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Background: Telomeres are specialized structures at the ends of chromosomes that are important for their 
protection. Over time, long non-coding RNAs (lncRNAs) have gradually come into the spotlight as essential 
biomarkers of proliferation, migration, and invasion of human malignant tumors. Nevertheless, the impact 
of telomere-related lncRNAs (TRLs) in gastric cancer is currently unknown. In the present study, we screen 
the TRLs and identify a prognostic TRLs signature in gastric cancer.
Methods: First, telomere-related genes (TRGs) were retrieved from the website, and RNA sequencing 
(RNA-seq) data and clinical data of stomach adenocarcinoma (STAD) patients were gathered from The 
Cancer Genome Atlas (TCGA) database. Gastric cancer patients’ lncRNAs and overall survival (OS) were 
found to be related using univariate Cox regression analysis. Next, least absolute shrinkage and selection 
operator (LASSO) regression analysis and multifactorial Cox regression analysis were used to further screen 
telomere-related differentially expressed lncRNAs (TRDELs), and finally six lncRNAs were obtained, 
including LINC01537, CFAP61-AS1, DIRC1, RABGAP1L-IT1, DBH-AS1, and REPIN1-AS1. According 
to these six TRDELs, a prognostic model for gastric cancer was constructed. The samples were divided 
into the training group and the testing group at random, and the reliability of prognostic model was 
validated in both groups and overall samples. In addition, we performed Kaplan-Meier (K-M) survival curve 
analysis, independent prognostic analysis, and functional enrichment analysis to validate the predictive 
value and independence of the model, as well as immune cell correlation analysis, clustering analysis, and 
principal component analysis (PCA) to further explore the relationship between this model and the tumor 
cells. Finally, we performed the drug sensitivity analysis to identify a few small molecules that may have a 
therapeutic effect on gastric cancer.
Results: Finally, we constructed a prognostic model for gastric cancer consisting of six TRDELs. According 
to the K-M curve, the prognosis of the low-risk group was noticeably superior than that of the high-
risk group. Multivariate Cox regression analysis suggested that risk score was an independent prognostic 
element. Receiver operating characteristic (ROC) curves, nomogram, and calibration curve indicated that the 
prognostic model had good predictive ability. Functional enrichment analysis demonstrated major pathways 
with high- and low-risk groups. Next, both tumor microenvironment (TME) and immune correlation 
analysis showed discrepancy in the high- and low-risk groups. Through drug sensitivity analysis, we screened 
four small molecules that might be beneficial for gastric cancer treatment.
Conclusions: A prognostic model consisting of these six TRDELs was capable to predict the prognosis of 

gastric cancer patients.
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Introduction

Gastric cancer is a global health event, especially in East 
Asia, where it has the fifth highest incidence and third 
highest mortality rate (1,2). Globally, there were over one 
million instances of gastric cancer in 2020, which resulted 
in over 768,000 fatalities. One of the main causes of cancer-
associated mortality in China is gastric cancer (3). The 
incidence and death rate of gastric cancer now exhibit a 
consistent declining trend. However, as the population 
ages, there will probably be an increase in the number of 
gastric cancer cases that come into the clinic. Additionally, 
some research indicates that the incidence of gastric cancer 
is rising among young adults, primarily those under 50, 
which could alter the disease’s epidemiological features 
and risk factors (2,4). Globally, there is a growing trend 
in the number of stomach cancer cases and fatalities. East 
Asia, especially China, has the highest rate of gastric cancer 
occurrence, death, and disability-adjusted life years (DALYs) 
of any region (4). By the time gastric cancer manifests 
symptoms, it is frequently advanced and uncurable (2,3). 
Recurrence is still rather prevalent at the moment, despite 
considerable advancements in complete therapy (5). 
Therefore, we should focus more on gastric cancer and 

perform a more thorough study of disease biomarkers.
Human telomeres are nucleoprotein complexes that 

consist of hexameric TTAGGGn DNA sequences and an 
associated protein complex called shelterin. It is found at 
the end of a linear chromosome, and to preserve stability 
and integrity, its nucleoprotein structure functions as 
a protective cap at the end of the chromosome (6-8). 
Telomeres become shorter with each division, and when 
they get shorter than a certain length, the DNA damage 
response and cellular senescence are triggered, which 
prevents normal cells from undergoing mitosis (6,8,9). 
By activating the telomere maintenance mechanism 
(TMM), cancer cells are able to proliferate indefinitely. 
However, recent studies indicate that there are two 
primary mechanisms at work: telomerase activation 
accounts for 90% of cancer cases, with the alternative 
lengthening of the telomeres (ALT) pathway accounting 
for the remaining 10% (6,7). We can also formulate anti-
tumor strategies from this. A prospective study by Shi et al. 
discovered a strong correlation between a shortened cell-
free DNA (cfDNA) telomere length and a higher risk of 
stomach cancer progression (10). According to a study 
by Wu et al., human telomerase reverse transcriptase 
(hTERT) in gastric cancer tissues binds to the Sp1 
and Gli1 promoters to upregulate Gli1 expression and 
promote gastric cancer cell invasion and metastasis, and 
this suggests that the invasion and progression of gastric 
cancer are influenced by the hTERT/Sp1/Gli1 axis (11). 
Long non-coding RNA (lncRNA) may directly sponge 
miR-423-5p and inhibit the expression of SOX12 to 
regulate the miR-423-5p/SOX12 signaling axis, leading 
to gastric cancer progression (12).

LncRNAs are a sort of linear non-coding RNAs that are 
over 200 nucleotides in length, and in most cases, they are 
not significantly different from messenger RNAs (mRNAs) 
except that they do not have open reading frames (ORFs) (13).  
Protein-coding areas are typically thought to be linked 
to the development of cancer; however, lncRNAs can 
contribute to cancer by modulating target gene expression 
and function at the transcriptional, translational, and 
posttranslational stages to control cancer (13-16). Moreover, 
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lncRNAs have the ability to function as oncogenes or 
suppressors to control the development and progression 
of cancer as well as to be markers or prognostic indicators 
for tumor diagnosis. These findings imply that lncRNAs 
are important in the development of human cancers, 
although the precise mechanism underlying their function 
is still unknown (14,17). Furthermore, earlier research 
has demonstrated that lncRNAs can be viable targets for 
therapeutic intervention (18). Jia et al. discovered that via 
the c-Jun/c-Fos/SREBP1 axis, lncRNA NEAT1 mediates 
RPRD1B, which in turn stimulates fatty acid metabolism 
and gastric cancer cell implantation in lymph nodes (19). 
According to research by Luo et al., drug-resistant gastric 
cancer cells exhibited high expression of the lncRNA 
EIF3J-DT, which might trigger autophagy and cause 
drug resistance in these cells by targeting ATG14 (20). In 
addition, an abundance of evidence suggests that lncRNAs 
are involved in other malignant tumors, including tumors 
of the breast, liver, lung, and colon (15,21). In summary, 
it is believed that lncRNAs have a significant role in both 
the pathophysiology of human malignant tumors and 
medication resistance.

As telomeres also play a pivotal role in the growth, 
invasion, and even metastasis of gastric cancer, there are 
currently many studies showing their roles in various 
cancer categories. However, the number of relevant studies 
in this area is still comparatively sparse. Consequently, 
using telomere-related differential genes, our work built 
a new bioinformatics-based prognostic model that may 
offer innovative therapeutic targets and biomarkers for 
the diagnosis, treatment, and prognosis of gastric cancer. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-295/rc).

Methods

Data acquisition

The Cancer Genome Atlas (TCGA; https://www.cancer.
gov) provided the transcriptome and clinical statistics of 
stomach adenocarcinoma (STAD) patients, comprising 
375 tumor samples and 32 normal samples. Samples with 
incomplete data were eliminated. Then we converted the 
Ensembl ID to gene symbols, such as lncRNAs, protein-
coding genes, microRNAs (miRNAs), and the fraction of 
lncRNAs was filtered from it. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Identification of telomere-related lncRNAs (TRLs)

We extracted the lncRNAs (TRLs) from 2,093 telomere-
related genes (TRGs) that we acquired from the website 
(http://www.cancertelsys.org/telnet/). Then, using the 
“limma” R package and setting the R-value >0.6 and 
P<0.001, Pearson correlation analysis was carried out. Stem 
from the co-expression analysis of the telomere-associated 
genes that were downloaded and the lncRNA expression 
data of the TCGA STAD samples, TRLs associated with 
gastric cancer were identified.

Differential expression analysis of TRLs

Using the Wilcoxon test, the expression levels of TRLs 
between STAD and normal stomach tissues were found. 
Obtaining differentially expressed TRLs needed setting 
screening criteria such as |log2fold change (FC)| >2 and 
false discovery rate (FDR) <0.01. The “heatmap” R program 
was then used to plot the telomere-related differentially 
expressed lncRNAs (TRDELs) as volcanoes and heatmaps.

Construction and validation of the prognosis model

We randomized STAD patients into two groups, the 
training group and the test group, to verify the association 
between TRDELs and overall survival (OS) of gastric cancer 
patients. In the training group, we took the intersection 
of TRLs and differentially expressed lncRNAs (DELs) 
to obtain several lncRNAs. Then we used the “survival” 
R package to attain fourteen prognostic TRLs of STAD 
patients by performing univariate Cox regression analysis 
and defining a P value <0.05 as the screening condition. We 
subsequently screened thirteen prognostic TRLs using least 
absolute shrinkage and selection operator (LASSO) Cox 
regression analysis. Finally, a predictive model composed 
of six lncRNAs was constructed via multivariate Cox 
regression analysis. The telomere-related prognostic risk 
scores were as follows: risk score = expression (lncRNA1

k) × 
coefficient (lncRNA1

k) + expression (lncRNA2
k) × coefficient 

(lncRNA2
k) + … + expression (lncRNAn

k) × coefficient 
(lncRNAn

k). Using the median risk score as the cut-off 
value, we respectively divide the samples in the training 
group and testing groups into two groups: high- and low-
risk. Additionally, the “survival” and “survmine” R packages 
were used to draw survival and risk curves so as to explore 
the predictive value of the six TRL risk models. To assess 
the predictive accuracy of various clinicopathologic factors 
and risk scores on survival time, the R package “timeROC” 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-295/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-295/rc
https://www.cancer.gov
https://www.cancer.gov
http://www.cancertelsys.org/telnet/
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was used to examine the receiver operating characteristic 
(ROC) of subjects with 1-, 3-, and 5-year survival.

Independent prognostic analysis

We conducted univariate and multivariate independent 
prognostic analyses to confirm whether the risk score is an 
independent prognostic element for STAD patients. The 
variables included risk score, staging, grading, age, and 
gender.

Establishment of nomogram and calibration curve

Using the “rms” R package, we created a nomogram with 
different clinicopathologic characteristics and risk scores 
based on the clinical data of patients with gastric cancer, 
such as age, gender, tumor, nodes, metastasis (TNM) stage, 
and grading. This allowed us to assess the patients’ OS at 
1-, 3-, and 5-year intervals. Finally, we plotted a calibration 
curve to show the nomogram model’s predictive ability.

Gene set enrichment analysis

To further explore the potential functions of these genes in 
different risk subgroups for gastric cancer, we performed 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis and functional annotation for the high- 
and low-risk groups by using the “cluster Profiler”, “org.
Hs.eg.db”, and “ggplot2” R packages. P<0.05 and FDR 
<0.05 were considered statistically significant.

Tumor microenvironment (TME) and immune correlation 
analysis

First of all, we applied the ESTIMATE algorithm in 
R software to calculate the ESTIMATE score, stromal 
score, and immune score to estimate the score for each 
sample and plotted box plots for the scores of the TME in 
the high- and low-risk groups. Next, we downloaded the 
file of immune cell infiltration from TIMER 2.0 (http://
timer.cistrome.org/) and performed correlation analysis 
of risk score and immune cells in R software, including 
CIBERSORT,  TIMER,  XCELL,  QUANTISEQ, 
MCPcounter, EPIC and CIBERSORT, and the results 
were visualized to form bubble plots. Based on the immune 
cell composition, the samples were initially split into two 
groups: high and low expression. Then, survival analysis 
was used to display the survival curves, with a P value of less 

than 0.05 serving as the screening criterion. The gene set 
files relevant to immune checkpoints were acquired from 
earlier research, and we utilized R to identify the genes that 
showed significant variations between the high- and low-
risk groups, with a P value of less than 0.05 serving as the 
screening criterion. The outcome was displayed in the form 
of another box plot.

Drug sensitivity

Using the “oncoPredict” R package, we calculated the 
sensitivity scores of each small molecule for patients in 
the high- and low-risk groups and visualized the results 
by “ggplot2” and “ggpubr” R packages. We were able to 
visualize two-dimensional (2D) images of the four most 
sensitive medications by applying the PubChem (https://
pubchem.ncbi.nlm.nih.gov) website.

Principal component analysis (PCA)

Based on the expression of six TRLs, the samples were 
divided into three subtypes using the “ConsensusClusterPlus” 
R program. The survival curves were then plotted to 
determine whether patient survival varied across the three 
subtypes. The correlation between the three subtypes and the 
high- and low-risk groups was determined and shown using 
the “galluvial” R tool. We then performed PCA to show their 
distributions in two dimensions and explored whether these 
lncRNAs differed between the high- and low-risk groups and 
between samples of different subtypes.

Statistical analysis

All statistical analyses were carried out using R version 4.2.1 
(Institute for Statistics and Mathematics, Vienna, Austria; 
https://www.r-project.org), survival, survmine, timeROC, 
rms, cluster Profiler, org.Hs.rg.db, ggplot2, oncoPredict, 
ggpubr, ConsensusClusterPlus, ggalluvial). A P value <0.05 
was regarded as statistically significant.

Results

Identification of telomere-associated differential genes

From the TCGA database, we were able to acquire data 
concerning 407 patients, comprising 375 samples of 
gastric cancer and 32 samples of normal tissue. Next, 
4,611 lncRNAs and 19,211 mRNAs were isolated. From 

http://timer.cistrome.org/
http://timer.cistrome.org/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.r-project.org
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the website, we were able to retrieve 2,093 TRGs. The 
correlation between the two sets of quantitative data can 
be examined using Pearson analysis. After using Pearson 
analysis to examine the relationship between TRLs and 
lncRNAs at an R>0.6 and P value of <0.001, we finally 
obtained 2,277 TRLs. In addition, considering (|log2FC| 
>2, FDR <0.01) as a criterion, we were able to identify 426 
lncRNAs that showed differential expression in STAD 
samples compared to normal tissue samples. The heatmap 
showed where these 426 DELs were distributed (Figure 1A). 
A volcano plot was utilized to display the 165 TRDELs, 
which were obtained by integrating TELs and DELs. Of 
these, 127 were up-regulated lncRNAs, and 38 were down-
regulated lncRNAs (Figure 1B).

Construction and validation of prognostic risk assessment 
model

We examined the predictive ability of TRDELs by 
univariate Cox regression analysis using OS data of STAD 
patients from the TCGA database. Fourteen TRDELs 
were screened for prognostic relevance at the P<0.05 
criterion, comprising ten high-risk lncRNAs (MIR100HG, 
GAS1RR, LINC01537, CFAP61-AS1, LINC01579, DIRRC1, 
LINC01094, LINC02185, LINC02716, ADAMTS9-AS1) 
and four low-risk lncRNAs (RABGAP1L-IT, POLH-AS1, 
DBH-AS1, REPIN-AS1) (Figure 2A). And we showed the 
distribution of these fourteen genes in tumor samples and 
normal samples with heatmap (Figure 2B). Then, to prevent 
overfitting prognostic features and exclude prognosis-
related false-positive TRDELs, thirteen TRDELs were 
produced using LASSO Cox regression analysis. The results 
are shown using cvfit and lambda curves (Figure 2C,2D). 
After that, we performed multivariate Cox regression 
analysis to separate the six lncRNAs from the thirteen 
TRDELs listed above. Consequently, we utilized these six 
lncRNAs to construct the prognostic model, which included 
LINC01537, CFAP61-AS1, DIRC1, RABGAP1L-IT1, DBH-
AS1, and REPIN1-AS1 (Table 1).

We applied the following formula to calculate the risk 
score for all STAD patients: Risk score = 1.84 × LINC01537 
+ 0.48 × CFAP61-AS1 + 0.97 × DIRC1 − 0.64 × RABGAP1L-
IT1 − 0.98 × DBH-AS1 − 0.49 × REPIN1-AS1. We 
classified the training group and testing group, as well as 
the entire sample, into two groups, high-risk and low-risk, 
respectively, using the median value of the risk scores as the 
cut-off value. We discovered that there were differences 
between the high- and low-risk groups, confirming the 

accuracy of the constructed prognostic model. Additionally, 
the number of fatalities from gastric cancer increased along 
with the risk score (Figure 3A-3C). The Kaplan-Meier  
(K-M) curve revealed that the low-risk group had a better 
prognosis than the high-risk group, indicating that a higher 
risk score was associated with a lower prognosis in patients 
with STAD (Figure 3D). In addition, it is shown by the 
time-dependent ROC curve that the area under the curve 
(AUC) of OS was 0.689 at 1 year, 0.667 at 3 years, and 0.746 
at 5 years (Figure 4A). In addition, we produced an ROC 
curve that demonstrated that the risk score’s predictive 
accuracy was higher than that of other clinicopathologic 
indicators (Figure 4B). The aforementioned findings show 
that the prognosis for patients with gastric cancer is well 
predicted by our prognostic model, which was developed by 
utilizing these six TRDELs.

Independent prognostic analysis of risk score

We carried out univariate and multivariate independent 
prognostic analyses to further confirm whether risk score 
and other clinical features were independent prognostic 
factors. According to the univariate regression analysis, the 
patient’s prognosis was highly correlated with age (P=0.004), 
stage (P<0.001), and risk score (P=0.02) (Figure 5A). The 
results of multivariate regression analysis suggested that risk 
score (P=0.001), stage (P<0.001), and age (P<0.001) could 
all be independent predictors of prognosis (Figure 5B). 
Independent prognostic factors, including age and risk score 
(Figure 5C), were plotted as calibration curves, suggesting 
that the nomogram was able to predict the 1-, 3-, and 5-year 
survival rates of STAD patients with relative accuracy  
(Figure 5D). These results suggest that our nomogram with 
risk score can reliably predict OS in patients with STAD.

Gene set enrichment analysis

The high- and low-risk groups in the test group were 
subjected to KEGG functional enrichment analysis, with 
differentially expressed genes |log2FC| >1 and P<0.05 
chosen as screening criteria. Using KEGG analysis, we 
were able to generate bubbles for the top eighteen pathways 
along with the genes that were associated with them. 
The results indicated that the focal adhesion and calcium 
signaling pathways were the pathways to which these 
genes were most closely linked (Figure 6A,6B). We next 
conducted gene set enrichment analysis (GSEA) enrichment 
analysis on the high- and low-risk groups to investigate the 
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Figure 1 Identification of candidate TRDELs. (A) The heatmap showed the expression of 426 DELs in gastric cancer. (B) Volcano plot of 
165 TRDELs in TCGA database. Green dots: down-regulated genes; red dots: up-regulated genes; black dots: genes with no significant 
differentially expressed. FDR, false discovery rate; FC, fold change; TRDELs, telomere-related differentially expressed long non-coding 
RNAs; DELs, differentially expressed long non-coding RNAs; TCGA, The Cancer Genome Atlas.
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biological effects of these genes on gastric cancer in greater 
depth. This technique can be utilized in addition to KEGG 
pathway enrichment research. The findings showed that 
dilated cardiomyopathy, extracellular matrix (ECM) receptor 

interaction, focal adhesion, hypertrophic cardiomyopathy 
(hcm), and vascular smooth muscle contraction were 
the primary enriched pathways in the high-risk group  
(Figure 6C). The major pathways enriched in the low-risk 



Ding et al. Telomere lncRNA model in gastric cancer4614

© AME Publishing Company.   Transl Cancer Res 2024;13(9):4608-4624 | https://dx.doi.org/10.21037/tcr-24-295

group were allograft rejection, autoimmune thyroid disease, 
DNA replication, primary immunodeficiency, and the T-cell 
receptor signaling pathway (Figure 6D).

TME and immune correlation analysis

The interaction of surrounding mesenchymal stromal 
cells and immune cells with tumor cells forms the complex 
integrated system known as the TME and the TME is 
considered to be important for drug sensitivity, prognosis, 
and regression of tumors. Using the ESTIMATE technique, 

Figure 2 Construction of a risk prognostic model based on TRDELs in the TCGA database. (A) Univariate Cox regression analysis was 
performed for TRDELs. A value of P<0.05 was considered statistically significant. The line represents the interaction between the genes. 
(B) The heatmap showed the distribution of 13 TRDELs in tumor samples and normal samples. *, P<0.05; **, P<0.01; ***, P<0.001. (C) 
The LASSO regression of 13 optimum lncRNAs. (D) Cross-validation for turning the parameter selection in the LASSO regression. CI, 
confidence interval; TRDELs, telomere-related differentially expressed long non-coding RNAs; TCGA, The Cancer Genome Atlas; 
LASSO, least absolute shrinkage and selection operator; lncRNAs, long non-coding RNAs.

Table 1 The expression of these six lncRNAs

ID Coef
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‘RABGAP1L-IT1’ −0.636261238970348

‘DBH-AS1’ −0.983852856245592

‘REPIN1-AS1’ −0.487934342697213

LncRNA, long non-coding RNA; coef, coefficient.
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Figure 3 The median risk scores and survival consequence of the low- and high-risk groups. (A) The median risk scores of low- and high-
risk groups. (B) The survival time of the low- and high-risk groups. (C) Heatmap showing the expression of the six TRDELs. Green 
represents the low-risk group. Red represents the high-risk group. (D) K-M curves showing the overall survival of patients in the high- and 
low-risk groups. TRDELs, telomere-related differentially expressed long non-coding RNAs; K-M, Kaplan-Meier.

Figure 4 Construction of a risk prognostic model based on TRDELs in the TCGA database. (A) ROC curves showing the predictive 
efficiency of the risk score in 1-, 3-, and 5-year. (B) The risk score shows greater accuracy in 1-, 3-, and 5-year survival predictions than 
other clinical indicators. AUC, area under the curve; TRDELs, telomere-related differentially expressed long non-coding RNAs; TCGA, 
The Cancer Genome Atlas; ROC, receiver operating characteristic.
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we computed the immune, stromal, and ESTIMATE scores. 
The TME score revealed that the high-risk group was 
superior to the low-risk group in terms of the ESTIMATE 
and stromal scores, but there was no discernible benefit in 
terms of the immune score (Figure 7A). Various softwares, 
including CIBERSORT, TIMER, XCELL, QUANTISEQ, 
MCPcounter, EPIC, CIBERSORT-ABS, and CIBERSORT, 
were applied to figure the bubble plot. The results showed 
a correlation between the risk score and tumor-infiltrating 
immune cells, indicating that the risk score was positively 
correlated with monocytes, M2 macrophages, eosinophils, 
and neutrophils and were negatively correlated with CD8+ 
T cells, CD4+ memory T cells activated, follicular helper 
T cells, regulatory T cells (Tregs), and M1 macrophages 
(Figure 7B, Table S1). Additionally, we continued with 

immune cell survival analysis based on the composition of 
various immune cells, such as macrophages, follicular helper 
T cells, cancer-associated fibroblasts, endothelial cells, and 
uncharacterized cells. The samples were divided into two 
groups, one for the high-risk and the other for low-risk. 
The results showed that there was a significant difference in 
the patient’s survival times between the two groups, with the 
low-risk group’s prognosis being better than the prognosis 
of the high-risk group in the immune cells of macrophages, 
endothelial cells, and cancer-associated fibroblasts, and the 
high-risk group’s prognosis being better in the immune 
cells of follicular helper T cells and uncharacterized cells  
(Figure 7C). At the same time, in both the high- and 
low-risk groups, the large majority of immunological 
checkpoints demonstrated noticeably distinct degrees of 

Figure 5 Independent prognostic value of risk model. (A) Univariate Cox regression analysis in STAD. (B) Multivariate Cox regression 
analysis in STAD. P<0.05 is considered as statistically significant. (C) The nomogram using gender, age (years), stage and risk score. 
For each patient, five lines are drawn upward to verify the points received from the five predictors of the nomogram. The sum of these 
points situates on the “total points” axis. Then a line is drawn downward to assess the 1-, 2-, and 3-year OS of STAD. **, P<0.01. (D) The 
calibration plot of evaluate the nomogram predicted 1-, 2-, and 3-year OS of STAD. CI, confidence interval; OS, overall survival; STAD, 
stomach adenocarcinoma.
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activation, with the low-risk group often exhibiting a higher 
degree of activation (Figure 7D).

Drug sensitivity

Drug sensitivity analysis was undertaken on STAD patients 
in the TCGA database. We identified 73 small molecule 
complexes that were significantly different in the high- and 
low-risk groups in this study. The top four small molecule 
complexes with the smallest P values included MK-1775 
(P=8e−09), ML323 (P=3.1e−09), oxaliplatin (P=8.7e−09), 
and PF-4708671 (P=2.9e−10) (Figure 8A-8D). We then 
applied the PubChem website to visualize the 2D images of 
these four drugs (Figure 8E-8H). These analyses led us to 
the conclusion that these small molecule complexes could 

have therapeutic value for individuals with STAD and could 
offer treatment options for patients with gastric cancer.

PCA

In accordance with the expression of the lncRNAs for 
which the models were built, we conducted a consensus 
clustering analysis to classify gastric cancer patients in 
the TCGA dataset. The optimal clustering variable was 3  
(Figure 9A-9D), while the total cohort of gastric cancer 
patients was evenly split among clusters 1, 2, and 3. 
After performing survival analysis on samples from each 
cluster, we found that there were notable variations in 
patient survival among the three clusters, with cluster  
2 offering the best prognosis (Figure 9E). The Sankey plot  

Figure 6 Functional enrichment analysis and GSEA in STAD. (A,B) KEGG enrichment analyses of the six TRDELs. (C) Top five gene 
sets enriched in high-risk group. (D) Top five genes enriched in low-risk group. GSEA, gene set enrichment analysis; STAD, stomach 
adenocarcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; TRDELs, telomere-related differentially expressed long non-coding 
RNAs.
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Figure 7 TME and immune cell infiltration analysis. (A) The relationship of risk score with stromal score, immune score and ESTIMATE 
score. (B) Bubble chart for immune cell correlation analysis. (C) The relationship of risk score in macrophage, T cell follicular helper, cancer 
associated fibroblast, endothelial cell and uncharacterized cell. (D) Analysis of immune checkpoints of the two risk groups. *, P<0.05; **, 
P<0.01; ***, P<0.001. TME, tumor microenvironment.
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Figure 8 The screened drugs for STAD treatment. (A-H) The sensitivity and corresponding 2D structures of MK-1775, ML323, 
oxaliplatin, and PF-4708671 in high- and low-risk group in STAD. STAD, stomach adenocarcinoma; 2D, two-dimensional.

(Figure 9F) shows that cluster 1 is mostly distributed in the 
high-risk group, while clusters 2 and 3 are mostly distributed 
in the low-risk group. The t-distributed stochastic neighbor 
embedding (t-SNE) results showed three clusters. In 
addition, we used PCA to verify that the risk group and 
clusters had different PCAs (Figure 9G-9H). These results 
show that, according to the expression of modelled genes, 
it is possible to distinguish different subtypes. In most of 
the immune checkpoints, cluster 2 expressed more activity, 
such as CD160, TNFSF14, and TNFRSF25 (Figure 9I). 
Applying drug susceptibility analysis, we found 15 drugs 
that showed significantly different half-maximal inhibitory 
concentration (IC50) values between the different clusters 
(Figure 9J).

Discussion

Gastric cancer is a common type of malignant tumor, and 
it remains a main cause of death in China, despite recent 
declines in both incidence and death rates. Due to its 
subtle symptoms and discomfort in the stomach, patients 
frequently ignore gastric cancer in its early stages, and 
when it is discovered, it is usually discovered in a late stage. 
This is because the clinical manifestation of the disease 
is frequently not evident. The development of gastric 

cancer is significantly influenced by telomeres, and while 
TRLs and cancer have received less attention, telomere 
length has been the subject of numerous studies. Due to its 
subtle symptoms and discomfort in the stomach, patients 
frequently ignore gastric cancer in its early stages, and 
when it is discovered, it is usually discovered in a late stage. 
Telomeres play an essential role in the development of 
gastric cancer, and many studies have focused on the effect 
of telomere length on cancer, while the correlation between 
TRLs and cancer has been less studied.

The TCGA database was utilized in this study to filter 
2,277 TRDELs for gastric cancer. Next, we conducted Cox 
and LASSO regression analyses, which allowed us to filter 
out six TRLs. We then used these six lncRNAs (LINC01537, 
CFAP61-AS1, DIRC1, RABGAP1L-IT1, DBH-AS1, and 
REPIN1-AS1) to establish a prognostic model, and we 
validated the model’s efficacy by separating the high- and 
low-risk groups using the median value of the risk score as 
the cut-off value. By directly binding to RIPK4, reducing 
RIPK4 binding to TRIM25, and lowering its ubiquitination 
level, LINC01537  promotes gastric metastasis and 
carcinogenesis. This, in turn, stimulates the NF-κB 
pathway in gastric cancer cells (22). Initially, thought to be 
the gene spanning the 2q33 breakpoint in chromosomal 
translocations, the DIRC1 gene has been shown through 
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experiments to inhibit AKT/mTOR signaling. It is now 
thought that abnormalities in the PI3K/AKT/mTOR 
pathway are linked to the development and prognosis 
of gastric cancer, indicating that the DIRC1 gene may 
function as a marker for the disease (23-25). Regrettably, 
no conclusive research has been done to establish a 
connection between gastric cancer and RABGAP1L-IT1. It 
has been demonstrated that the lncRNA DBH-AS1, which 
is transcribed from chromosome 9q34 and possesses a 
polyadenylated tail, contributes to the growth of cancerous 
tumors such as hepatocellular carcinomas, esophageal 
carcinomas, and pancreatic carcinomas (26-28). It has been 
observed that CFAP61-AS1 and REPIN1-AS1 are helpful in 
determining the prognosis of STAD patients (29-31).

TME is a general term for all non-tumor components 
and their metabolites in tumor tissues, which mainly include 
extracellular mesenchyme, fibroblasts, immune cells and 
endothelial cells. Tumor cells can interact with surrounding 
cells through the cardiovascular system and lymphatic 

systems. Via the circulatory and lymphatic systems, tumor 
cells can communicate with surrounding cells. The TME 
can also participate in immunosuppression and angiogenesis 
processes, both of which are extensively involved in the 
development, invasion, metastasis, drug resistance, and other 
stages of tumor growth (32-34). Targeting TME in targeted 
therapy offers more benefits than directly targeting cancer 
cells since the genomes of cancer cells are unstable and 
prone to drug resistance (35). Furthermore, some studies 
have shown that the TME may have an impact on the 
prognosis of disease (34,36). For this reason, understanding 
the TME is crucial for the prognosis of STAD. In the 
TME, one of the very important types of cells is immune 
cells, of which the prominent ones are macrophages (33). 
Surprisingly, the TME can take advantage of the alteration 
of macrophages to play opposite roles at different stages, 
which can promote tumor progression and mediate anti-
tumor effects (37-39). Tumor antigens produced by genetic 
mutations have the potential to trigger an immune response 

Figure 9 PCA of gastric cancer. (A) Division of gastric cancer into three subtypes. (B) Consensus clustering CDF for k=2 to 9. (C) Relative 
change in area under the CDF curve for k=2 to 9. (D) Tracking plot for k=2 to 9. (E) K-M analysis of patients in cluster 1, cluster 2, and 
cluster 3 subgroups. (F) Sankey diagram of interrelationship between three subtypes and high- and low-risks. (G,H) The PCA and t-SNE 
analysis of different subtypes. (I) Histogram of immune checkpoint expression differences between subtypes. *, P<0.05; **, P<0.01; ***, 
P<0.001. (J) Drug sensitivity analysis in three clusters. CDF, cumulative distribution function; C, cluster; t-SNE, t-distributed stochastic 
neighbor embedding; PC, principal component; PCA, principal component analysis; K-M, Kaplan-Meier.
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during tumor development. In addition, immune cells 
have the ability to penetrate the TME and engage in the 
regulation of tumor progression (40). Nonetheless, the 
depletion and functional inhibition of immune cells allow 
cancer cells to elude immune monitoring, and certain 
research has demonstrated a strong correlation between 
the TME and immunological escape in gastric cancer. On 
the other hand, cancer cells can spread quickly by eluding 
immune surveillance (32). Over the past few decades, 
immunotherapy has ignited new hope for the treatment 
of gastric cancer (41). Cancer immunotherapy is primarily 
classified into two categories: active and passive immunity. 
Active immunity is the use of vaccines, chimeric antigen 
receptors, and other methods to strengthen the immune 
response against tumor cells, whereas passive immunity is 
the use of in vitro synthesized immune components such as 
monoclonal antibodies. Today, the majority of treatment for 
gastric cancer is surgery-based comprehensive care because 
radiation has a low sensitivity to the disease. Currently, 
immunotherapy for gastric cancer is mainly built on 
cytotoxic immune cells, monoclonal antibodies, and gene 
transfer vaccines, and immunotherapy clinical trials have 
now yielded some promising results (42,43). With the rapid 
development in the field of immune checkpoint inhibition, 
the therapeutic options for gastric cancer are becoming 
increasingly abundant. Immune checkpoint inhibition can 
be used as a new targeted therapeutic option for advanced 
gastric cancer, and in advanced gastric adenocarcinoma, 
the combination of first-line treatment with nivolumab and 
chemotherapy improves the OS of patients with programmed 
cell death protein 1 (PD-L1)-positive disease (44). Immune 
checkpoint inhibitors (ICIs) have gradually become a 
breakthrough in advanced gastric cancer and have shown 
anti-tumor effects (41). According to our research, these 
six TRDELs are linked to cells that partially infiltrate the 
immune system, which could lead to new developments in 
immunotherapy. Furthermore, four small molecules with 
high differentials were filtered out: PF-4708671, ML323, 
oxaliplatin, and MK-1775. The results indicated that these 
small molecules may be important for treating patients with 
gastric cancer, which may be a novel approach to the disease 
treatment. Based on the expression of six lncRNAs, we 
conducted a cluster analysis of TRLs in gastric cancer and 
identified three clusters. According to K-M analysis, cluster 
2 had the best chance of success. In addition, among the 
majority of immunological checkpoints, cluster 2 exhibited 
the highest activation. We also screened fifteen drugs 
based on these three clusters, which may be helpful in the 

treatment of gastric cancer.
The study’s strength is in the way it built a prognostic 

model of gastric cancer using telomere-related differential 
genes to predict the disease’s prognosis, look into the 
lncRNAs’ possible biological functions, examine the 
relationship between these lncRNAs and immune 
infiltration, and screen for four potential therapeutics. Our 
study, however, has a few limitations and restrictions. First, 
more validation of the study’s findings through trials is 
needed because the lack of clinical samples in this research 
leads to the unknown role of these TRLs in the treatment 
of gastric cancer. Second, it is still unknown how these six 
TRDELs in gastric cancer operate biologically and how 
they work.

Conclusions

In this study, we constructed a prognostic model of 
gastric cancer using six TRDELs, LINC01537, CFAP61-
AS1, DIRC1, RABGAP1L-IT1, DBH-AS1, and REPIN1-
AS1, which were capable of predicting the prognosis of 
gastric cancer patients, and screened four small molecule 
compounds. The results showed that they had the potential 
to predict the prognosis of gastric cancer patients, and it 
was found that the effects of these genes on gastric cancer 
progression might be related to immune infiltration, and 
the four small molecule compounds screened might play 
an impact on the treatment of gastric cancer. However, the 
results need to be further verified by applying clinical trials 
in the future.
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Table S1 The profile of immune cell infiltration analysis at different platforms

Immune Correlation P value

B cell_TIMER −0.19090447 0.000221

Macrophage_TIMER 0.314212935 6.38E−10

T cell CD8+_CIBERSORT −0.27287886 9.68E−08

T cell CD4+ memory activated_CIBERSORT −0.1897729 0.00024121

T cell follicular helper_CIBERSORT −0.29379454 8.42E−09

T cell regulatory (Tregs)_CIBERSORT −0.15708663 0.00244366

Monocyte_CIBERSORT 0.163104051 0.00164471

Macrophage M1_CIBERSORT −0.12424613 0.01679764

Macrophage M2_CIBERSORT 0.274776892 7.82E−08

Eosinophil_CIBERSORT 0.108396196 0.03714817

Neutrophil_CIBERSORT 0.163110106 0.00164405

T cell CD8+_CIBERSORT-ABS −0.22226498 1.60E−05

T cell CD4+ memory activated_CIBERSORT-ABS −0.19103103 0.00021884

T cell follicular helper_CIBERSORT-ABS −0.26517741 2.26E−07

T cell regulatory (Tregs)_CIBERSORT-ABS −0.16989438 0.0010351

NK cell activated_CIBERSORT-ABS −0.10974783 0.03483451

Monocyte_CIBERSORT-ABS 0.147514297 0.00446259

Macrophage M1_CIBERSORT-ABS −0.1090371 0.03603535

Macrophage M2_CIBERSORT-ABS 0.192026155 0.00020253

Eosinophil_CIBERSORT-ABS 0.109312712 0.03556557

Neutrophil_CIBERSORT-ABS 0.1637668 0.00157323

B cell_QUANTISEQ −0.11809481 0.02309448

T cell CD4+ (non-regulatory) QUANTISEQ 0.231985546 6.52E−06

T cell CD8+_QUANTISEQ −0.24011997 2.99E−06

T cell regulatory (Tregs)_QUANTISEQ −0.15199042 0.00338148

T cell_MCPCOUNTER −0.25679262 5.53E−07

T cell CD8+_MCPCOUNTER −0.21947892 2.05E−05

Cytotoxicity score_MCPCOUNTER −0.18555407 0.00033279

NK cell_MCPCOUNTER −0.20167352 9.37E−05

B cell_MCPCOUNTER −0.13667133 0.00847857

Monocyte_MCPCOUNTER 0.106012485 0.0415462

Macrophage/Monocyte_MCPCOUNTER 0.106012485 0.0415462

Myeloid dendritic cell_MCPCOUNTER 0.10298113 0.04776597

Neutrophil_MCPCOUNTER 0.131964203 0.01105629

Endothelial cell_MCPCOUNTER 0.215157958 3.00E−05

Cancer associated fibroblast_MCPCOUNTER 0.36963149 2.02E−13

B cell_XCELL −0.27303742 9.51E−08

T cell CD4+ memory_XCELL −0.28852188 1.59E−08

T cell CD4+ naive_XCELL −0.21600069 2.79E−05

T cell CD8+ naive_XCELL −0.214622 3.14E−05

T cell CD8+_XCELL −0.2800328 4.29E−08

T cell CD8+ central memory_XCELL −0.28258068 3.20E−08

T cell CD8+ effector memory_XCELL −0.31807149 3.83E−10

Class-switched memory B cell_XCELL −0.31647033 4.74E−10

Endothelial cell_XCELL 0.24482686 1.88E−06

Cancer associated fibroblast_XCELL 0.302340298 2.93E−09

Granulocyte-monocyte progenitor_XCELL 0.10570569 0.04214292

Hematopoietic stem cell_XCELL 0.259623977 4.10E−07

Mast cell_XCELL −0.13953276 0.00718714

B cell memory_XCELL −0.25915915 4.31E−07

Monocyte_XCELL 0.248141216 1.35E−06

B cell naive_XCELL −0.21978768 1.99E−05

Neutrophil_XCELL 0.203885787 7.81E−05

Plasmacytoid dendritic cell_XCELL −0.28299672 3.05E−08

B cell plasma_XCELL −0.31176947 8.78E−10

T cell gamma delta_XCELL −0.19461716 0.00016526

T cell CD4+ Th1_XCELL −0.25457256 6.97E−07

T cell CD4+ Th2_XCELL −0.18230608 0.00042438

Immune score_XCELL −0.13860651 0.0075845

Stroma score_XCELL 0.300670524 3.61E−09

B cell_EPIC −0.17510075 0.00071723

Cancer associated fibroblast_EPIC 0.27823172 5.28E−08

T cell CD8+_EPIC −0.10230144 0.04926272

Endothelial cell_EPIC 0.205839068 6.64E−05

Uncharacterized cell_EPIC −0.20995049 4.70E−05
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