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P53 response to stress signaling

An important feature of the p53 tumor suppressor is its 
accumulation and activation after cellular exposure to 
different stress signals. This leads to induction of target 
genes that inhibit cell cycle progression, induce apoptosis, 
and regulate energy metabolism (1). The MDM2 and 
MDMX proteins are important signal transducers in 
the p53 pathway. MDM2 is an ubiquitin E3 ligase that 
promotes p53 ubiquitination and proteasome-dependent 
degradation (2,3). MDM2 function is indispensable for 
controlling p53 activity at all stages of life (4-6). 

The MDM2 homolog MDMX is also an important 
regulator of p53 (7). The physiological role of MDMX was 
demonstrated by the embryonic lethality of MDMX-null 
mouse due to p53 hyper activation (8-10). Tissue-specific 
knockout of MDMX generally results in mild phenotypes 
compared to MDM2 knockout, suggesting a supplemental 
function in p53 regulation in the adult animal (5,11,12). 
MDM2 is a classic target gene of p53 with a highly 
responsive P2 promoter in the first intron (13,14). MDMX 
is also a bona fide p53 target gene with a weaker p53-
inducible P2 promoter (15,16). Therefore, both MDM2 and 

MDMX may form negative feedback loops in regulating 
p53. Both proteins have significant sequence homology 
in their p53 binding domain, zinc finger, and RING 
domain. They also have extensive unstructured or partially 
disordered regions that have poor sequence similarity but 
are important for regulation (Figure 1A,B).

Different cellular stress and damage signals converge 
on MDM2 and MDMX to cause p53 activation. DNA 
damage signals regulate both MDM2 and MDMX through 
phosphorylation. Oncogene-induced ARF expression 
induces p53 accumulation by binding MDM2 and inhibiting 
p53 ubiquitination (17). Inhibitors of rRNA transcription 
induce ribosomal stress and stimulate MDM2 interaction 
with several ribosomal proteins (such as L5, L11 and L23) 
that block p53 ubiquitination (18). MDMX degradation 
is stimulated by DNA damage, ribosomal stress and ARF 
expression, which also facilitate p53 activation (19-22). 
Therefore, in the absence of stress MDM2 promotes 
degradation of p53 but not MDMX. During stress response, 
MDM2 promotes MDMX degradation but not p53. The 
mechanism of this substrate switch is not fully understood, 
but some plausible explanations are provided by the findings 
described below. 
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Ubiquitination of p53 by MDM2 and MDMX

MDM2 binds to p53 mainly through a hydrophobic pocket in 
its N terminal domain (residue 1–100) and an α-helical region 
(16-27) of the p53 transactivation domain (Figure 1A) (23).  
The  MDM2 C termina l  RING domain  recru i t s 
ubiquitin-conjugating enzyme E2 that performs covalent 
modification of p53 lysine residues. The p53-binding  
domain and RING domain of MDM2 are both needed 
for p53 degradation. However, the central acidic domain 
(AD, residue 220–300) of MDM2 is also critical for 
ubiquitination of p53 (24,25). The AD has features of a 
partially unstructured region that contains binding sites for 
most of the MDM2-binding proteins, including chromatin-
modifying proteins (p300, YY1, KAP1, SUV39H1, EHMT1, 

etc.) (26-28), de-ubiquitinating enzyme HAUSP (29), 
ribosomal proteins (30), and the tumor suppressor ARF (31). 
The high degree of intrinsic disorder provides the flexibility 
to interact specifically with multiple protein partners (32,33).

MDMX has very weak ubiquitin E3 ligase activity 
and does not promote p53 degradation alone in simple 
transfection assays (34). The impact of MDMX expression 
on p53 stability is moderate in MEFs derived from 
MDMX-null mouse (35). Knockdown or overexpression 
of MDMX in tumor cells generally causes little change in 
endogenous p53 level (22). Therefore, it has been proposed 
that MDMX regulates p53 mainly by forming inactive 
p53-MDMX complexes. Early publications showed that 
overexpression of epitope-tagged MDMX inhibits MDM2-

Figure 1 Diagrams of MDM2 (A) and MDMX domains (B) and the intrinsically disordered regions identified by PONDR analysis (Predictors 
of Natural Disordered Regions). Short vertical lines indicate the location of phosphorylation sites and the corresponding kinases. Atomic 
structures for individual domains are shown under each diagram. The p53-binding domains of MDM2 and MDMX are shown as complexes 
with p53 N terminal peptide. The RING domains of MDM2 and MDMX are shown as part of a heterodimer.
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mediated degradation of p53. Some of these results should 
be interpreted with caution because C terminal tagged 
MDMX is resistant to degradation by MDM2 (36). The 
structural basis of this phenomenon became clear when the 
extreme C terminal sequences of MDM2 and MDMX were 
shown to be critical for RING heterodimer formation and 
E3 ligase function (37,38).

The fact that MDMX has a strong tendency to form 
heterodimer with MDM2 through RING domains (39), and 
the importance of RING dimerization for E3 activity led to 
the hypothesis that MDM2-MDMX hetero-dimerization 
is important for p53 degradation. Biochemical experiments 
suggest that MDMX can stimulate the ability of MDM2 
to ubiquitinate p53 (40-44). Careful analysis revealed 
that knockdown of MDMX in culture results in transient 
moderate increase of p53 level followed by down regulation 
to below basal level (45). The results of mouse experiments 
are also consistent with a role of MDMX in regulating 
p53 stability in normal tissues, although the effect is less 
dramatic than MDM2 (46,47). 

Phosphorylation of MDM2 inhibits RING 
dimerization and E3 activity

DNA damage induces p53 stabilization by targeting the 
ubiquitin E3 ligase MDM2. DNA damage induces MDM2 
phosphorylation on several residues near the RING domain 
by ATM (S386, S395, T419, S425, S429), ATR (S407), 
and c-Abl (Y394) (48-50). Phospho-mimic mutations of 
these sites abrogate the ability of MDM2 to degrade p53 
(49,51). As expected for most phosphorylation sites, they 
cluster in a region of MDM2 that is disordered (Figure 1A). 
The functional significance of MDM2 phosphorylation 
in mediating p53 stabilization has been confirmed in vivo. 
Mice expressing the MDM2-S394A mutant have reduced 
p53 accumulation and apoptosis in thymocytes after 
ionizing irradiation (52). 

DNA damage signaling is highly efficient in regulating 
MDM2. P53 stabilization occurs efficiently after ionizing 
irradiation in tumor cells overexpressing MDM2, 
suggesting that ATM phosphorylation of MDM2 inhibits 
structures critical for E3 ligase activity. The MDM2 C 
terminal fragment containing the RING domain behaves as 
high molecular weight oligomeric complex in gel filtration 
chromatography and can be chemically crosslinked into 
dimer and oligomers (53-55). MDM2 phosphorylation by 
ATM or phospho-mimic substitution of ATM target sites 
inhibits RING dimer and oligomer formation (53). These 

findings suggest that ATM-mediated phosphorylation 
blocks p53 ubiquitination in part by inhibiting MDM2 
RING domain homo-dimerization and oligomerization.

 Dimerization is often required for the activity of RING 
domain E3 ligases or the structurally similar U-box E3 
ligase (56-60). Dimerization and oligomerization by proteins 
in the ubiquitination pathway may promote the synthesis 
of poly ubiquitin chains by increasing local concentration 
of recruited E2, providing a scaffold to access the end of a 
growing ubiquitin chain, and increasing the probability of 
ubiquitin-ubiquitin conjugation over ubiquitin-substrate 
conjugation. RING domain dimerization creates a binding 
site that interacts with ubiquitin linked to E2, promoting its 
transfer to substrate lysine residues (61).

The atomic structure of MDM2 RING domain has been 
determined by NMR and X-ray crystallography (Figure 1A) 
(37,62). The ATM phosphorylation sites are located in a 
region adjacent to the RING that is intrinsically disordered, 
thus were excluded from these structural studies. It appears 
that the RING itself is sufficient for dimerization and 
oligomerization (54,62). Chemical crosslinking showed that 
inclusion of adjacent sequence inhibits RING dimerization, 
suggesting that the ATM sites are part of a regulatory 
region of RING dimerization (53). It is possible that after 
phosphorylation by ATM, the regulatory sequence adopts a 
conformation that can conceal the dimerization surface of 
the RING. 

Intra molecular interaction in MDM2 stimulates 
E3 ligase activity

In addition to the regulation of MDM2 dimerization, DNA 
damage may also target MDM2 E3 activity by disrupting an 
intra molecular interaction between the acidic domain (AD) 
and RING domain. Previous studies showed that deletion of 
the MDM2 central AD blocked degradation of p53. Replacing 
the MDM2 AD with the corresponding region (low sequence 
homology) from MDMX did not restore p53 ubiquitination 
(24,25). A study using small internal deletion and point 
mutations showed that residue 247–274 of the MDM2 AD 
is important for p53 ubiquitination (63). A report from our 
group showed that the MDM2 AD and RING domain 
engage in an intra molecular interaction that stimulates the 
E3 ligase function of the RING (64). The ability of MDM2 
RING domain to bind charged Ub~E2 conjugate and activate 
ubiquitin release from the charged E2 are activated by the AD 
in cis. This finding suggests that the AD functions as an auto 
activation domain in regulating MDM2 E3 activity (Figure 2A).  
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A highly conserved minimal region in the AD (residue 230–260)  
is sufficient to perform this function.

The MDM2 RING domain crystal structure has revealed 
the dimerization interface and potential E2 binding surface. 
However, MDM2 without the AD only promotes p53 
mono ubiquitination, which is inefficient for degradation by 
the proteasome (64). Therefore, the AD is an essential part 
of active MDM2 that was not captured by crystallographic 
studies. Since MDM2 forms dimers and oligomers, 
currently the model does not rule out inter molecular (but 
intra dimer) AD-RING interaction. Assuming there is no 
structural constraint that makes trans interaction obligatory, 

intra molecular contact is likely to be dominant because the 
two domains are covalently linked.

The MDM2 AD-RING intra molecular interaction 
may be critical for MDM2 regulation by phosphorylation 
and binding proteins. ATM phosphorylation near the 
RING inhibits the intra molecular RING-AD interaction, 
suggesting that the phosphorylation sites regulate both 
RING dimerization and interaction with the AD (64). 
The AD 230–260 region is also the binding site for ARF, 
which is a potent inhibitor of p53 ubiquitination (65).  
Counter intuitively, ARF stabilizes the AD-RING 
binding, suggesting that activation by the AD requires 

Figure 2 (A) A model of MDM2 E3 ligase auto activation by AD-RING intra molecular interaction. The AD-RING interaction is 
disrupted by DNA damage-induced phosphorylation and stabilized by ARF binding, both resulting in the inhibition of E3 activity; (B) a 
model of MDMX intra molecular interactions. MDMX exists in multiple conformational states: (I) A closed state of weak p53 binding due 
to intra molecular interactions; (II) CK1α binding to the AD releases the N terminus for p53 binding; (III) DNA damage recruits 14-3-3 
and disrupts binding to CK1α, blocks the p53 binding pocket, exposes the RING to mediate nuclear import and hetero dimerization with 
MDM2. ATM/Chk2-mediated phosphorylation and WIP1-mediated dephosphorylation alter the balance between the conformational states 
to regulate p53 activity.
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dynamic interaction with the RING (64). It remains to be 
determined whether other inhibitors of p53 ubiquitination 
such as ribosomal proteins also function by targeting the 
AD-RING complex. Proteins that bind to the MDM2 AD 
are rarely ubiquitinated by MDM2, which may be due to 
interference with the AD-RING interaction.

DNA damage regulates MDMX by phosphorylation

The expression level of MDM2 protein increases after DNA 
damage due to transcriptional induction by p53. In contrast, 
MDMX level decreases from accelerated degradation, 
despite increase in mRNA level. MDMX degradation is 
controlled by MDM2-mediated ubiquitination in a stress-
dependent fashion (20-22,36,66). Similar to MDM2, 
several residues near the MDMX C terminal RING domain 
(S342, S367, S403) are phosphorylated by ATM or Chk2 
(Figure 1B) (19,67). UV irradiation also induces S367 
phosphorylation through activation of Chk1 kinase (68). 
The p53-binding domain of MDMX is phosphorylated by 
c-Abl on Tyr-99 and Tyr-55. Phosphorylation of Tyr-99  
interferes with p53 binding, presumably facilitating 
activation of p53 (69,70). 

MDMX phosphorylation near the RING domain 
increases its binding affinity for MDM2 and promotes 
degradation by MDM2 (19). Transfection assay also showed 
that MDM2-MDMX coprecipitation efficiency is increased 
after DNA damage (71,72). MDMX phosphorylation also 
inhibits interaction with the HAUSP de-ubiquiting enzyme, 
which may contribute to increased MDMX ubiquitination 
and degradation after damage (73,74). Dephosphorylation 
of MDMX by the WIP1 phosphatase promotes HAUSP 
binding and MDMX stabilization (71).

MDMX is predominantly cytoplasmic, but shows strong 
nuclear accumulation after DNA damage (75). Nuclear 
proteins such as p53 and MDM2 can bind to MDMX and 
promote its nuclear import. Furthermore, DNA damage can 
also induce MDMX nuclear import in p53 and MDM2-null  
cells (75,76). After DNA damage, phosphorylated S367 
becomes a binding site for the 14-3-3 protein, which may 
promote conformational change in the RING domain 
to expose a cryptic nuclear translocation signal (NLS) 
(68,77,78).

The biological significance of the MDMX phosphorylation 
sites was validated using knock-in mouse model. Alanine 
substitution of three phosphorylation sites near the RING 
domain abrogates MDMX degradation in the MEFs and 
tissues after DNA damage (47). The 3A mutant mice have 

reduced p53 activation after irradiation, and increased 
tumor incidence when introduced into a c-Myc transgenic 
background. Furthermore, p53 accumulation after DNA 
damage was partially deficient in the 3A mice (47). This 
result suggests that MDMX phosphorylation is important for 
tumor suppression by p53, and may play a moderate role in 
regulating p53 stability in vivo. 

MDMX intra molecular interactions regulate p53 
binding and nuclear import

MDM2 copurifies with several ribosomal proteins (L5, 
L11, L23), whereas casein kinase 1 alpha (CK1α) is the 
major MDMX-associated protein. CK1α interacts with 
the central region of MDMX including the AD and zinc 
finger [150–350]. S289 of MDMX was identified as the 
major phosphorylation site by CK1α (79). Pharmacological 
inhibition or knockdown of CK1α activates p53. CK1α 
expression stimulates MDMX-p53 complex formation and 
cooperates with MDMX to inhibit p53 activity (79). 

How does CK1α interaction with the central region of 
MDMX stimulate p53 binding? Mechanistic study suggests 
that the p53-binding domain of MDMX engages in a weak 
intra molecular interaction with the central region (80). A 
highly conserved sequence in the MDMX central region 
(residue 195–205) has similarity to p53 residue 18-29 and 
interacts with the N terminal p53-binding pocket with low 
affinity (80,81). Mutations that weaken this intra molecular 
interaction increase MDMX binding to p53, suggesting that 
the central region has an auto inhibitory role in regulating 
p53 binding by the N terminal pocket (Figure 2B). CK1α 
binding to the MDMX central region disrupts the intra 
molecular interaction, thus suggesting a rationale for how 
it stimulates MDMX-p53 binding. DNA damage inhibits 
the MDMX-CK1α interaction through phosphorylation 
of S367 near the C terminus, enhances the MDMX intra 
molecular binding and inhibits binding to p53 (82). This 
model provides a mechanism of how MDMX C terminal 
phosphorylation allosterically inhibits p53 binding by the N 
terminal domain (Figure 2B).

Simi lar  to  MDM2 AD-RING intra  molecular 
interaction, an AD-RING internal binding was also found 
in MDMX (80). This interaction is involved in suppressing 
MDMX nuclear translocation, presumably by concealing 
the NLS in the RING domain. Although MDMX nuclear 
translocation is an established phenomenon, the biological 
functional of this shift remains speculative. It may serve to 
accelerate MDMX degradation, since most of the MDM2 is 

l 
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in the nucleus. Alternatively, it may be an active mechanism 
to suppress p53 activity in the nucleus. Whether AD-
RING interaction has other functions for MDMX, such 
as regulating the E3 ligase activity of MDM2-MDMX 
heterodimer, remains to be determined.

 

P53 N and C termini regulate DNA binding by 
interacting with the core domain

The p53 protein also contains intrinsically unstructured N 
and C terminal regions. The N terminus of p53 contains 
several phosphorylation sites for ATM, CK1, Chk2, HIPK2, 
etc., that regulate its stability and apoptosis function. The 
main transcription activation domain (residue 15–27) is 
partially unstructured in the absence of binding partners, 
but assumes α-helical conformation when bound to MDM2 
(23,83). The transactivation domain II (residue 40–60) also 
undergoes coupled folding and binding when interacting 
with replication protein A (84,85). Antibodies that bind 
to the N terminus of p53 stimulate DNA binding by the 
core domain (86). Furthermore, deleting the N terminus 
of p53 stimulates DNA binding, suggesting that the N 
terminus has inhibitory function (87). The ASPP protein 
regulates p53 activation of proapoptotic genes and binds to 
the N terminal region dependent on S46 phosphorylation, 
suggesting that it acts by targeting the regulatory function 
of the N terminus (88). Single-molecule FRET analysis 
suggests that the p53 N terminus interacts weakly with core 
domain, which may explain its inhibitory effect on DNA 
binding (89).

The unstructured C terminus of p53 contains numerous 
lysine residues that can be modified by ubiquitination, 
sumoylation, methylation, and acetylation. Deleting the 
C terminus alters the DNA binding stability, target gene 
specificity and tissue specificity of p53 (90-92). A recent 
study showed that the p53 C terminus interacts with 
the DNA binding core domain, stabilizing the tetramer 
complex and enhancing DNA binding (93). This interaction 
is strictly speaking not intra molecular, but inter molecular 
with a different p53 molecular in the tetramer (intra 
complex interaction) (92). 

Inhibition of p53 DNA binding by MDM2 and MDMX

In addition to the auto regulatory functions, the AD of 
MDM2 and MDMX also have important roles in inhibiting 
p53 DNA binding. The MDM2 AD interacts with the p53 

DNA binding core domain and induces a conformational 
change that can be detected with the mutant p53-specific 
antibody Pab240. As such the MDM2-p53 complex 
does not bind DNA (94). The MDM2 AD has weak but 
measurable affinity for the p53 core domain, which is 
mediated by charge interactions with the DNA binding 
surface (95). Interestingly, certain proteins that bind to 
the MDM2 AD, such as ARF and SUV39H1 abrogate 
the ability of MDM2 to inhibit p53 DNA binding. As a 
result, the ARF-MDM2-p53 trimeric complex regains 
DNA binding activity, consistent with the role of ARF as a 
p53 activator. The histone methyltransferase SUV39H1 is 
recruited to DNA by the MDM2-p53 complex, which may 
be important for inhibiting p53 transcriptional function (94).

Our recent study showed that MDMX also inhibits p53 
DNA binding in cooperation with CK1α (96). Similar to 
MDM2, the MDMX AD interacts with the p53 core domain 
in the MDMX-p53 complex, and is important for blocking 
p53 DNA binding. Compared to MDM2, the MDMX 
AD has lower affinity for p53 core domain and does not 
induce the exposure of Pab240 epitope. MDMX inhibition 
of p53 DNA binding requires the stimulation by CK1α 
through phosphorylation of S289. The binding of MDMX 
AD to p53 core is not detectable using conventional pull 
down assays, possibly due to weak or slow binding in vitro. 
However, an assay based on the rate of proteolytic fragment 
release from pre-formed MDMX-p53 complex revealed 
that in the MDMX-p53 complex, the MDMX AD interacts 
with p53 core domain with significant stability. Therefore, 
conformational changes may be involved for this secondary 
interaction to occur after the initial binding by the N 
terminal domains. 

Since the MDM2 and MDMX AD normally engage in 
intra molecular interactions with the p53 binding domain and 
the RING domain, p53 binding should induce rearrangement 
of these interactions. Whether these inter molecular 
interactions compete with intra molecular interactions during 
complex formation remain to be investigated. 

Intrinsically disordered regions function by intra 
molecular interactions

There is growing evidence that different domains of p53, 
MDM2 and MDMX are functionally and allosterically 
coupled. It has been suggested that p53 binding to MDM2 N 
terminus stimulates the AD-p53 core binding. This second-
site interaction is critical for p53 ubiquitination (97). Point 
mutation in the MDM2 RING can cause conformational 
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change in the AD, which in turn increase p53 binding by 
the N terminal domain (98). Currently available structural 
information for these proteins is limited to individual 
domains, whereas nearly half of their polypeptide sequences 
are intrinsically disordered. Importantly, intrinsically 
disordered regions are often the sites of regulatory protein 
binding and post-translational modifications (32,33). 
Without the atomic structure for the full-length protein, it 
is difficult to visualize how long-range allosteric effects are 
mediated. 

The current findings suggest that the disordered regions 
in p53, MDM2 and MDMX frequently interact with the 
structured domains, forming dynamic intra molecular 
complexes that block or enhance their activity. Intra 
molecular interactions in multi-domain proteins often have 
auto inhibition or activation effects (99). Classic examples 
include the auto inhibition of Src family kinases by SH2-
mediated internal binding to a phosphorylated C terminal 
tyrosine (100), and the regulation of internal binding in 
pRb by cyclin/cdk-mediated phosphorylation that controls 
binding to E2F1/DP1 (101). The SirT1 deacetylase is 
activated by intra molecular binding between the catalytic 
domain and a disordered C terminal peptide (102). 
Dynamic intra molecular interactions has been theorized 
to produce long-range allosteric effects and cause distant 
conformational change without a rigid structural path (103). 
The findings discussed above suggest that intra molecular 
interaction is an important mechanism for such allosteric 
regulation in the p53 pathway. 

Intra molecular interaction as potential drug target

Mutations that change intra molecular interactions have 
significant biological consequences. Mutation of Src 
phospho tyrosine Y527 disrupts the internal binding 
and causes Src activation and malignant transformation. 
The JAK2 kinase is regulated by a pseudo kinase domain 
through internal binding to the kinase domain (104). The 
V617F mutation disrupts the internal binding and activates 
JAK2, which causes myeloproliferative neoplasms (105). 
Therefore, targeting the intra molecular interactions using 
small molecules may also lead to strong phenotypes.

Currently therapeutic targeting of MDM2 and MDMX 
mainly focuses on disrupting protein-protein interactions (106).  
Several MDM2-specific small molecule inhibitors are 
undergoing clinical trial, but MDMX-specific inhibitors 
have not been developed. Since MDMX contains an auto 
inhibitory domain, identifying molecules that strengthen 
the internal interaction may specifically inhibit MDMX 

binding to p53 and provide new leads for drug development. 
The MDM2 RING domain has become an attractive target 
of recent drug discovery efforts (107,108). It appears that 
cellular signaling pathways induce p53 accumulation mainly 
by regulating the AD-RING complex, suggesting that the 
AD-RING complex should be considered as a potential 
target in drug screen. 

In contrast to the extensive research in protein-protein 
disruption, stabilizing protein-protein binding is still an 
emerging field (109,110). This approach requires binding 
of a small molecule to the rim of protein-protein interface, 
further stabilizing the complex. The small molecule 
may also bind to only one protein and allosterically 
increase its affinity for another protein. Compared to 
disruption, stabilization of pre-existing protein interaction 
is thermodynamically favorable. The stabilizing drugs 
do not need to compete with other molecules, which is 
advantageous in the crowded intracellular environment. 
A recent analysis of protein-protein complexes suggests 
that many contain druggable cavity at the boundary of the 
protein complex (111). 

Stabilizing protein intra molecular interaction is in 
principle similar to stabilizing protein-protein interaction. 
Since the interacting domains already have some affinity 
for each other, compounds that have moderate binding 
affinity may be sufficient to cause biologically significant 
changes in conformation and function. A compound acting 
through such mechanism was discovered that inhibits Akt1 
by stabilizing the intra molecular interaction between 
the kinase domain and PH domain (112). At present, 
the absence of full-length protein structures for MDM2 
and MDMX prevents rational design of similar drugs. 
Development of high throughput screens for stabilizers of 
intra molecular interaction will facilitate the discovery of 
allosteric regulators of the p53 pathway.
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