study. Tables 1 and 2 show the 
interpretation of these robust features in the context of the 
GBM radiomics problem. Image-derived features classify 
the target hypothesis (outcome). Classification represents 
the greatest computational challenge, utilizing machine 
learning algorithms such as neural networks, support vector 
machines, decision trees, and logistic regression. During 
data analysis and predictive modeling, it is important to 
perform cross-validation (96) to evaluate the predictive 
models, or preferably, to evaluate their performance on 
a clinically-matched independent (test) cohort. Cross-
validation assesses the generalizability of the analysis 
pipeline for image-biomarker identification. The pipeline 
can be then used with higher reliability in multicenter/
multi-institutional settings. To minimize type I errors 

Robust FLAIR features Distribution of types of ratios in FLAIR features Distribution of types of features in FLAIR features

Distribution of types of features in T1 featuresDistribution of types of ratios in T1 featuresRobust T1-post contrast features

Figure 5 Results from the feature robustness study on TCGA GBM cohort. GBM, glioblastoma multiforme.
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caused by multiple comparisons, methods such as the 
Benjamini-Hochberg correction (102) and bootstrap-based 
correction (101) have been proposed. When the sample 
size is relatively small, methods have been developed to 
minimize false-positive results (103). 

Besides generating automated features on the ROIs 
in a high-throughput manner, it is important to discuss 
their reporting structure. A lexicon for clinical reporting 
is recommended for radiomics studies, made especially 
necessary in multi-institutional settings. Improvements 
have been made in this area through creation of reporting 
data systems across different disease sites: such as Liver 
Imaging Reporting and Data System (LI-RADS™ 

ACR), Prostate Imaging Reporting and Data System (PI-
RADS™), Head Injury Imaging Reporting and Data 
System (HI-RADS, ACR), and Lung Reporting and 
Data System (LungRADs™, ACR). A universal reporting 
system with standard terminology and syntax plays a 
significant role during the feature interpretation and data 
analysis (104).

Creating mineable data

While performing classification with high-dimensional 
radiomics data (as might be obtained by large-scale 
feature extraction), there is potential risk of overfitting 

Table 1 Interpretation of robust FLAIR features

FLAIR features
Type [regional, TxRAD 

(100), Haralick (32)]
Ratio

Filter [Gauss (99) and 
LOG (98)]

Sigma Distance Feature

V1978 TxRAD Ratio 2 Gauss 0.2 Histogram uniformity

V54 Regional Not a ratio Regional property-min intensity

V1821 TxRAD Ratio 2 LOG 1.5 1 Mean intensity histogram

V886 TxRAD Ratio 1 Gauss 5 1 Histogram entropy

V176 Haralick Ratio 1 LOG 0.4 2 Sum variance

V2081 TxRAD Ratio 2 Gauss 1.5 Mean intensity histogram

V1267 Haralick Ratio 2 LOG 0.4 2 Sum average

V1268 Haralick Ratio 2 LOG 0.4 2 Sum variance

V53 Regional Not a ratio Regional property-area

V1719 TxRAD Ratio 2 LOG 0.2 Histogram uniformity

V1717 TxRAD Ratio 2 LOG 0.2 Mean intensity histogram

V2186 TxRAD Ratio 2 Gauss 5 Histogram entropy

V1769 TxRAD Ratio 2 LOG 0.4 Mean intensity histogram

V1875 TxRAD Ratio 2 LOG 2.5 Histogram uniformity

V1242 Haralick Ratio 2 LOG 0.2 8 Sum variance

V1266 Haralick Ratio 2 LOG 0.4 2 Inverse difference moment

V1349 Haralick Ratio 2 LOG 1.5 8 Difference variance

V1207 Haralick Ratio 2 LOG 0.2 1 Difference entropy

V1243 Haralick Ratio 2 LOG 0.2 8 Sum entropy

V337 Haralick Ratio 1 LOG 5 2 Cluster shade

V1271 Haralick Ratio 2 LOG 0.4 2 Difference variance

V1411 Haralick Ratio 2 LOG 5 1 Sum variance

FLAIR, fluid attenuated inversion recovery; Gauss, Gaussian filter; LOG, Laplacian of Gaussian filter.
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to the data. The risk of overfitting increases when the 
number of instances is much fewer than the number 
of computationally-extracted features. This “curse-of-
dimensionality” can be addressed by minimizing the 
number of features using principal components analysis 
(PCA) (105), sparse PCA (sPCA), partial least squares 
regression (PLS) (106), non-linear PCA (107), and 
auto-encoders (108), in addition to cross-validation for 

generalized model construction. Some of these feature 
selection methods can be supervised (using the label 
information from each instance), or unsupervised (based on 
exploiting variance in the data). Such dimension reduction 
methods make interpretation of the reduced feature set 
more difficult as features are mathematically-combined into 
composite features. Aside from relating radiomics (imaging-
phenotype) with genetic characteristics, there is also a need 

Table 2 Interpretation of robust T1-post contrast features

T1 features
Type [regional, TxRAD 

(101), Haralick (32,102)]
Ratio Filter [Gauss (102) and LOG (100)] Sigma Distance Feature

V1769 TxRAD Ratio 2 LOG 0.4 Mean intensity histogram

V1272 Haralick Ratio 2 LOG 0.4 2 Difference entropy

V1977 TxRAD Ratio 2 Gauss 0.2 Mean intensity histogram

V1267 Haralick Ratio 2 LOG 0.4 2 Sum average

V176 Haralick Ratio 1 LOG 0.4 2 Sum variance

V1285 Haralick Ratio 2 LOG 0.4 4 Difference entropy

V1256 Haralick Ratio 2 LOG 0.4 1 Sum entropy

V1927 TxRAD Ratio 2 LOG 5 Histogram uniformity

V144 Haralick Ratio 1 LOG 0.2 8 Energy

V2031 TxRAD Ratio 2 Gauss 0.4 Histogram uniformity

V2083 TxRAD Ratio 2 Gauss 1.5 Histogram uniformity

V175 Haralick Ratio 1 LOG 0.4 2 Sum average

V1200 Haralick Ratio 2 LOG 0.2 1 Sum of variance

V54 Regional Not a ratio Regional property-min intensity

V1449 Haralick Ratio 2 LOG 5 8 Sum average

V679 TxRAD Ratio 1 Gauss 0.2 Histogram uniformity

V2029 TxRAD Ratio 2 Gauss 0.4 Mean intensity histogram

V2081 TxRAD Ratio 2 Gauss 1.5 Mean intensity histogram

V1242 Haralick Ratio 2 LOG 0.2 8 Sum variance

V53 Regional Not a ratio Regional property-area

V1244 Haralick Ratio 2 LOG 0.2 8 Entropy

V1254 Haralick Ratio 2 LOG 0.4 1 Sum average

V1197 Haralick Ratio 2 LOG 0.2 1 Energy

V1226 Haralick Ratio 2 LOG 0.2 4 Sum of variance

V1771 TxRAD Ratio 2 LOG 0.4 Histogram uniformity

V1925 TxRAD Ratio 2 LOG 5 Mean intensity histogram

FLAIR, fluid attenuated inversion recovery; Gauss, Gaussian filter; LOG, Laplacian of Gaussian filter.
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for modeling formalisms that integrate measurements 
across these diverse modalities to drive decision-making in 
the clinical realm.

Conclusions

Radiomics promises to improve the characterization of 
radiological datasets and provide further insight to guide 
patient care in the era of personalized medicine. GBM is 
one of the most genetically heterogeneous tumor types, 
exhibiting remarkable inter- and intra-patient variability. 
Substantial progress has already been made in solving many 
of the technical hurdles inherent in the radiomics process 
in GBM. Advances in genome sequencing, expression 
profiling and machine learning have increased the 
resolution of datasets and the sensitivity and specificity of 
the computational methods used to analyze them. Statistical 
models are needed which relate imaging features to GBM 
molecular status with high specificity/sensitivity to make 
the approach useful in practice. More studies correlating 
radiomic features with disease outcomes and molecular 
attributes will illuminate the underlying tumor biology 
of imaging features and treatment responses. Large-scale 
decision algorithms that fuse features obtained across 
imaging, genomic and clinical modalities can enable multi-
modal decision making in the personalized medicine arena.
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