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The ability of a cell to exhibit anchorage independent 
growth is a hallmark of cancer, and has been extensively 
investigated in hopes of finding new therapeutic strategies. 
In particular, the processes that give rise to and support 
this dysregulated growth phenotype, which allows cells 
to proliferate in the absence of survival signals resulting 
from their attachment to a basement membrane, has been 
of interest. The contribution of oncogenes and tumor 
suppressors on anchorage independent growth has been 
well studied; however, the alterations in cellular metabolism 
that support this process are much less defined. Changes in 
cellular metabolism are among the most notable hallmarks 
of solid tumors, where glucose is imported at high rates 
and exported from cancer cells as lactate, instead of being 
utilized within the citric acid cycle (TCA cycle) (1,2). 
This process, known as the Warburg effect, represents 
the primary metabolic phenotype associated with cancer 
cells. In order to adapt to this altered metabolism, cancer 
cells have been shown to rely on other primary metabolic 
pathways to support their increased requirements for 
biosynthesis and redox control to allow for their sustained 
proliferation. In particular, glutamine metabolism has 
been shown to supplement the decrease in glucose-derived 
carbon entering the TCA cycle in 2D cultured cancer cells 
(Figure 1, compare quiescent versus proliferating cells). 
However, it remains unclear how expendable glutamine-
fueled anaplerosis is for cells grown in 3D. In their recent 
Nature article, DeBerardinis and coworkers [2016] set out 
to describe the metabolic alterations that accompany the 

anchorage-independent growth of human cancer cells when 
cultured as a 2D monolayer or as a 3D spheroid, thereby 
mimicking the detachment from the extracellular matrix 
that often occurs during tumorigenesis (3). They find that 
the same cancer cells exhibit drastically different metabolic 
phenotypes when grown as spheroids than they do in a 
monolayer culture.

The altered metabolism in cancer has recently gained 
significant attention as a means to advance therapeutic 
strategies (4). A great deal of focus has been devoted to the 
altered primary metabolic pathways, namely glycolysis and 
glutaminolysis, which have been shown to be significantly 
altered in cancer cells and tumors. These alterations support 
the unique biosynthetic requirements of proliferating cells, 
where glycolytic intermediates feed pathways responsible for 
nucleotide and NADPH production through the pentose 
phosphate and one-carbon serine metabolism pathways (5). 
To compensate for the decreased entry of glucose-derived 
carbon within the mitochondria, glutamine is imported at 
high rates to refill TCA cycle intermediates. These TCA 
cycle intermediates are used for the continued maintenance 
of oxidative phosphorylation, together with the biosynthesis 
of amino acid pools and de novo lipid production. Indeed, 
the increased reliance on glutamine metabolism in cancer 
cells has presented the gate-keeper enzyme, mitochondrial 
glutaminase (GLS), as an attractive drug target. Efforts 
to inhibit GLS have been described, where two distinct 
classes of allosteric inhibitors have been developed and 
are currently used to target the increased glutaminolysis 
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in glutamine-addicted cancer cells (6,7). Together, these 
modifications within primary metabolic pathways represent 
an attractive druggable chain of events.

The observation of the increased glycolytic rate in 
neoplasms, first described by the Nobel laureate Otto 
Warburg in the 1920’s, has been shown to arise from the 
lesions within tumor driver genes, such as the mutations, 
deletions, or amplifications of oncogenes and tumor 
suppressors. For example, expression of the transcription 
factor MYC, which is commonly up-regulated in a myriad 
of human cancers, stimulates the expression of glycolytic 
and glutaminolytic enzymes, giving rise to the Warburg 
effect and glutamine-fueled anaplerosis (8,9). Similarly, 
stabilization or over-expression of hypoxia inducible factor 
(HIF1α), the primary oxygen sensor of the cell, causes a 
similar effect, by up-regulating genes that act in concert 
to shift the cellular metabolism away from oxidative 
phosphorylation, and towards glycolysis (Figure 1, compared 
increased versus depressed oxidative phosphorylation) 
(10,11). These two observations suggest that tumors 
with dysregulated MYC or HIF1α oncoproteins are 
metabolically distinct from non-transformed cells, making 

them more viable in the oxygen deprived and metabolically 
stressed environment of the solid tumor. Indeed, other 
driver genes, such as mutant Ras, PI3K, or hyperactive 
Rho-GTPases, have shown similar trends in 2D monolayer 
and in solid tumors (12,13), thereby demonstrating 
the metabolic adaptations that accompany oncogenesis 
represent a conserved mechanism.

Recently, Mullen and colleagues [2012] reported 
that cancer cells with defective mitochondria, through 
the depletion of the respiratory complex III component 
cytochrome b (CytB), exhibit not only an increased rate of 
glutamine uptake and metabolism, but utilize glutamine for 
de novo lipid biosynthesis, as distinct from non-transformed 
cells (14). In these cancer cells, glutamine was first 
converted to glutamate, and subsequently deamidated to 
give α-ketoglutarate (αKG), which was then incorporated 
into the TCA cycle. However, instead of entering the TCA 
cycle and being metabolized through the normal series 
of oxidative reactions to form succinate, this glutamine-
derived αKG was metabolized in the reverse direction (i.e., 
through a reductive pathway) to form citrate. This process, 
termed reductive carboxylation, converts glutamine-derived 

Figure 1 Model depicting glucose and glutamine catabolism under different cellular conditions. In quiescent cells citrate is derived from 
glucose as a result of glycolysis. In proliferating cells glucose is shunted away from the mitochondria as lactate, and glutamine acts as an 
anaplerotic source. Note that the conversion from citrate to α-ketoglutarate (αKG) is reversible, and in proliferating cells with active 
oxidative phosphorylation (OX Phos) the forward reaction is favored. However, under low Ox Phos (i.e., hypoxic) conditions, the reverse 
reaction is predominant, using αKG and CO2 to produce citrate, termed reductive carboxylation, to support lipogenesis.
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αKG to citrate through the incorporation of CO2 by the 
cytosolic or mitochondrial NADP+/NADPH-dependent 
enzyme isocitrate dehydrogenase 1 or 2 (IDH1/IDH2). 
Mitochondrial citrate is then transported to the cytosol 
through the citrate-specific transport protein (CTP) to 
be converted to the lipogenic precursor, acetyl-CoA, by 
the ATP-dependent citrate lyase (ACL). The reductive 
carboxylation of glutamine was shown to be essential for 
maintaining the proliferation of cancer cells with defective 
mitochondria. Similarly, this reductive carboxylation 
pathway was found to be upregulated and critical for 
sustained proliferation of cancer cells either grown in a 
hypoxic environment or driven by the deletion of the von-
Hippel Lindau factor (VHL) (i.e., stabilization of HIF1α), 
a tumor suppressor commonly repressed in renal cell 
carcinomas (RCC) (10,11). Fendt et al. [2013] described 
the driving force of this reductive glutamine metabolism 
that supports lipogenesis to be dependent on the relative 
concentrations of the metabolites αKG and citrate, rather 
than a specific signaling pathway. Therefore, this metabolic 
phenotype is uncoupled from specific cell signaling events, 
demonstrating more generally that this pathway is a 
response to the overall metabolic status of a cell which can 
be manipulated by the outcome of cancer-driving genes (15). 
Together, as demonstrated in Figure 1 above, these studies 
show that reductive glutamine metabolism is primarily 
upregulated upon decreases in oxidative phosphorylation and 
increases in glycolysis, characteristic of many tumor cells.

Recent effort has been focused on translating the 
observations of the altered metabolism in cultured cancer 
cells to the targeting of human tumors. The metabolic 
alterations that occur within human tumors have been 
shown to be dependent on both the genetic lesions driving 
the neoplasm, the tissue of origin, and the perfusion of the 
physical tumor. For example, Yuneva and colleagues [2012] 
described the head-to-head comparison of the metabolism 
of both MYC- and MET-driven tumors arising from liver 
or lung tissues, and found that the utilization of both 
glucose and glutamine was not only unique between the two 
oncogenes, but also when the neoplasms driven by the same 
oncogene arise from different tissues (16). These results 
suggest that targeting the metabolic alterations within 
tumors, driven by the same oncogene, or arising within the 
same tissue but driven by different driver gene mutations, 
can be quite unique.

More recent studies investigating the observed metabolic 
consequences of Kras-driven non-small cell lung cancer 
(NSCLC) cells grown in vitro, or as tumors formed in vivo, 

find significant differences when the cells are cultured in 
2D versus their 3D tumor counterparts (17). Interestingly, 
the changes in the metabolic phenotypes of these cells were 
shown to be specific for their being grown in vitro or in vivo, 
where transition of the same cells from one condition 
to another stimulated the changes in the cells metabolic 
response (i.e., glutamine-fueled anaplerosis in vitro switches 
to glucose-fueled anaplerosis in vivo, and vice versa). To 
further complicate the translation of studies highlighting 
the metabolic adaptations resulting from oncogene-driven 
cells to clinical relevance, Hensley et al. [2016] reported 
the metabolic heterogeneity among tumors within patients 
with NSCLC, using stable-isotope tracing methods, and 
related this heterogeneity to the perfusion of the tumor 
tissue among patients (18). This study proposes that the 
microenvironment shapes the balance of the availability of 
nutrients and the signaling networks that are initiated to 
sustain proliferation in different perfusion environments 
to promote malignancy. Together, these studies suggest 
that the targeting of the altered glucose and glutamine 
metabolism within tumors is dependent on a variety of 
factors, including the tumor-driving gene, the tissue origin 
of the neoplasm, and the microenvironment of the growth 
within the body.

Given the challenges of broadly targeting the metabolic 
alterations that arise from a specific oncogene, opportunities 
have developed for targeting a cell’s ability to overcome a 
significant growth barrier, namely anchorage-independence. 
Studies have demonstrated that mammary epithelial cells 
require metabolic adaptation upon detachment from 
their basement membrane and subsequent malignant 
transformation, presenting a potential strategy for targeting 
this adaptation. It was found that normal mammary epithelial 
cells follow programmed cell death upon their detachment, 
whereas aggressive breast cancer cells thrive by avoiding 
this process. The avoidance of this cell-growth control was 
dependent on the maintenance of reactive oxygen species 
(ROS) that accumulate as a result from depressed oxidative 
metabolism (i.e., decrease in ATP levels), acquired through 
either the upregulation of oncogenes and anti-oxidant 
enzymes or by exogenously supplied anti-oxidants (19,20). 
Furthermore, it was found that the upregulation of the 
ErbB2 oncoprotein, commonly found in breast cancers, 
rescued ROS-dependent apoptosis through the stimulation 
of the pentose phosphate pathway (PPP), resulting in the 
production of the important anti-oxidant NADPH (19). 
However, given that the PPP functions in the cytoplasm, 
it remained unclear how cytosolic NADPH prevented the 



S436 Stalnecker et al. Balancing redox stress: anchorage-independent growth requires reductive carboxylation

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(S3):S433-S437 tcr.amegroups.com

build-up of ROS within the mitochondria.
To address the dependence on redox balance during 

anchorage-independent growth more broadly, Jiang 
and coworkers [2016] set out to describe the changes 
in metabolism that are observed when cancer cells are 
grown in a 2D monolayer, or during their growth as 3D 
spheroids. They found an interesting connection between 
the upregulation of reductive glutamine metabolism, 
and the shuttling of NADPH from the cytoplasm to the 
mitochondrion to abrogate ROS stress (Figure 2). In 
particular, they describe the specific roles of the cytosolic 
and mitochondrial isocitrate dehydrogenase enzymes, IDH1 
and IDH2, respectively, in reducing glutamine-derived 
αKG to citrate at the expense of cytosolic NADPH, which 
is then transported into the mitochondrion through the 
CTP and subsequently oxidized back to αKG, producing 
NADPH. This process effectively shuttles NADPH from 
the cytoplasm to the mitochondrial matrix using reductive 
glutamine metabolism (Figure 2) (3). These findings serve to 
connect the cooperation of reductive glutamine metabolism 
with redox control within cells that require the maintenance 
of oxidative stress to withstand their detachment from the 
extracellular matrix, thereby adding important detail on the 
portrait of metabolic changes that tumor cells develop to 
maintain their malignant state.

In conclusion, the work of Jiang, DeBerardinis and 

colleagues present essential details that describe the changes 
in metabolism accompanying anchorage-independent 
growth, a transformed phenotype that leads to highly 
aggressive malignancies. Drug targeting strategies are 
underway to inhibit metabolic enzymes, specifically, which 
represent new and attractive therapeutics. It remains unclear 
under what circumstances these therapies will prove most 
effective, thereby highlighting the importance for defining 
these metabolic aberrations in great detail.
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