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Immune checkpoint blockade has emerged as a promising 
and distinct treatment strategy and has caused a paradigm 
shift in oncology. Significant response and survival benefit 
have been observed in a fraction of patients who were 
treated with immune checkpoint inhibitors (ICIs) in several 
malignancies including melanoma (1-3), non-small-cell 
lung cancer (NSCLC) (4-7), gastric cancer (8), urothelial 
carcinoma (9), Hodgkin’s lymphoma (10), and head and 
neck squamous cell carcinoma (11). Additionally, because 
clinical response to ICI treatment has been seen to vary 
from to patient, a predictive marker that provides insight on 
patient response is urgently needed. Currently established 
companion diagnostics  include the HercepTest™ 
immunohistochemistry (IHC) staining for breast and gastric 
cancers, fluorescence in situ hybridization (FISH) assays to 
disclose anaplastic lymphoma kinase (ALK) translocations 
for NSCLC, and mutation analyses for the epidermal 
growth factor receptor (EGFR) gene in NSCLC and BRAF 
for melanoma. Individual differences in treatment efficacy 
of ICIs may be due to the complex interaction of the tumor 
microenvironment; where tumor, immune, and stromal 
cells closely interact. Thus, it has been difficult to establish 
simple determinants that would predict the efficacy of ICIs 
like those currently used in targeted therapy. 

Immune checkpoints are regulated by many signaling 
processes that are in part controlled by key players such 
as programmed death 1 (PD-1), programmed death 
ligand-1 (PD-L1/CD274), programmed death ligand-2 
(PD-L2/CD273), cytotoxic T lymphocyte antigen-4 
(CTLA-4), lymphocyte activation gene 3 (LAG-3), and 

T cell immunoglobulin and mucin domain 3 (TIM-3).  
Among these interactions, blockade of the PD-1 or its 
corresponding ligand, PD-L1, has been thoroughly 
investigated. 

The mechanism by which T cells survey and assess 
cellular antigens depends, in part, on the interaction 
of inhibitory and activating domains that maintain the 
immunological synapse. Tumor-specific neopeptides that are 
created by some of tumor nonsynonymous mutations are 
recognizable by T cells (12). Thus, ongoing investigations 
aim to utilize these neopeptides and allow for their 
recognition and downstream T cell activation using anti-
PD-1/PD-L1 immunotherapy. In the case of the PD-1 
pathway, activated T cells express PD-1 on their surface 
and may result in exhausted or inactivated phenotype 
when PD-1 engages either PD-L1 or PD-L2 (13). PD-L1  
is expressed by a variety of cells including those in the 
tumor microenvironment such as antigen-presenting cells, 
endothelial cells, and tumor cells. Two anti-PD-1 antibodies, 
nivolumab and pembrolizumab, and a PD-L1 inhibitor, 
atezolizumab, were recently approved by the US Food and 
Drug Administration (FDA), and have recently been applied 
to patients with a variety of advanced cancers.

Several predictive biomarkers for PD-1/PD-L1 axis 
blockade have been suggested. The overexpression of PD-
L1 protein on tumor cell surface and/or tumor-infiltrating 
immune cells (TIICs) was associated with better response 
to the therapy (2,4,7,9). A PD-L1 IHC test using the 
clone 22C3 antibody was approved by the FDA as a 
companion diagnostic for selecting patients with NSCLC 
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for pembrolizumab while another PD-L1 IHC test using 
the clone 28-8 antibody was approved as a complementary 
assay for nivolumab in NSCLC. Clone SP142 has also been 
approved for the detection of PD-L1 on TIICs for locally 
advanced or metastatic urothelial carcinoma. However, 
other studies revealed that the predictive value of PD-L1 
expression for the use of PD-1 inhibitors were low (3,5), 
implying that a proportion of PD-L1-negative patients 
could have responded and benefited from PD-1/PD-L1-
directed immunotherapy. Furthermore, evaluating PD-
L1 expression levels using IHC analysis poses several 
issues that may affect treatment planning. First, PD-L1 
protein expression is heterogeneous both spatially (14) and 
temporally (15). Furthermore, tumor cells, endothelial 
cells, and TIICs may stain for PD-L1 within the tumor 
microenvironment. Thus, these context-dependent results 
of PD-L1 expression, especially when examined among 
small biopsy specimens, may be skewed and not represent 
true PD-L1 expression status. Second, standardization 
of PD-L1 staining and tumor tissue preparation has not 
been established. Finally, which antibody clone and cutoff 
point for IHC evaluation should be used has yet to be 
determined. Although performing and assessing PD-L1 
IHC is relatively simple, the aforementioned problems 
in heterogeneity, reproducibility, and standardization has 
made it more difficult to compare data and should thus be 
addressed for the future. 

Another candidate predictive biomarker for the blockade 
of the PD-1 axis is mutation burden of tumor cells. Although 
it has been well established that the likely cause of melanoma 
and NSCLC are mutations that arise from ultraviolet 
radiation and tobacco smoking, respectively, its relevance to 
anti-PD-1/PD-L1 immunotherapy response was unknown. 
Recently, higher somatic nonsynonymous mutation burden 
was reported to be associated with greater efficacy and 
clinical benefit of pembrolizumab monotherapy (16). 
Furthermore, mismatch-repair deficiency determined by the 
microsatellite instability PCR analysis has been shown to 
predict the treatment benefit of pembrolizumab in a cohort 
that mainly consisted of patients with colorectal cancer (17). 

An additional probable predictor of response to PD-1/
PD-L1 inhibitors is the presence of tumor-infiltrating 
antigen-specific CD8-positive T cells. Recently, cancers 
have been proposed to be stratified into four different 
tumor microenvironments based on the presence of 
TIICs and tumor PD-L1 expression status (18). PD-
L1-positive tumors that contain TIICs are classified as 
a type I tumor microenvironment. This environment is 

characterized by tumor immunogenicity and is most likely 
to respond to checkpoint blockade. In melanoma patients 
with pre-existing tumor-associated CD8-positive T cells, 
pembrolizumab therapy was shown to inhibit PD-1/PD-
L1 mediated adaptive immune resistance and conferred 
tumor regression (19). It should be noted that oncogene-
driven PD-L1 expression, which is diffuse and constitutive, 
is distinct from adaptive inflammation-driven PD-L1 
expression. Although EGFR activating mutations (20) 
and ALK translocations (21) in NSCLC were shown to 
increase PD-L1 expression, both of these gene alterations 
have been reported to be associated with low response to 
PD-1/PD-L1 inhibitors, with objective response rates of 
3.6% in EGFR-mutant or ALK-positive patients versus 
23.3% in EGFR wild-type and ALK-negative/unknown 
patients (15). The decreased presence of the type I tumor 
microenvironment was suggested to be responsible for the 
low treatment benefit seen among tumors harboring these 
gene alterations. Because EGFR-mutant or ALK-rearranged 
NSCLCs are more common among never- or light-smokers 
and have less nonsynonymous mutations than smoking-
related tumors (22), the immunogenicity of the tumors 
harboring the EGFR or ALK gene alterations are relatively 
low, resulting in less tumor recognition by immune cells. 

In a recent issue of Genes Chromosomes & Cancer, 
Budczies and colleagues (23) reported the landscape of PD-
L1 copy number alterations (CNAs) in 22 major cancer 
types using The Cancer Genome Atlas (TCGA) RNAseq 
and CNA datasets. They found a strong correlation 
between PD-L1 CNAs and mRNA expression levels for 
most cancers. Notably, they observed that the mutation 
load was significantly higher in tumors with PD-L1 copy 
number gains than in tumors with normal PD-L1 copy 
number among eight individual cancer cohorts including 
the lung adenocarcinoma and lung squamous cell carcinoma 
cohorts. Interestingly, higher mutation load was also found 
among PD-L1 deleted tumors when compared to PD-L1 
normal tumors in seven out of the 22 cancer types. Whether 
immunotherapy using checkpoint inhibitors is effective in 
PD-L1 deleted tumors with a high mutation burden seems 
to be a topic that requires further investigation. 

As written in the article by Budczies and colleagues (23), 
CNAs of the PD-L1 gene have received surprisingly little 
attention until now. We previously reported the prevalence, 
clinicopathological characteristics, and prognostic 
implications of PD-L1 copy number gains in NSCLC using 
FISH (24). PD-L1 amplification and polysomy were observed 
in 3.1% and 13.2% of patients, respectively, and were 
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independently associated with PD-L1 protein overexpression. 
PD-L1 copy number gains were more commonly observed 
among smoking-related tumors, and strikingly, PD-L1 
gene amplification was found to be exclusive to EGFR 
mutations and ALK expression, both of which were reported 
to be negatively associated with response to PD-1/PD-
L1 inhibitors (15). Furthermore, our data indicated that 
tumor PD-L1 copy number status was more consistent and 
reproducible than tumor PD-L1 protein expression detected 
by IHC when primary tumors and synchronous regional 
lymph node metastases were comparatively analyzed. 

Similar to Budczies and colleagues (23), Ock and 
colleagues (25) carried out comprehensive analyses of 
immunogenomic properties in TCGA datasets and 
evaluated the RNA expression levels of PD-L1 and CD8A. 
They observed that the type I tumor microenvironment 
defined by high PD-L1 and CD8A expression were 
especially common among lung adenocarcinomas (67.1%) 
and lung squamous cell carcinomas (63.5%) as well as 
cancers derived from lymphoproliferative tissues and kidney 
clear cell carcinoma. Importantly, a high mutation burden 
and PD-L1 amplification were independently associated 
with the type I tumor microenvironment in a multivariate 
analysis. Taken together, PD-L1 copy number gains, in 
particular PD-L1 amplification, appear to represent the 
genomic instability of tumor cells in several cancer types. 
Although PD-L1 copy number gains, which lead to diffuse 
and constitutive PD-L1 expression, are one of many 
mechanisms of innate immune resistance, they also reflect 
the type I tumor microenvironment with high mutation 
load in tumor cells.

The search for a biomarker that could accurately 
predict ICI response has been widely and enthusiastically 
performed so that rational and full use of the promising 
and costly therapy can be achieved. Given the complexity 
of the dynamic interaction of the immune system and 
tumors, predicting the response of ICI treatment using a 
single biomarker might not be possible. PD-L1 protein 
expression has relatively limited power to predict response 
to PD-1/PD-L1 inhibitors. At present, the wide use of 
next-generation sequencing data in the clinical setting 
for evaluating the mutation burden of each patient is not 
possible. Additionally, it is difficult to precisely predict 
true neo-epitopes which can be recognized as non-self by 
T cells from total nonsynonymous mutations tailored to 
each patient’s tumor. As for evaluation of TIICs, inaccurate 
results might be reported because testing is carried out on 
a small tissue specimen in a proportion of patients with 
advanced cancers such as NSCLC. However, evaluating 

PD-L1 copy number gains can be relatively simple using 
FISH even on small biopsy specimens. Moreover, PD-L1 
copy number screening has been suggested to be helpful 
in assessing accurate PD-L1 protein expression, mutation 
burden, and specific tumor microenvironments. Thus, 
conclusively, we believe that the predictive significance of 
therapy response should be prospectively assessed in clinical 
trials. We hope to further evaluate the predictive value of 
PD-L1 copy number gains in our upcoming clinical trial of 
patients with advanced NSCLC using PD-1/PD-L1 ICIs.
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