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Introduction

Colorectal cancer is the third most diagnosed cancer and 
the fourth leading cause of cancer-related death worldwide, 
and the second leading cause of cancer-related deaths in 
developed countries (1). The worldwide incidence of colon 
cancer is predicted to rise by 60% within 15 years, in line 
with observations linking increased colon cancer incidence 
with increased industrial development (2). Intestinal 
inflammation is a risk factor for colorectal cancer: with 
inflammatory bowel disease significantly increasing the risk 
of colitis-associated colorectal cancer (3). Inflammatory 
signaling through STAT3 and NF-κB is also activated 
in colorectal tumors and cell lines (4,5). In their recent 
publication, Peuker et al. (6) identify calcineurin as a 
promoter of colorectal cancer growth through maintenance 
and proliferation of cancer stem cells. Calcineurin is a 
calcium dependent serine/threonine phosphatase that 

plays a central role in immunity, as demonstrated by the 
use of calcineurin inhibitors cyclosporine A and tacrolimus 
(FK506) as immunosuppressants (7).

Calcineurin is composed of two subunits, a catalytic 
subunit called calcineurin A (CNA) encoded by three 
separate genes (PPP3CA, PPP3CB and PPP3CC), and a 
regulatory subunit, calcineurin B (CNB; Cnb) encoded 
by two genes, PPP3R1 and PPP3R2, with the latter 
restricted to testis and brain. In the presence of elevated 
calcium, calmodulin binds to calcineurin, displacing the 
autoinhibitory domain from the active site, leading to 
activation of calcineurin and subsequent dephosphorylation 
of target proteins. Calcineurin substrates include 
transcription factors, proteins involved in cell cycle 
and apoptosis, cytoskeletal proteins, scaffold proteins, 
membrane channels and receptors (Table 1) (10). 

The best characterized calcineurin substrates are the 
nuclear factor of activated T cells (NFAT) transcription 
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factors. Four of the five members of the NFAT protein 
family are regulated by calcium signaling: NFATc1 
(NFAT2), NFATc2 (NFAT1), NFATc3 (NFAT4), and 
NFATc4 (NFAT3). In resting cells, NFAT is highly 
phosphorylated which precludes exposure of a nuclear 
localization sequence (21). Following dephosphorylation 
by calcineurin, NFAT is translocated to the nucleus where 
it regulates gene expression, including genes encoding 
cytokines in immune cells.

Peuker et al. (6) examine the contribution of calcineurin 
and its downstream target NFAT to intestinal tumor growth 

in both a genetic model and a colitis-associated model of 
colorectal cancer. By specifically deleting the regulatory 
B1 subunit of calcineurin (Cnb1, encoded by Ppp3r1) in 
the intestinal epithelial cells of the ApcMin/+ mouse model 
of colon cancer, they observe both fewer and smaller 
intestinal tumors. Similar results were obtained when 
mice carrying intestinal epithelial cell-specific deletion of 
Ppp3r1 were treated with colitis-inducing dextran sulfate 
along with the carcinogen azoxymethane. In particular, the 
authors noted that early stage lesions were reduced in their 
colorectal cancer models, and that the early lesions showed 
reduced epithelial proliferation and increased apoptosis. 
Peuker et al. (6) further showed that NFATc3 is the main 
NFAT expressed in normal intestinal epithelial cells, and 
that tumor formation is accompanied by calcineurin-
dependent cytoplasmic to nuclear translocation of NFATc3. 
Intestinal epithelial cell-specific deletion of NFATc3 
resulted in a phenotype similar to that of Ppp3r1−/− mice, 
albeit attenuated. The full phenotype was restored upon 
treatment of ApcMin/+ mice with a peptide that interferes with 
calcineurin-dependent activation of all NFATs.

Calcineurin in stem cell proliferation and 
differentiation

The intestinal epithelium is maintained by continuous 
renewal through a tightly regulated balance of intestinal 
stem cell proliferation and differentiation. In Drosophila, 
high cytoplasmic calcium concentration results in 
activation of calcineurin and downstream targets, triggering 
proliferation of intestinal stem cells (22). Silencing of either 
the regulatory subunit of calcineurin CanB2 or the catalytic 
subunit of calcineurin CanA1 in Drosophila significantly 
reduces stem cell proliferation, highlighting a crucial role 
for calcineurin in translating changes in calcium signaling 
to proliferation of intestinal stem cells. 

Paradoxically, in addition to a role in cell proliferation, 
calcineurin also promotes differentiation. Calcineurin-
NFAT signaling is necessary for lineage specification in 
embryonic stem cells, triggering the transition of these 
stem cells from self-renewal to differentiation (23). 
Calcineurin-NFAT signaling also initiates skeletal muscle 
differentiation (24), alveolar specification of adult lung 
stem cells (25), terminal differentiation of osteoclasts (26),  
and stem cell quiescence in keratinocytes (27). In the 
cardiovascular system, calcineurin is important for 
cardiomyocyte maturation, valve formation, and vascular 
development. Loss of calcineurin results in heart defects 

Table 1 Targets of calcineurin dephosphorylation

Category Target

Transcription factors/transcriptional 
regulation

c-Jun (8)

DAXX (9)

Elk-1 (10)

Hcm1 (11)

MEF2 (12)

NFAT (13)

NFI (14)

TFEB (15)

Cytoskeleton MAP2 (16)

Tubulin (16)

Tau (16)

Cell cycle/apoptosis BAD (17)

pRb (18)

Drp1 (10)

Scaffold proteins KSR2 (19)

DARP-32 (10)

RACK1 (10)

Synapsin (20)

GAP43 (20)

Ion channels/membrane channels GluA1 receptor (20)

NMDA receptor (20)

GABA(A) receptor (20)

mGluR5 (20)

Kv4.2 (20)

TRESK (10)
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and reduced proliferation, whereas calcineurin is necessary 
for hypertrophic response in adult cardiomyocytes 
(28,29). In the brain, calcineurin is highly expressed in 
neurons, and plays an important role in the modulation 
of synaptic transmission (20). Calcineurin activity is also 
required for neural induction in the developing embryo 
through dephosphorylation and inactivation of Smad1/5 
to antagonize signaling through the bone morphogenetic 
protein (BMP) (30).

The immunosuppressive activity of the calcineurin 
inhibitor cyclosporine A was first described in 1976, 
and calcineurin inhibitors have been widely used as 
immunosuppressants since the mid-80’s (31). The study of 
calcineurin inhibitors revealed a vital role for calcineurin 
in regulating T cell development and activation through 
the NFAT family (32-34). In T cells, binding of the T-cell 
receptor results in release of calcium from intracellular 
stores, which activates sustained Ca2+ entry through Ca2+ 
release-activated Ca2+ (CRAC) channels (35). As a result, 
calcineurin is activated and NFAT is dephosphorylated and 
shuttles to the nucleus where it binds to the promoters of 
T cell-activated proteins including interleukin 2 (IL-2) and 
interleukin 3 (IL-3) to induce transcription (36,37). The 
immunosuppressant action of cyclosporine A and tacrolimus 
are mediated by inhibiting dephosphorylation of NFAT by 
calcineurin in immune cells, especially T cells (7,34,37,38).

Calcineurin in cancer

Chronic use of immunosuppressants such as the calcineurin 
inhibitors cyclosporine A and tacrolimus increases cancer 
incidence (39). Overall, the transplant population has a two-
fold increased risk of cancer, with much higher increases for 
specific cancers, including nonmelanoma skin cancer and 
virally linked cancers (40). This increased risk of cancer is 
linked to three primary mechanisms: (I) increased risk of 
virally driven malignancy due to immunosuppression; (II) 
impaired immunosurveillance of transformed cells; and (III) 
specific effects of drugs used for immunosuppression (39).  
The first two are directly related to disruption of the 
immune system. Thus, calcineurin inhibitors can directly 
promote tumorigenesis in an autonomous manner through 
modulation of the immune system (41-43).

In apparent contradiction, activation of calcineurin and 
its downstream targets also increases tumorigenic potential. 
As observed by Peuker et al. and others, calcineurin and 
downstream signalling pathways are activated in colorectal 
cancer tumors and cell lines, and inhibition of calcineurin 

decreases cancer stem cell survival and proliferation 
(6,44). Similarly, calcineurin is activated in breast cancer, 
specifically in triple negative breast cancer, and promotes 
migration and invasion in vitro and growth and metastasis 
in vivo (45,46). Analogous findings by others support a pro-
tumorigenic role for calcineurin signaling in lung, prostate, 
bladder, ovarian, pancreatic, and liver cancer, as well as 
glioblastoma, melanoma and leukemia (14,47-55). 

Studies addressing calcineurin activation have focused 
principally on dephosphorylation and activation of NFAT 
and NFAT transcriptional targets. NFAT in and of itself 
is constitutively activated or overexpressed in numerous 
cancers and can contribute to cancer development and  
progression (56). Additional calcineurin substrates including 
myocyte enhancer factor 2 (MEF2), kinase suppressor of ras 
2 (KSR2), DAXX, c-Jun and Nuclear Factor I (NFI) have all 
been shown to have pro-tumorigenic roles (8,9,14,57-60). For 
example, c-Jun is stabilized by calcineurin dephosphorylation 
in cervical cancers compared to normal tissue, thereby 
increasing c-Jun dependent gene expression (8). Calcineurin 
has a similar effect on the transcription factor NFI, with 
dephosphorylation by calcineurin increasing its transcription 
regulatory activity (14).

Activation of calcineurin 

Calcineurin can be activated by a variety of mechanisms 
(Figure 1). The newly discovered mechanism reported by 
Peuker et al. (6) appears to be specific to intestinal cancers, 
and is driven by changes in gut microbiota stratification 
and composition. This change in microbiota activates 
toll-like receptor (TLR) signaling which in turn induces 
calcium entry and calcineurin activation. Although the 
exact mechanism of action of the gut microbiota was not 
addressed in their paper, Peuker and colleagues did observe 
differences in microbial community structure between 
intestinal tumors and normal intestinal mucosa. The 
discovery that calcineurin can be activated by alterations in 
bacterial communities is exciting and a major step forward 
in our understanding of calcineurin’s importance in tumor 
formation. 

The mechanisms driving calcineurin activation in 
other cancers is less clear. It is a well-known fact that 
the inflammatory response is activated in many cancers, 
and that chronic inflammation is a risk factor for tumor  
development (3). There is also ample evidence showing 
that inflammation activates calcineurin activity (61-63). 
Thus, chronic inflammation triggered by environmental 
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factors such as chronic infection, inhaled pollutants, and 
dietary factors may activate calcineurin activity, thereby 
contributing to tumor initiation and growth. Necrosis 
resulting from tumor growth would further contribute 
to the inflammatory response (64). A well-characterized 
receptor implicated in calcineurin activation is the vascular 
endothelial growth factor receptor (VEGFR) whose 
activation increases cytosolic calcium in endothelial cells to 
regulate tumor angiogenesis and metastasis (49,65). Hypoxia 
can also activate calcineurin through increased intracellular 
calcium by activation of CRAC channels (66), and calcium 
signaling through CRAC channels promotes proliferation, 
migration and metastasis in a number of tumors (67,68).

Calcineurin activity is modulated by a number of 
factors in addition to intracellular calcium including 
interaction with regulatory factors, subcellular localization, 
and intramolecular cleavage. Regulators of calcineurin 
(RCAN1-4) can bind to and inhibit calcineurin activity 
(69-71). RCANs bind calcineurin at the same site as 
NFAT and other substrates, and one mechanism of action 
is via competition for binding (72). Increased expression 
of RCAN1 (also known as Down’s syndrome candidate 

region-1, DSCR1) inhibits tumor growth in mice, and 
increased copies of the DSCR1 gene contributes to 
decreased cancer rates in Down’s syndrome (73)

 Calcineurin is predominantly cytosolic in unstimulated 
cells (74,75). However, in response to calcium signaling, 
calcineurin can translocate to the nucleus to interact with 
target substrates (76). A nuclear localization signal (NLS) 
in the catalytic domain of CNA is necessary for nuclear 
import of activated calcineurin via importin β1, with a 
nuclear export signal (NES) located in the C-terminus of 
CNA (Figure 2A). The autoinhibitory domain of CNA 
regulates nuclear import and export by masking the NLS 
in inactive calcineurin in addition to blocking the catalytic 
site (10,75). Subcellular localization is also mediated by 
interaction with targeting proteins, with the AKAP 79/150 
scaffold shown to anchor calcineurin at distinct subcellular 
locations (77). 

The autoinhibitory domain of CNA is located in the 
C-terminal region (75). In response to stress, calcineurin can 
be cleaved by the Ca2+-dependent cysteine-protease calpain, 
resulting in three main products of 45 kDa, 48 kDa and  
57 kDa (Figure 2B). The autoinhibitory domain is missing 

Figure 1 Mechanisms driving calcineurin activation in cancer. Calcineurin can be activated downstream of toll-like receptor (TLR) 
signaling, vascular endothelial growth factor receptor (VEGFR) signaling, or increased reactive oxygen species (ROS) in response to hypoxia. 
Cleavage of calcineurin by calpain can also activate calcineurin, and alter calcineurin subcellular localization. P denotes phosphorylated 
residues on substrates.
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from the 45 kDa and 48 kDa isoforms, resulting in 
constitutively active products that localize to the nucleus 
(75,78). Cleaved forms of CNA have been observed in 
cardiac hypertrophy, in the brains of Alzheimer’s disease 
patients, in response to neurotoxicity, and in a glaucoma 
model (75,79-81). In Alzheimer’s disease brains, the 57 kDa  
cleaved form of CNA which retains the autoinhibitory 
domain, still requires Ca2+ and calmodulin for its activation, 
but shows increased activity compared to the 60 kDa 
uncleaved form of CNA (80). The 57 kDa cleaved form 
of CNA has also been detected in malignant glioma 
cells, where it localizes to the nucleus, and regulates 
dephosphorylation and activation of NFI (14). NFI activates 
expression of the pro-migratory gene fatty acid-binding 
protein 7 (FABP7) and represses transcription of the tumor 
suppressors p21 and p53 in malignant glioma (82-85). 
NFAT is also expressed and localizes to the nucleus in these 
tumors (50).

Expression, activation, and cleavage of calcineurin are 
not commonly studied in cancer. Direct measurement 
of calcineurin activation is difficult: in vitro assays of 
calcineurin activity do not clearly correlate with endogenous 
activity, and antibodies to calcineurin may not detect cleaved 

forms. Thus, calcineurin activity is commonly measured 
by phosphorylation, nuclear localization, or transcriptional 
activity of NFAT. Peuker et al. (6) do not directly examine 
calcineurin expression, activity, and subcellular localization 
in their study, but use NFAT nuclear localization in tissue 
samples as a readout of calcineurin activity. Consequently, 
the localization and forms of calcineurin expressed in their 
intestinal tumor models remain unclear. To date, cleavage 
of CNA in cancer has only been clearly demonstrated 
in malignant glioma (14). However, immunoblotting of 
cervical tissue lysates with anti-CNA antibody reveals 
differences in migration of CNA between normal and tumor 
tissues in a subset of cases (8). Banding patterns consistent 
with CNA cleavage are also observed in T-ALL cells (86). 
Furthermore, CNA has been shown to localize to the 
nucleus in small cell lung cancer, although immunoblotting 
was not carried out to examine CNA banding patterns (87).  
These combined data suggest that calcineurin can be 
activated by CNA cleavage under different pathological 
conditions, including cancer. It will therefore be important 
to examine the subcellular localization of calcineurin as well 
as detect the forms of CNA present in the intestinal cancers 
studied by Peuker and colleagues.

Cleavage of CNA and nuclear localization of calcineurin 
in response to pathogenic stimuli also modulate substrate 
dephosphorylation. Nuclear localization of calcineurin 
alters substrate accessibility, resulting in decreased 
dephosphorylation of cytoskeletal and membrane-associated 
substrates, thereby modulating downstream signaling 
pathways. Subcellular localization of calcineurin has also 
been shown to regulate dephosphorylation of the pro-
apoptotic Bcl-2 family member BAD (17) and NFAT (88). 

Targeting calcineurin activation for the 
treatment of cancer

Numerous kinases and their phosphorylated substrates 
play critical roles in cancer formation and progression. 
Convergence of varied inputs resulting in calcineurin 
activation in different types of  cancers implies  a 
central role for the calcineurin phosphatase and its 
dephosphorylated substrates in malignancy. Activation 
of calcineurin by altered microbiota stratification in 
colorectal cancer builds on previous observations of 
calcineurin activation in cancer. Activation through a 
variety of mechanisms in both solid tumors and lymphoid 
malignancies further underlines the importance of this 
pathway in cancer, and suggests that dephosphorylation 

Figure 2 Schematic representation of the different forms of 
calcineurin A. The different forms of calcineurin A [full length 
depicted in (A) and cleaved forms depicted in (B)] have different 
activities and subcellular localizations. Cleaved forms have been 
detected in pathogenic states including Alzheimer’s disease, cardiac 
hypertrophy and cancer. Domains are color-coded: catalytic 
domain in blue; nuclear localization sequence (NLS) in green; 
calcineurin B (CNB) binding domain in orange; calmodulin 
binding domain in pink; nuclear export sequence (NES) in yellow; 
autoinhibitory domain in red. Molecular weights are indicated on 
the right.
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of calcineurin substrates transcends tissue-specific factors 
associated with tumor progression. 

Preliminary studies have examined the use of calcineurin 
inhibitors as potential anti-cancer agents. Cyclosporine A 
treatment induced apoptosis in lymphoma and leukemia 
cell lines, and treatment of mouse models of T-cell acute 
lymphoblastic leukemia with cyclosporine A or tacrolimus 
increased mouse survival and resulted in rapid tumor 
clearance (54). Similarly, cyclosporine A and tacrolimus 
decreased proliferation and migration in both bladder 
and prostate tumor cells in vitro, and bladder and prostate 
xenografts in vivo (89,90). Tacrolimus treatment in a 
mouse model of breast cancer reduced tumor growth, and 
angiogenesis within these tumors in vivo, and decreased 
migration of both breast cancer and endothelial cells  
in vitro (91). In patients with acute myeloid leukemia who 
have an internal tandem duplication of Fms-related tyrosine 
kinase receptor 3 (FLT3), a retrospective analysis shows a 
promising correlation between inclusion of cyclosporine A 
in salvage therapy and increased survival (92).

As alluded to earlier, there are caveats to targeting 
calcineurin for cancer treatment. For example, in breast 
cancer, calcineurin can interact with the plasma membrane 
calcium ATPase 2 (PMCA2), which can sequester 
calcineurin to the membrane, reducing activation of the 
calcineurin-NFAT pathway. However, specific disruption 
of the PMCA2-calcineurin interaction with a small peptide 
increases NFAT activity, and reduces cell viability in breast 
cancer cell lines, resulting in increased apoptosis and 
sensitivity to paclitaxel (93). Treatment with calcineurin 
inhibitors can also increase the risk of cancer, as observed 
in transplant patients. Furthermore, cyclosporine A itself is 
also directly implicated in tumor growth as it can increase 
TGFβ production (41), activate Ras (43), and suppress 
PTEN expression, increasing activation of AKT (42).

More specific targeting of specific components of 
calcineurin activation may alleviate issues associated with 
long term treatment with cyclosporine A and tacrolimus. 
For example, inhibitors targeting interaction with specific 
substrates, or specific sets of substrates may help to focus 
growth inhibitory effects on cancer cells. If additional 
work in the field demonstrates that altered cleavage 
and/or nuclear localization of calcineurin is a frequent 
event in cancer, altering cleavage or nuclear localization 
would present a tumor-specific way to target activated 
calcineurin in cancer cells, while preserving normal 
immune function. 

In conclusion, phosphorylation represents one of 

the most, if not the most, well-studied and widespread 
mechanism regulating protein function in both normal 
and cancer cells. There is emerging evidence suggesting 
that dephosphorylation of proteins by the phosphatase 
calcineurin may also play a critical role in tumor formation 
and progression. Calcineurin’s activity is regulated by 
surprisingly diverse mechanisms, ranging from the gut 
microbiota and inflammation, to intramolecular cleavage 
and subcellular localization. Further work on the role of 
calcineurin in cancer may reveal a fundamental pathway 
that is commonly altered to promote cancer formation.
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