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Background: Bladder cancer (BC) is a life-threatening malignancy with high mortality rates. Current 
prognostic models are insufficient in accurately predicting clinical outcomes, impeding personalized 
treatment strategies. This study aimed to identify BC subtypes and prognostic gene sets by analyzing changes 
in immune and hallmark gene sets activity in tumor and adjacent non-tumor tissues to enhance patient 
outcomes. 
Methods: Utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), 
gene set variation analysis (GSVA) was applied to C7 immune-related and hallmark gene sets from the 
Molecular Signatures Database (MSigDB). The CancerSubtype R package was utilized for clustering these 
gene sets into three categories, from which 109 candidate sets were identified using Venn diagrams. A refined 
subset of seven gene sets was selected through least absolute shrinkage and selection operator (LASSO) 
regression for the construction of a risk model. Model validity was confirmed with receiver operating 
characteristic (ROC) and calibration curves, and a nomogram was constructed to integrate risk scores with 
clinical parameters. Finally, genes from the gene sets of the model were acquired and analyzed for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-
protein interactions (PPI) via plugin Molecular Complex Detection (MCODE) and Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) in Cytoscape in both tumor and non-tumor tissues.
Results: Three BC subtypes were characterized by immunologic and hallmark gene sets, with subtype 1 
patients showing worse survival. The prognostic model, based on seven gene sets, effectively stratified risk, 
with high-risk patients having significantly shorter survival. GO, KEGG, and PPI analyses indicated distinct 
influences of non-tumor and tumor tissues on the prognosis of BC patients.
Conclusions: We constructed and validated a novel prognostic model for risk stratification in BC based on 
immunologic and hallmark genes sets, which presents a novel perspective on rational treatment approaches 
and accurate prognostic evaluations for BC by considering both tumor and adjacent non-tumor tissues. This 
highlights the importance of focusing on alterations in both tumor and adjacent non-tumor tissues, rather 
than solely on the tumor itself.
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Introduction

Bladder cancer (BC) is a significant health issue, with 
muscle-invasive bladder cancer (MIBC) accounting 
for about 25% of cases and commonly leading to poor 
outcomes (1,2). The standard treatment has been radical 
cystectomy with cisplatin-based chemotherapy. However, 
the introduction of immune checkpoint blockade (ICB) 
therapies has yielded promising results for MIBC patients 
(3-6). Despite these advancements, the heterogeneity of BC, 
particularly in its response to immunotherapy, underscores 
the necessity for accurate prognostic models to enhance 
treatment strategies (7).

The tumor microenvironment (TME) plays a pivotal 
role in antitumor immunity, with natural killer (NK) 
cells being significantly influenced by cytokines such as 
interleukin-2 (IL-2). IL-2-expanded NK cells within The 

Cancer Genome Atlas bladder cancer (TCGA-BC) dataset 
have demonstrated prognostic value (8,9). This highlights 
the importance of understanding the immune landscape 
within BC for prognostication and treatment planning. To 
date, subtypes based on the activity changes of gene sets in 
BC have not been determined.

To address the challenge of prognostication, in this study, 
we conducted single sample gene set variation analysis 
(GSVA) with the GSVA R package to construct a prognostic 
prediction model based on immuneSigDB gene subsets of 
C7 and hallmark gene sets from the Molecular Signatures 
Database (MSigDB). Afterward, we identified three distinct 
BC subtypes characterized by the activity changes of 
immunologic gene sets and hallmark in BC and constructed 
a prognostic model using TCGA-BC dataset. The validity 
of this model was subsequently confirmed in Gene 
Expression Omnibus (GEO) cohorts. This research offers a 
unique approach to prognostic modeling in BC, shifting the 
focus from individual gene alterations to broader changes in 
gene sets activity within the BC population. This innovative 
model aims to reflect the complexity of the tumor immune 
microenvironment and aid clinical decision-making, thereby 
improving individualized treatment planning and advancing 
precision medicine in BC.

Moreover, this investigation sought to elucidate the 
functions of the genes, the signaling pathways, and the 
immune-related genes associated with the gene sets used for 
model construction. Our findings indicate that BC is highly 
correlated with the extracellular matrix, PIK3-Akt signaling 
pathway, and EGFR and ITGA2 genes, offering deeper 
insights into the underlying mechanisms of BC progression 
and response to therapy. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-24-327/rc).

Methods

Study design

The workflow of this study is depicted in Figure 1.

Database

In this study, 425 BC samples, including 406 cancer samples 
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sets activities.

• A prognostic model based on seven gene sets was developed, which 
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survival.
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Figure 1 Flow chart of this study. GSVA, gene set variation analysis; TCGA-BC, The Cancer Genome Atlas bladder cancer; T, tumor; 
N, normal; BC, bladder cancer; LASSO, least absolute shrinkage and selection operator; KM, Kaplan-Meier; ROC, receiver operating 
characteristic.
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and 19 para-cancer samples, and their clinicopathological 
information were downloaded from The Cancer Genome 
Atlas (TCGA) (https://portal.gdc.cancer.gov/projects/
TCGA-BC). A total of 165 primary BC samples and their 
clinical characteristics were downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). In total, 
4,922 immunologic and hallmark gene sets were extracted 
from MsigDB database (http://www.gsea-msigdb.org/gsea/
index.jsp) (table available at https://cdn.amegroups.cn/
static/public/tcr-24-327-1.xlsx).

GSVA and clustering

The generation of a GSVA enrichment score was performed 
using the GSVA R package (version 1.30.0; https://
bioconductor.org/packages/release/bioc/html/GSVA.html), 
which takes a gene-by-sample expression matrix as input 
and provides a gene-set-by-sample enrichment score matrix 
as output.

Subsequently, features were chosen through Cox 
regression analysis and samples were stratified into distinct 
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groups using the nonnegative matrix factorization (NMF) 
method, and the silhouette width metric was used to 
evaluate how accurately a sample matched the identified 
subtype compared to other subtypes. An additional 
expression profile dataset (GSE13507) with a different 
platform was utilized for validation purposes. Subsequent 
to this, the correlation between BC subtypes and clinical 
characteristics was assessed via chi-square test. Lastly, 
differential enrichment scores of gene sets were calculated 
between the three subtypes, intersected, and refined 
through Cox analysis (P<0.05) (Table S1; Table S2).

Construction of the risk score model

Subsequently, least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed to 
construct a prognostic model based on the seven gene sets 
significantly associated with prognosis (P<0.05) (Table S3). 
Kaplan-Meier (KM) survival curves were utilized to assess 
the prognostic ability of the risk score within both TCGA 
and GEO cohorts. Furthermore, univariate and multivariate 
Cox regression analyses were performed to validate the 
independent prognostic value of the risk score.

Establishment and evaluation of the prognostic model

A nomogram was constructed to estimate the 1-, 3-, and 
5-year overall survival (OS) of BC patients, incorporating 
variables such as grade, age, gender, stage, risk score, 
distant metastasis, and lymph node metastasis. To assess the 
accuracy of the nomogram, receiver operating characteristic 
(ROC) curve analysis was performed. Subsequently, decision 
curve analysis (DCA) was utilized to validate the predictive 
effectiveness of the prognostic model.

Gene set enrichment analysis and the identification of 
immune-related hub genes

On tumor (T) and normal (N) gene sets, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were performed. GO was used to analyze the 
relationship of biological process (BP), cellular components 
(CC), and molecular function (MF) with the gene sets. KEGG 
analysis was used on the T and N gene sets. The differentially 
expressed genes involved in tumor signaling pathways and 
tumor progression were analyzed. The Molecular Complex 
Detection (MCODE) plug-in was used to explore the hub 
genes based on the N gene sets of the prognostic model.

Statistical analysis

Chi-squared test or Fisher’s exact test was used to analyze 
the relationship between clinical characteristics and 
subtype. Univariate survival analysis was carried out with 
KM survival analysis. Multivariate survival analysis was 
performed using the Cox regression model.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

BC subtypes based on the immune-related and hallmark 
gene sets

The initial step of the study involved analyzing GSVA from 
the TCGA-BC Cohort, encompassing 19 normal bladder 
tissues and 406 BC tissues (Figure 2). Subsequently, the 
CancerSubtype R package was employed for subtyping and 
survival analysis, based on the GSVA scores (Figure 3A).  
The optimal number of clusters, K (K=3), was quantified 
using the sum of squared error calculation (Figure S1A,S1B).  
The Silhouette method was utilized to assess intracluster 
cohesion and intercluster separations, with silhouette 
coefficients close to 1 indicating well-classified elements 
within a particular cluster (Figure 3B). A comparison of the 
OS among the three subtypes revealed that C1 patients 
exhibited a poorer prognosis compared to the other 
patients (P<0.05) (Figure 3C). This observation was also 
consistent with disease-specific survival (DSS) (P<0.05) and 
progression-free survival (PFS) (P<0.05) (Figure 3D,3E).

Construction and evaluation of a risk scoring model of 
seven immune-related gene sets among three clusters

To investigate the relationship between the differentially 
expressed gene sets of the three clusters and prognosis, 
a visual Venn diagram was utilized (Figure 4A). The 
results indicated that 109 gene sets had an impact on all 
three groups. The screened genomes were summarized 
by heatmaps, which further demonstrated their close 
association with the newly established genotypes  
(Figure 4B). Employing univariate Cox regression, 20 gene 
sets significantly associated with prognosis were identified 
(Table S2). Finally, seven gene sets were incorporated into a 
regression model using the LASSO strategy (Figure 5A,5B).  

https://cdn.amegroups.cn/static/public/TCR-24-327-Supplementary.pdf
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Figure 2 Heat map of GSVA enrichment scores from 4,922 immunologic and hallmark gene sets in tumor and non-tumor tissues based on 
TCGA-BC. GSVA, gene set variation analysis; TCGA-BC, The Cancer Genome Atlas bladder cancer.
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Among these gene sets, six were in non-tumor tissues 
(N gene sets: N_GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN, N_GSE26488_WT_
VS_HDAC7_DELTAP_TG_OT2_THYMOCYTE_
WITH_PEPTIDE_INJECTION_DN, N_HALLMARK_
APICAL_JUNCTION, N_GSE1432_6H_VS_24H_
IFNG_MICROGLIA_UP, N_GSE43955_1H_VS_42H_
ACT_CD4_TCELL_WITH_TGFB_IL6_DN, N_
HALLMARK_HYPOXIA), and one was in tumor tissues 
(T gene sets: T_GSE25088_WT_VS_STAT6_KO_
MACROPHAGE_DN). Therefore, the gene sets of the 
final prognostic model and their corresponding coefficients 
were presented in Table S3.

Furthermore, TCGA data were used as a training set 
and GSE13507 data were used as a validation set. Then, we 
analyzed the GSE13507 dataset to classify BC patients into 
three different subtypes with a silhouette width value of 0.87 
following the same approach as the TCGA dataset, and the 
BC patients with subtype1 exhibited the shortest survival 
time compared to patients with other subtypes (P=0.000342; 
Figure S2). In order to better identify patients at high and 

low risk, cutoff values defining low- and high-risk groups 
were derived by dividing the training set and the validation 
set risk scores into median. KM analysis revealed that 
the OS of patients in the low-risk group was significantly 
higher than that of those in the high-risk group in both 
the training set and the validation set (Figure 5C,5D), and 
the three prognostic gene sets in the model were strongly 
correlated with survival status (Figure S3). The results of 
calibration curve and ROC curve [TCGA training set: 
1-year area under the curve (AUC) =0.654, 3-year AUC 
=0.643, 5-year AUC =0.647; GEO validation set: 1-year 
AUC =0.709, 3-year AUC =0.627, 5-year AUC =0.603] 
analysis all showed that our model had good prediction 
performance (Figure 5E-5H). 

Establishment and evaluation of the prognostic model

A subgroup analysis revealed that the model exhibited 
satisfactory predictive capabilities with respect to age, 
gender, grading, staging, the presence of distant metastasis, 
and the presence of lymph node metastasis (Figure 6A-6G).  
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Figure 3 Identification of BC subtypes based on TCGA. (A) The NMF method was employed to cluster BC samples. (B) Silhouette 
width plots with an average value of 0.96. (C) KM survival curve for OS among the three subtypes. (D) KM survival analyses of DSS and 
(E) PFS among the three subtypes. BC, bladder cancer; TCGA, the cancer genome atlas; KM, Kaplan-Meier; OS, overall survival; NMF, 
nonnegative matrix factorization; DSS, disease-specific survival; PFS, progression-free survival; TCGA-BC, The Cancer Genome Atlas 
bladder cancer.
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To evaluate the prognostic value of the risk score, 
univariable Cox regression analysis was performed on the 
training set, incorporating variables such as age, gender, 
grade, and stage. It was found that age, stage, and the risk 
score exhibited significant prognostic value (Figure 6H). 
Subsequent multivariate Cox regression analysis confirmed 
that the risk score could be utilized as an independent 
prognostic factor (Figure 6I). A nomogram was developed 
in the training set, integrating grade, age, gender, stage, 
risk score, distant metastasis, and lymph node metastasis, to 
enhance clinical applicability (Figure 7A). The calibration 
curve demonstrated that the nomogram possessed good 
predictive performance at 1, 3, and 5 years (Figure 7B), 
with the ROC curve analysis corroborating this finding  
(Figure 7C). DCA for 1-, 3-, and 5-year outcomes was 
conducted to validate the predictive efficacy of the risk score 

model and the nomogram (Figure 7D-7F).

GO and KEGG analysis on gene sets and the screening of 
the hub genes

In order to further investigate the functions of genes in 
T and N gene sets from the prognostic model, GO and 
KEGG analyses were performed on T and N gene sets, 
respectively. Results from GO analysis were observed to 
correspond to different functions in the T and N gene 
sets. Some BP GO terms, such as extracellular matrix 
organization and extracellular structure organization, 
were enriched on T sets. On N sets, organelle fission and 
nuclear division were significantly enriched in BP. In terms 
of CC, cell-cell junctions and cell-matrix junctions were 
enriched in the T-set, whereas chromosomal regions and 
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Figure 4 The representative gene sets within three subtypes. (A) Differential gene sets between each pair of subtypes were identified and 
intersected. (B) The heat map of 109 representative gene sets in BC subtypes, at the top, with the correlation of the three subtypes with the 
clinical features. *, P<0.05; ***, P<0.001. BC, bladder cancer; T, stage-T; N, stage-N; M, stage-M.
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spindles were enriched in the N-set. Furthermore, several 
MF GO terms, such as cadherin binding, integrin binding, 
and glycosaminoglycan binding, were enriched on T sets  
(Figure 8A). ATPase activity, microtubule binding, and 
tubulin binding were enriched on N sets (Figure 8B). 
Similarly, results from KEGG on T sets showed enrichment 
on DNA replication and mismatch repair (Figure 8C). The 

PI3K-Akt signaling pathway showed the most significant 
enrichment on N sets (Figure 8D). 

Using the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database (https://cn.string-
db.org/), protein-protein interaction (PPI) networks were 
constructed for genes from T and N gene sets of the model, 
respectively. Then, the top 10 genes with neighbors and 
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Figure 5 Establishment and validation of a risk prognostic model. (A,B) LASSO coefficient profiles via 10-fold cross validation further 
screened out 7 prognosis-related gene sets that were significantly related to prognosis. (C,D) Kaplan-Meier survival analyses of OS of model 
high- and low-risk groups from the TCGA training set and GEO test set. (E,F) The calibration curves for 1, 3, 5 years OS in the TCGA and 
GEO cohorts. (G,H) ROC curves for BC patients in TCGA and GEO datasets. LASSO, least absolute shrinkage and selection operator; λ, 
lambda; OS, overall survival; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, relative operating characteristic; 
AUC, area under the curve; BC, bladder cancer.
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expanded genes calculated by the cytoHubba plugin in 
Cytoscape with highest degree, according to T and N gene 
sets of the model, respectively (Figure 8E,8F). Furthermore, 
an effort was made to identify subnetwork 1 (subnet1) and 
subnetwork 2 (subnet2) of PPI network based on the T and 
N gene sets of the prognostic model, which were analyzed 
using the MCODE plug-in. As a result, two subnetworks 
were obtained: subnet1, and subnet2 (Figure S4A-S4D). 
The deep red nodes in these subnets represent the hub 
genes. For instance, EGFR and ITGA2 of N gene sets were 

identified and considered as the critical genes.

Discussion

Predicting the prognosis of cancer accurately is crucial 
for guiding our treatment strategies, enabling targeted 
personalized treatment for patients, and facilitating 
appropriate review plans. MIBC is characterized by 
rapid progression, high metastatic potential, and poor  
prognosis (10). Stage and grade largely determine the 

https://cdn.amegroups.cn/static/public/TCR-24-327-Supplementary.pdf
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Figure 6 Clinical prognostic value of the risk model based on TCGA database. (A-G) Stratified KM analysis was conducted based on the 
different clinicopathological factors. (H,I) Univariate survival analysis and multivariate survival analysis of the risk model and assessment of 
other clinical characteristics. KM, Kaplan-Meier; T, stage-T; N, stage-N; M, stage-M; CI, confidence interval; TCGA, The Cancer Genome 
Atlas.
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treatment of BC and significantly affect the prognosis. 
Currently, cancer risk is primarily determined by 
tumor, node, metastasis (TNM) stage and pathological  
diagnosis (11), yet there remains a gap in the availability of a 
quantitative risk scoring and prediction model that is stable, 
accurate, and capable of rapid assessment. As research 
advances, the ICB revolution has brought hope to patients 
with advanced BC (12). The treatment of ICB is mainly 
related to the TME (13), which includes all noncancerous 
host cells, extracellular matrix (ECM), and soluble products 
in the tumor, where many immune-related genes are 
present (14). Emerging evidence suggests that the presence 

of tertiary lymphoid structures (TLS) and neutrophil to 
lymphocyte ratio (NLR) in peripheral blood is associated 
with the treatment response to checkpoint inhibitors (CPIs). 
Specifically, patients with metastatic urothelial carcinoma 
(mUC) who have lower NLR and exhibit TLS in their 
tumors show significantly improved OS and PFS when 
treated with pembrolizumab, compared to those without 
TLS. This suggests that both TLS and NLR are important 
biomarkers for predicting CPI efficacy (15). Additionally, 
alterations in FGFR3 (aFGFR3) in BC have been found to 
impact the TME and the efficacy of immune checkpoint 
inhibitors (ICIs), particularly in MIBC. Patients with the 



Zhou et al. A novel prognostic model for BC based on GSVA4648

© AME Publishing Company.   Transl Cancer Res 2024;13(9):4639-4653 | https://dx.doi.org/10.21037/tcr-24-327

Figure 7 The nomogram was developed and validated from the TCGA database. (A) Prognosis nomogram including risk scores and 
clinicopathological stages was developed to forecast prognosis in BC patients. (B) Nomogram calibration curves over 1-, 3-, and 5-years. (C) 
1-year ROC curves of the risk score and other clinical features. (D-F) Decision curve analysis of the OS-related nomogram at 1-, 3-, and 
5-year. *, P<0.05. TCGA, The Cancer Genome Atlas; BC, bladder cancer; ROC, relative operating characteristic; OS, overall survival; T, 
stage-T; N, stage-N; M, stage-M; Pr, probability; Futime, survival time; AUC, area under the curve.
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LumP subtype harboring aFGFR3 show a higher objective 
response rate to immune therapy compared to those with 
intact FGFR3 (iFGFR3) (16). 

Consequently, the design of a prognostic model enabled 
the utilization of the immune-related genome to inform 
the treatment of BC and identify novel immunotherapeutic 
targets that are anticipated to be developed and applied in 
the future. After KM survival analysis, the low-risk group 
exhibited superior survival outcomes compared to the high-
risk group. This model demonstrates stronger predictive 
efficacy, particularly among patients with advanced 
stage BC, characterized by a high degree of malignancy. 
Subsequently, the nomogram visually illustrates the 
prediction effect of the model. Furthermore, the calibration 
curve, ROC curve, and DCA were employed to verify the 
accuracy and reliability of the model.

GO enrichment analysis revealed that ECM organization 
is associated with the N gene set in the model. As a critical 
component of TME, ECM interacts with cytokines, 

chemokines, and cancer cells to construct a cross-linking 
signaling network (17). A previous study has shown that 
remodeling of ECM is associated with the promotion 
of malignant tumor development and poor patient  
prognosis (18). Through KEGG enrichment analysis, we 
found that the gene sets enriched in BC adjacent tissues 
were highly correlated with the PI3K-Akt signaling 
pathway. The PI3K-Akt signaling pathway is one of the 
most commonly dysregulated pathways in cancer (19). 
It has been demonstrated that TEAD4 contributes to 
epithelial-mesenchymal transition (EMT) in BC cells by 
activating the PI3K/AKT pathway (20). Akt methylation 
is a crucial step that synergizes with PI3K signaling to 
control Akt activation, and targeting SETDB1 signaling 
may be a potential therapeutic strategy against overactive 
AkT-driven cancers (21). Additionally, immune metabolism 
plays a pivotal role in immunity, and it is noteworthy that 
the phosphoinositide 3-kinase (PI3K)-protein kinase B 
(AKT)-mammalian target of rapamycin (mTOR) pathway 
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Figure 8 Analyses of GO, KEGG enrichment, PPI network for genes from T and N gene sets of the model. (A,B) GO term analysis for 
genes from T and N gene sets of the model, respectively. (C,D) KEGG pathway analysis for genes from T and N gene sets of the model, 
respectively. (E,F) The top 10 hub genes of the highest degree with neighbors and expanded genes were identified by the STRING analysis, 
the cytoHubba plugin in cytoscape, based on T and N gene sets of the model. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; PPI, protein-protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; T, tumor; N, 
normal; BP, biological process; CC, cellular component; MF, molecular function. The colorful nodes represented 10 hub genes with the 
most edges, deeper color indicates higher connectivity values.
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is indispensable for modulating immune functions (22). 
Furthermore, this pathway serves as a vital signaling 
mechanism underlying T cell activation and functionality 
(23), with the mTOR node at the core of its downstream 
signaling cascade emerging as a crucial regulator of immune 
response (24). The PI3K-Akt pathway exhibits a tight 
correlation with cancer hallmarks. Previous investigations 
have demonstrated that the PI3K-Akt pathway plays a 
pivotal role in the polarization, proliferative capacity, 
and survival mechanisms of M2-like tumor-associated 
macrophages. Subsequently, this pathway is implicated 
in promoting tumor growth, facilitating metastasis, 
initiating tissue remodeling processes, and inducing 
immunosuppressive effects (25). Furthermore, DNA-
binding 2 inhibitors are also capable of suppressing 
the progression and metastasis of BC via the PI3K-
Akt signaling pathway (26). Although inhibitors of this 
signaling pathway exhibit some cytotoxicity and resistance, 
current combination therapy, including PI3K/Akt/mTOR 
inhibitors, has been utilized to improve patient response 
and clinical outcomes. In conclusion, PI3K-Akt can be 
considered a promising prognostic factor and therapeutic 
target in BC.

An increasing number of studies have demonstrated the 
efficacy of ICIs in treating BC, albeit most BC patients 
show no sensitivity towards these present therapeutic 
targets. Therefore, there is a pressing need to identify novel 
prognostic biomarkers and predictors of treatment response 
to promote individualized and precise treatment of BC. 
Within the N gene set, EGFR and ITGA2 were identified as 
two pivotal genes owing to their high degree values. In the 
context of cancer metastasis, exosome-mediated signaling 
factors play a pivotal role in activating the epidermal 
growth factor receptor (EGFR) signaling pathway, thereby 
contributing significantly to the progression of cancer 
metastasis (27). Monoclonal antibodies or small molecule 
tyrosine kinase inhibitors (TKIs) targeting EGFR inhibition 
have been approved for treating RAS wild-type colorectal 
cancer (28), and have also been shown to be beneficial in 
basal-like MIBC (29). The EGFR gene is also intricately 
linked to anti-tumor immunity, and the abnormal activation 
of the EGFR signaling pathway can occur in conjunction 
with the PI3K/AKT/mTOR and p53 signaling pathways. 
This interaction regulates the growth and migration of 
tumor cells, underscoring the significance of EGFR in the 
context of tumorigenesis (30). Meanwhile, the upregulation 
of epiregulin (ERPG) primarily serves to activate the EGFR 
signaling pathway, thereby fostering the advancement of 

numerous malignancies (31). EGFR thus has promising 
potential for treatment of BC, a fact reinforced by this study.

ITGA2 could be a key regulatory factor in controlling 
the migration, invasion, and metastasis of tumor cells (32). 
In the conduct of this research, the immune gene set was 
scored utilizing MCODE methodology to search for crucial 
genes and ITGA2 was identified as a significant hub gene 
in the adjacent tissues of bladder tumors. Although BC 
immunotherapy-based drugs and clinical trials targeting 
ITGA2 have yet to be developed, previous findings indicate 
that ITGA2 has a role in cancer development. Studies 
have shown that ITGA2 is abnormally overexpressed 
and significantly associated with poor survival of several 
malignant tumors (32,33). Research has conclusively 
demonstrated a positive correlation between the expression 
of ITGA2 and programmed cell death ligand 1 (PD-L1)  
within the pancreatic cancer TME. In addition, the 
inhibition of ITGA2 has been shown to effectively attenuate 
the proliferative and invasive capabilities of pancreatic 
cancer cells (34). Blocking ITGA2 improves tumor immune 
response by reducing the phosphorylation level of STAT3 
and inhibiting PD-L1 expression in vivo (35). Overall, 
ITGA2 may serve as a novel prognostic biomarker for BC 
and a new target for ICB therapy.

The gene set  variat ion analysis  (GSVA) score-
based predictive model provides a novel perspective for 
constructing prognostic models for bladder tumors. As 
tools for predicting patient prognosis continue to develop, 
the potential for future advancements remains promising. 
The integration of artificial intelligence (AI) and radiomics 
into healthcare is expected to significantly enhance the 
management of BC. AI-driven algorithms, leveraging 
extensive datasets, are anticipated to improve predictive 
accuracy and clinical outcomes (36). Furthermore, AI and 
radiomics can aid in distinguishing benign from malignant 
lesions and predicting treatment responses in metastatic 
renal cell carcinoma, thereby enhancing diagnostic 
precision (37). Additionally, patient demographics, such 
as age, play a crucial role in prognosis. For instance, older 
patients with BC face higher risks of recurrence and 
progression, emphasizing the necessity for personalized 
treatment strategies (38). Future research should focus 
on refining these technologies to achieve more precise 
and individualized therapeutic approaches, providing new 
hope and improved outcomes for BC patients. Integrating 
existing methods with multidimensional information will 
offer the most effective tools for accurately predicting 
patient prognosis and guiding treatment.
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Conclusions

These findings provide important insights for the 
development of new ICB therapies for BC treatment. In 
summary, the research comprehensively examined alterations 
in hallmark and immunologic gene sets and developed an 
innovative prognostic model for risk stratification in BC, 
offering a fresh approach to enhancing prognostic evaluation 
methods in subsequent studies. Additionally, the study 
identified several potential immunotherapy targets for BC, 
such as the PI3K-Akt signaling pathway, EGFR, and ITGA2.
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Figure S1 Identification of BC subtypes from TCGA. (A) The ideal number of clusters (K) was 3. (B) Cluster plot of 3 subtypes. BC, 
bladder cancer; TCGA, The Cancer Genome Atlas; Dim1, dimension 1; Dim2, Dimension 2.
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Figure S2 Identification of BC subtypes from GSE13507 was conducted. (A) The optimal number of clusters (K) was determined to be 3. 
(B) Visualization of the cluster results was performed. (C) Kaplan-Meier survival analysis for the three subtypes. (D) The NMF method was 
used to cluster BC samples. (E) Silhouette plot plots with a value of 0.87. BC, bladder cancer; NMF, nonnegative matrix factorization; GEO, 
gene expression omnibus; Dim1, dimension 1; Dim2, Dimension 2.
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Figure S3 Kaplan-Meier survival analysis based on OS was performed for three prognostic gene sets in the model separately. OS, overall 
survival.
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Figure S4 The (A,B) subnet1 and (C,D) subnet2 of PPI network by Cytoscape plugin MCODE of T and N gene sets. Red nodes indicate 
the hub genes. PPI, protein-protein interaction; MCODE, Molecular Complex Detection; T, tumor; N, normal; Subnet1, subnetwork 1; 
Subnet2, subnetwork 2.
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Table S1 The 109 differentially expressed gene sets were identified among three BC subtypes

N_GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN

N_HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION

N_GSE6259_CD4_TCELL_VS_CD8_TCELL_UP

N_GSE1460_INTRATHYMIC_T_PROGENITOR_VS_THYMIC_STROMAL_CELL_DN

N_GSE26488_WT_VS_HDAC7_DELTAP_TG_OT2_THYMOCYTE_WITH_PEPTIDE_INJECTION_DN

N_GSE4748_CTRL_VS_LPS_AND_CYANOBACTERIUM_LPSLIKE_STIM_DC_3H_UP

N_HALLMARK_APICAL_JUNCTION

N_GSE4748_CTRL_VS_LPS_STIM_DC_3H_UP

N_GSE1432_6H_VS_24H_IFNG_MICROGLIA_UP

N_GSE43955_1H_VS_20H_ACT_CD4_TCELL_WITH_TGFB_IL6_DN

N_GSE8868_SPLEEN_VS_INTESTINE_CD11B_POS_CD11C_NEG_DC_DN

N_GSE3982_DC_VS_BCELL_UP

N_GSE43955_1H_VS_42H_ACT_CD4_TCELL_WITH_TGFB_IL6_DN

N_GSE360_L_DONOVANI_VS_B_MALAYI_LOW_DOSE_DC_UP

N_HALLMARK_HYPOXIA

N_GSE43955_1H_VS_60H_ACT_CD4_TCELL_UP

N_GSE6269_HEALTHY_VS_STAPH_PNEUMO_INF_PBMC_DN

N_GSE6269_FLU_VS_STAPH_AUREUS_INF_PBMC_DN

N_GSE43955_TGFB_IL6_VS_TGFB_IL6_IL23_TH17_ACT_CD4_TCELL_52H_DN

T_GSE2706_UNSTIM_VS_2H_LPS_DC_UP

N_GSE19401_UNSTIM_VS_RETINOIC_ACID_AND_PAM2CSK4_STIM_FOLLICULAR_DC_DN

N_GSE22140_GERMFREE_VS_SPF_MOUSE_CD4_TCELL_DN

N_GSE24634_IL4_VS_CTRL_TREATED_NAIVE_CD4_TCELL_DAY7_DN

N_GSE2706_R848_VS_R848_AND_LPS_8H_STIM_DC_DN

N_GSE22196_HEALTHY_VS_OBESE_MOUSE_SKIN_GAMMADELTA_TCELL_DN

N_GSE9037_CTRL_VS_LPS_4H_STIM_IRAK4_KO_BMDM_DN

N_GSE22140_HEALTHY_VS_ARTHRITIC_GERMFREE_MOUSE_CD4_TCELL_DN

N_GSE19198_CTRL_VS_IL21_TREATED_TCELL_24H_UP

N_GSE19401_NAIVE_VS_IMMUNIZED_MOUSE_PLN_FOLLICULAR_DC_UP

N_GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_4H_UP

N_GSE9601_NFKB_INHIBITOR_VS_PI3K_INHIBITOR_TREATED_HCMV_INF_MONOCYTE_DN

N_GSE22140_GERMFREE_VS_SPF_ARTHRITIC_MOUSE_CD4_TCELL_UP

N_GSE3039_NKT_CELL_VS_B2_BCELL_DN

N_GSE9988_ANTI_TREM1_VS_CTRL_TREATED_MONOCYTES_UP

N_GSE36891_UNSTIM_VS_POLYIC_TLR3_STIM_PERITONEAL_MACROPHAGE_UP

N_GSE42021_CD24HI_TREG_VS_CD24HI_TCONV_THYMUS_DN

N_GSE27434_WT_VS_DNMT1_KO_TREG_DN

Table S1 (continued)
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Table S1 (continued)

N_GSE30971_CTRL_VS_LPS_STIM_MACROPHAGE_WBP7_KO_4H_UP

N_GSE45365_NK_CELL_VS_CD11B_DC_DN

N_GSE22886_DAY0_VS_DAY1_MONOCYTE_IN_CULTURE_DN

N_GSE19923_E2A_KO_VS_HEB_AND_E2A_KO_DP_THYMOCYTE_UP

N_GSE30971_CTRL_VS_LPS_STIM_MACROPHAGE_WBP7_HET_2H_UP

N_GSE42021_TREG_PLN_VS_CD24INT_TREG_THYMUS_UP

N_GSE2706_R848_VS_LPS_8H_STIM_DC_DN

N_GSE13946_CTRL_VS_DSS_COLITIS_GD_TCELL_FROM_COLON_UP

N_GSE25123_WT_VS_PPARG_KO_MACROPHAGE_UP

N_GSE30971_CTRL_VS_LPS_STIM_MACROPHAGE_WBP7_KO_2H_UP

N_HALLMARK_COMPLEMENT

N_HALLMARK_INFLAMMATORY_RESPONSE

N_HALLMARK_TNFA_SIGNALING_VIA_NFKB

N_GSE42021_TCONV_PLN_VS_TREG_PRECURSORS_THYMUS_DN

N_GSE23502_WT_VS_HDC_KO_MYELOID_DERIVED_SUPPRESSOR_CELL_BM_DN

N_GSE30971_WBP7_HET_VS_KO_MACROPHAGE_2H_LPS_STIM_DN

N_GSE30971_WBP7_HET_VS_KO_MACROPHAGE_DN

N_GSE2706_UNSTIM_VS_2H_R848_DC_DN

N_GSE15330_LYMPHOID_MULTIPOTENT_VS_MEGAKARYOCYTE_ERYTHROID_PROGENITOR_IKAROS_KO_DN

N_GSE14386_UNTREATED_VS_IFNA_TREATED_ACT_PBMC_MS_PATIENT_DN

N_GSE41176_UNSTIM_VS_ANTI_IGM_STIM_BCELL_1H_UP

N_GSE29617_CTRL_VS_DAY7_TIV_FLU_VACCINE_PBMC_2008_UP

N_GSE3982_CTRL_VS_LPS_4H_MAC_DN

N_GSE9988_LPS_VS_CTRL_TREATED_MONOCYTE_UP

N_GSE2706_UNSTIM_VS_2H_LPS_DC_DN

N_GSE35685_CD34POS_CD38NEG_VS_CD34POS_CD10POS_BONE_MARROW_DN

N_GSE9988_LOW_LPS_VS_VEHICLE_TREATED_MONOCYTE_UP

N_GSE9988_LOW_LPS_VS_CTRL_TREATED_MONOCYTE_UP

N_GSE9988_ANTI_TREM1_VS_LPS_MONOCYTE_DN

N_GSE9988_LPS_VS_VEHICLE_TREATED_MONOCYTE_UP

N_GSE9988_ANTI_TREM1_VS_LOW_LPS_MONOCYTE_DN

N_GSE2706_UNSTIM_VS_2H_LPS_AND_R848_DC_DN

N_GSE9988_ANTI_TREM1_VS_ANTI_TREM1_AND_LPS_MONOCYTE_DN

T_GSE32164_RESTING_DIFFERENTIATED_VS_ALTERNATIVELY_ACT_M2_MACROPHAGE_UP

T_GSE24634_TEFF_VS_TCONV_DAY10_IN_CULTURE_UP

T_GSE25088_WT_VS_STAT6_KO_MACROPHAGE_DN

Table S1 (continued)
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Table S1 (continued)

T_GSE3982_MEMORY_CD4_TCELL_VS_TH2_DN

T_GSE3982_NKCELL_VS_TH1_DN

T_GSE3982_EFF_MEMORY_CD4_TCELL_VS_TH2_DN

T_GSE36826_WT_VS_IL1R_KO_SKIN_STAPH_AUREUS_INF_UP

T_GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_UP

T_GSE3982_CENT_MEMORY_CD4_TCELL_VS_TH2_DN

T_GSE26156_DOUBLE_POSITIVE_VS_CD4_SINGLE_POSITIVE_THYMOCYTE_DN

T_GSE30962_ACUTE_VS_CHRONIC_LCMV_PRIMARY_INF_CD8_TCELL_DN

T_GSE45365_HEALTHY_VS_MCMV_INFECTION_CD11B_DC_DN

T_GSE11386_NAIVE_VS_MEMORY_BCELL_UP

T_GSE16451_CTRL_VS_WEST_EQUINE_ENC_VIRUS_IMMATURE_NEURON_CELL_LINE_DN

T_GSE13485_CTRL_VS_DAY7_YF17D_VACCINE_PBMC_DN

T_KAECH_DAY8_EFF_VS_MEMORY_CD8_TCELL_UP

T_GSE13485_DAY3_VS_DAY7_YF17D_VACCINE_PBMC_DN

T_GSE10239_NAIVE_VS_KLRG1HIGH_EFF_CD8_TCELL_DN

T_GSE45365_HEALTHY_VS_MCMV_INFECTION_CD11B_DC_IFNAR_KO_DN

T_GSE24634_IL4_VS_CTRL_TREATED_NAIVE_CD4_TCELL_DAY7_UP

T_GSE28726_NAIVE_VS_ACTIVATED_CD4_TCELL_DN

T_GSE2405_S_AUREUS_VS_UNTREATED_NEUTROPHIL_DN

T_GSE45365_WT_VS_IFNAR_KO_BCELL_MCMV_INFECTION_DN

T_GSE40274_CTRL_VS_EOS_TRANSDUCED_ACTIVATED_CD4_TCELL_UP

T_GSE13547_CTRL_VS_ANTI_IGM_STIM_BCELL_2H_UP

T_GSE13547_2H_VS_12_H_ANTI_IGM_STIM_ZFX_KO_BCELL_DN

T_GSE28726_NAIVE_CD4_TCELL_VS_NAIVE_VA24NEG_NKTCELL_UP

T_GSE39110_DAY3_VS_DAY6_POST_IMMUNIZATION_CD8_TCELL_WITH_IL2_TREATMENT_UP

T_GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_INFECTION_DN

T_GSE12845_IGD_POS_BLOOD_VS_PRE_GC_TONSIL_BCELL_DN

T_GSE25088_WT_VS_STAT6_KO_MACROPHAGE_IL4_STIM_DN

T_GSE13547_2H_VS_12_H_ANTI_IGM_STIM_BCELL_UP

T_GSE39110_DAY3_VS_DAY6_POST_IMMUNIZATION_CD8_TCELL_DN

T_GSE14415_TCONV_VS_FOXP3_KO_INDUCED_TREG_DN

T_GSE14415_INDUCED_VS_NATURAL_TREG_DN

T_GSE13547_CTRL_VS_ANTI_IGM_STIM_BCELL_12H_UP

T_GSE24634_TEFF_VS_TCONV_DAY7_IN_CULTURE_UP

T_GSE14415_NATURAL_TREG_VS_TCONV_DN

T_GSE15750_DAY6_VS_DAY10_EFF_CD8_TCELL_UP

BC, bladder cancer.
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Table S2 The 20 representative prognosis-related gene sets in BC subtypes are identified by univariate Cox regression analysis

id HR HR.95L HR.95H pvalue

N_GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN 1,955.7124 52.861109 72,355.861 3.90E-05

N_HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 10.094612 2.4250258 42.020661 0.0014862

N_GSE6259_CD4_TCELL_VS_CD8_TCELL_UP 1,240.9502 24.347049 63,250.267 0.0003829

N_GSE1460_INTRATHYMIC_T_PROGENITOR_VS_THYMIC_STROMAL_CELL_DN 388.4133 16.241028 9,289.1219 0.0002323

N_GSE26488_WT_VS_HDAC7_DELTAP_TG_OT2_THYMOCYTE_WITH_PEPTIDE_
INJECTION_DN

12,414.218 82.565572 1,866,550.4 0.0002282

N_GSE4748_CTRL_VS_LPS_AND_CYANOBACTERIUM_LPSLIKE_STIM_DC_3H_UP 444.2844 8.9548426 22,042.669 0.00221

N_HALLMARK_APICAL_JUNCTION 201.6031 4.8516776 8,377.2696 0.0052625

N_GSE4748_CTRL_VS_LPS_STIM_DC_3H_UP 474.04836 13.815365 16,266.081 0.0006364

N_GSE1432_6H_VS_24H_IFNG_MICROGLIA_UP 463.08245 3.6617548 58,563.549 0.0129344

N_GSE8868_SPLEEN_VS_INTESTINE_CD11B_POS_CD11C_NEG_DC_DN 1,457.3729 6.0379319 351,765.42 0.0092597

N_GSE3982_DC_VS_BCELL_UP 125.63682 2.3850326 6,618.1946 0.0168613

N_GSE43955_1H_VS_42H_ACT_CD4_TCELL_WITH_TGFB_IL6_DN 469.4618 2.8868703 76,343.709 0.0178805

N_HALLMARK_HYPOXIA 86.822483 1.5269002 4,936.8936 0.0303676

T_GSE2706_UNSTIM_VS_2H_LPS_DC_UP 0.000419 1.54E-06 0.1142713 0.0065673

N_GSE9988_ANTI_TREM1_VS_CTRL_TREATED_MONOCYTES_UP 37.43445 1.0495922 1,335.1262 0.0469772

N_GSE36891_UNSTIM_VS_POLYIC_TLR3_STIM_PERITONEAL_MACROPHAGE_UP 24.76714 1.2664715 484.34664 0.0343714

T_GSE32164_RESTING_DIFFERENTIATED_VS_ALTERNATIVELY_ACT_M2_
MACROPHAGE_UP

157.48352 2.2281883 11,130.594 0.0198728

T_GSE25088_WT_VS_STAT6_KO_MACROPHAGE_DN 52.396331 1.9097451 1,437.5612 0.0191375

T_GSE3982_MEMORY_CD4_TCELL_VS_TH2_DN 98.194238 1.241716 7,765.1478 0.0396812

T_GSE45365_HEALTHY_VS_MCMV_INFECTION_CD11B_DC_DN 29.851438 1.1207532 795.09775 0.0425563

BC, bladder cancer.

Table S3 A prognostic model containing seven gene sets was established by the LASSO analysis

Gene Coef

N_GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN 9.4789547

N_GSE26488_WT_VS_HDAC7_DELTAP_TG_OT2_THYMOCYTE_WITH_PEPTIDE_INJECTION_DN 4.7435145

N_HALLMARK_APICAL_JUNCTION −0.56884

N_GSE1432_6H_VS_24H_IFNG_MICROGLIA_UP −5.037914

N_GSE43955_1H_VS_42H_ACT_CD4_TCELL_WITH_TGFB_IL6_DN −2.133411

N_HALLMARK_HYPOXIA −1.829146

T_GSE25088_WT_VS_STAT6_KO_MACROPHAGE_DN 3.0210103

LASSO, least absolute shrinkage and selection operator.


