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Background: The biosynthesis of unsaturated fatty acids (UFAs) has been implicated in the onset and 
advancement of breast cancer (BC). This study aimed to develop molecular subtypes and prognostic 
signatures for BC based on UFA-related genes (UFAGs).
Methods: This study integrates multi-omics and survival data from public databases to elucidate 
molecular classifications and risk profiles based on UFAGs. Consensus clustering and Lasso Cox regression 
methodologies are employed for subtype identification and risk signature development, respectively. 
Immune microenvironment assessment is conducted using CIBERSORT and ESTIMATE algorithms, 
while drug sensitivity and response to immunotherapy are evaluated via pRRophetic and TIDE methods. 
Gene set enrichment analysis augments signature characterization, followed by nomogram construction and 
validation.
Results: We successfully identified two distinct BC molecular subtypes with significantly different 
prognoses utilizing UFAGs correlated with outcomes. A prognostic signature comprising three UFAGs 
[acetyl-CoA acyltransferase 1 (ACAA1), acyl-CoA thioesterase 2 (ACOT2), and ELOVL fatty acid elongase 
2 (ELOVL2)] is developed, stratifying patients into high- and low-risk groups exhibiting divergent outcomes, 
clinicopathological traits, gene expression patterns, immune infiltration profiles, therapeutic susceptibility, 
and immunotherapy responses. The signature demonstrates robust prognostic performance in both training 
and validation cohorts, emerging as an independent predictor alongside age, which is integrated into a 
nomogram. Decision curve analysis highlights the nomogram’s superiority over other factors in prognosis 
prediction. Calibration plots and receiver operating characteristic curves affirm its excellent performance in 
BC prognosis assessment.
Conclusions: Expression profiles of UFAGs are associated with BC prognosis, enabling the creation of a 
risk signature with implications for understanding the molecular mechanisms underlying BC progression.
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Introduction

Breast cancer (BC) stands as a global health crisis, accounting 
for 11.7% of all new cancer diagnoses in women, totaling 
approximately 2.3 million cases annually, outnumbering lung 
cancer as the most prevalent form of malignancy (1). This 
disease is characterized by a complex interplay of metastatic 
heterogeneity and biological plasticity, enabling it to variably 
colonize vital organs including the brain, lungs, liver, 
and bones (2). Despite significant progress in therapeutic 
strategies, the invasive nature of BC continues to pose 
challenges, resulting in less than desirable prognoses (3). A 
central challenge in BC management stems from its profound 
heterogeneity, manifesting not only biologically but also in 
patient outcomes. Initial strides in personalized medicine 
through estrogen receptor (ER) and human epidermal 
growth factor 2 (HER2) tumor stratification paved the way 
for targeted therapies (4). However, the quest for precision 
has since evolved towards molecular subtyping, epitomized 
by the groundbreaking Prediction Analysis of Microarray 50 
(PAM50) classifier. This system, rooted in RNA expression 
patterns, categorizes tumors into five intrinsic subtypes: 
basal, HER2-enriched, Luminal A, Luminal B, and normal-
like, enhancing our ability to tailor treatments accordingly (5). 
Despite these advancements, the clinical landscape remains 
fraught with variability in patient responses, even among 
those sharing similar molecular subtypes and clinical profiles. 
Early diagnosis vastly improves outcomes, with stage I BC 
patients experiencing a nearly 100% 5-year survival rate 
compared to just 26% for those diagnosed at stage IV (6). 

Yet, the presence of undetected advanced-stage or metastatic 
disease at initial diagnosis persists as a formidable obstacle. 
Thus, the pursuit of novel biomarkers and therapeutic 
modalities is imperative to further refine prognosis and 
treatment efficacy.

Lipid metabolism is integral to the onset and progression 
of neoplastic transformations, with dysregulated lipid 
metabolic pathways being a hallmark of malignant cells (7).  
This notion is fortified by observations of altered lipid 
profiles in various tumors, including BC (8), lung cancer (9),  
renal carcinoma (10), and hepatocellular carcinoma (11). 
Likewise, BC cells exhibit dysregulated expression of genes 
encoding enzymes involved in lipid biosynthesis (12), 
further emphasizing the significance of lipid metabolism 
perturbations in oncogenesis. In concordance with its pivotal 
role in tumor initiation and progression, fatty acids, as 
paramount products of lipid synthesis, have been implicated 
in cellular survival, malignancy, metastasis, and immune 
phenotypes across different cancers (13). Furthermore, 
supplemental intake of unsaturated fatty acids (UFAs) 
has demonstrated substantial benefits in cardiovascular  
diseases (14), inflammatory conditions (15), and nutritionally 
linked malignancies such as colorectal cancer (16), whereas 
excessive saturated fatty acid consumption is a recognized 
risk factor for the latter (17). Notably, UFAs supplementation 
has been shown to enhance chemosensitivity in multidrug-
resistant cancer cells (18,19), albeit the precise mechanisms 
governing their role in BC progression remain elusive.

This  study aimed to conduct  a  comprehensive 
bioinformatics analysis of The Cancer Genome Atlas (TCGA) 
dataset, integrating gene expression profiling, immune 
infiltration assessment, and clinical data examination, to 
investigate and validate the potential of unsaturated fatty 
acid-related genes (UFAGs) as novel prognostic biomarkers 
in BC patients. Furthermore, the establishment of a new 
three-gene risk score signature and nomogram derived from 
this analysis is anticipated to facilitate the surveillance and 
prediction of survival outcomes in BC patients, thereby 
enhancing personalized therapeutic strategies and patient 
management. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-1668/rc).

Methods

Data acquisition and processing

Transcriptomic and clinical-pathological data for the 
TCGA-breast invasive carcinoma (BRCA) cohort were 
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retrieved from TCGA (https://portal.gdc.cancer.gov/). 
Following exclusion of cases with follow-up less than 
30 days or incomplete clinical information, a total of 
1,095 BC patients were included. Their transcriptomic 
data, transformed to log [fragments per kilobase of 
transcript per million mapped reads (FPKM) + 1], was 
utilized for prognostic analyses and model development. 
Additionally, the Vijver2002 cohort, consisting of 295 BC 
cases with transcriptomic and survival data, was obtained 
from the University of California Santa Cruz (UCSC, 
https://genome.ucsc.edu) database for model validation. 
Additionally, we downloaded the BC immunotherapy cohort 
GSE173839 from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) to evaluate 
the response to immunotherapy. A list of 28 UFAGs was 
compiled from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG, https://www.kegg.jp/), detailed in 
Table S1. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Consensus clustering analysis

Significantly survival-associated UFAGs were initially 
identified through univariate Cox regression (P<0.05), 
guiding molecular clustering. ConsensusClusterPlus 
package (20) was employed with settings for k=6 clusters,  
50 resamplings, partitioning around medoids algorithm, and 
Pearson correlation distance. Kaplan-Meier (KM) survival 
analysis with log-rank tests assessed cluster differences, 
complemented by principal component analysis (PCA) of 
survival-associated UFAGs.

Risk signature construction and evaluation

Post intersection of survival-associated UFAGs with the 
Vijver2002 dataset, Lasso Cox regression implemented 
in glmnet with 1,000 times k-fold cross-validation was 
performed. Genes with non-zero coefficients were selected 
for the risk model formulation: riskscore = ∑(βi × Expr_i),  
where βi denotes the coefficient of gene i and Expr_i its 
expression level. Patients were stratified into high- and low-
risk groups based on the median riskscore, followed by KM 
survival analysis and PCA. Receiver operating characteristic 
(ROC) curves assessed the predictive power of the riskscore.

Gene set enrichment analysis

Differential expression analysis was conducted using the 

limma package, and genes with |log2 (fold change)| >1 
were considered as differentially expressed. Gene set 
enrichment analysis based on Gene Ontology (GO) and 
KEGG pathways was performed using the clusterProfiler  
package (21) to determine the latent discrepancies in the 
biological function and signaling pathways between the 
high- and low-risk groups, at a significance threshold of 
P<0.05.

Immune infiltration assessment

Cibersort, integrated in Immuno-Oncology Biological 
Research (IOBR) package (22), estimated immune cell 
infiltration. Expression-based Estimation of Stromal 
and Immune Cells in Tumoral Tissue Environment 
(ESTIMATE) scores for immune and stromal components 
were also calculated within this package, with inter-group 
comparisons made using Wilcoxon tests.

Somatic mutation analysis

Somatic mutation data from the TCGA-BRCA cohort was 
analyzed and visualized through maftools.

Drug sensitivity and immunotherapy response assessment

Drug sensit ivity was predicted using pRRophetic  
package (23), comparing the response of 45 drugs between 
high- and low-risk groups. Tumor Immune Dysfunction and 
Exclusion (TIDE) scores were calculated to evaluate immune 
therapy responsiveness, examining differences, correlations 
with riskscore, and responder variations between risk groups. 
Additionally, we evaluated the performance of UFAGs and 
the riskscore in predicting the outcome of immunotherapy 
in the GSE173839 cohort using binary logistic regression 
and ROC curve analysis, calculating the area under the curve 
(AUC). We used Wilcoxon tests to assess the differences in 
risk scores between complete responders (CRs) and non-
responders (NRs).

Nomogram construction and evaluation

Prognostic factors for BC were screened by univariate and 
multivariate Cox regression (P<0.05), informing nomogram 
construction using rms. Calibration plots and ROC curves 
validated the nomogram’s performance. Decision curve 
analysis with rmda package appraised the nomogram’s 
superiority over other prognostic indicators in BC prognosis.

https://portal.gdc.cancer.gov/
https://genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/TCR-24-1668-Supplementary.pdf
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Statistical analysis

Data analysis and visualization were conducted using 
R software (version 4.4.1). Prognostic differences were 
evaluated using KM survival curves and compared with 
the log-rank test. Between-group differences were assessed 
using Wilcoxon rank-sum tests, while Pearson correlation 
analysis was employed to evaluate the strength and direction 
of linear relationships between variables.

Results

Expression and prognostic significance of UFAGs

Univariate Cox regression analysis revealed that 5 out of 

28 UFAGs were significantly associated with BC prognosis, 
including acyl-CoA thioesterase 4 (ACOT4), ACOT2, 
acetyl-CoA acyltransferase 1 (ACAA1), 3-hydroxyacyl-CoA 
dehydratase 1 (HACD1), and ELOVL fatty acid elongase 2 
(ELOVL2) (Figure 1A). Somatic mutation analysis indicated 
a low mutation frequency among UFAGs in BC, primarily 
consisting of missense mutations, with hydroxysteroid 
17-beta dehydrogenase 4 (HSD17B4) exhibiting the 
highest mutation rate (Figure 1B). Differential expression 
analysis pinpointed ACOT7 and ELOVL4 as significantly 
upregulated in BC (Figure 1C). Consensus clustering based 
on these 5 prognostically relevant UFAGs delineated two 
subtypes (C1 and C2), with significant survival disparity 
(Figure 1D). PCA further emphasized clear segregation 
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between these subtypes (Figure 1E).

Construction and evaluation of a UFAGs-derived risk 
signature

Lasso Cox regression yielded a risk signature comprised of 
3 UFAGs (Figure 2A): risk score = −0.25169353 * ACAA1 − 
0.09111418 * ACOT2 − 0.07883266 * ELOVL2. Stratification 
of the TCGA-BRCA and Vijver2002 cohorts into high- and 
low-risk groups by the median risk score is shown in Figure 
2B,2C. High-risk patients in the TCGA-BRCA cohort had 
worse outcomes compared to low-risk patients (Figure 2D), 
with the risk score achieving AUC values of 0.584, 0.659, and 

0.624 for predicting 1-, 3-, and 5-year overall survival (OS), 
respectively (Figure 2E). PCA depicted a clear distinction 
between risk groups (Figure 2F). Similar trends were observed 
in the Vijver2002 cohort, with high-risk patients having poorer 
survival (Figure 2G) and the risk score showing AUCs of 0.702, 
0.62, and 0.62 for 1-, 3-, and 5-year OS prediction (Figure 2H), 
respectively. PCA confirmed distinct boundaries between risk 
groups (Figure 2I).

Clinical and pathological correlates of the UFAGs-related 
risk signature

Consistent downregulation of UFAGs related to the 
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risk signature in the high-risk group was noted, along 
with correlations to clinical characteristics (Figure 3A). 
Comparisons of risk scores across different clinical 
subgroups revealed that younger patients (<60 years) had 
higher risk scores compared to older patients (≥60 years), 
N3 stage patients had higher risk scores compared to 
N1 stage patients, patients with negative ER had higher 
risk scores compared to those with positive ER, patients 
with negative progesterone receptor (PR) had higher risk 
scores compared to those with positive PR, and patients 
with positive HER2 had higher risk scores compared to 
those with negative HER2. Additionally, patients with 
infiltrating ductal carcinoma (IDC) had higher risk scores 
compared to those with infiltrating lobular carcinoma (ILC). 
Furthermore, the Luminal A subtype had the lowest risk 
scores among all subtypes, while the Basal subtype had the 
highest risk scores (Figure 3B).

Association of the UFAGs-related risk signature with 
somatic mutations

The tumor mutation burden (TMB) was significantly 
lower in the low-risk group compared to the high-risk 
group (Figure 4A). Survival analysis illustrated differential 
outcomes between risk and TMB groups (Figure 4B), and a 
positive correlation was found between risk score and TMB 
(Figure 4C). The top 10 most frequently mutated genes in 
high- and low-risk groups are depicted in Figure 4D,4E.

Relationship of the UFAGs-related risk signature with the 
immune landscape

CIBERSORT analysis of TCGA-BRCA samples showed 
significant differences in immune infiltration patterns 
between risk groups, with low-risk patients exhibiting 
higher levels of B cells, mast cells, plasma cells, but lower 
M0 and M1 macrophages (Figure 5A). Low-risk patients 
also had elevated immune scores, ESTIMATE scores, and 
tumor purity (Figure 5B-5E), indicating an association 
between the UFAGs-related risk signature and the tumor 
immune microenvironment.

UFAGs-related risk signature correlated with 
chemotherapy sensitivity

Drug sensitivity analysis demonstrated that the low-risk 
group was more sensitive to 14 drugs including axitinib, 
bexarotene, and bicalutamide, while showing lower 

sensitivity to 21 drugs like bosutinib, camptothecin, and 
cisplatin (Figure 6). Significant correlations between UFAGs 
expression and drug sensitivity suggest a link between UFAs 
metabolism and therapeutic responsiveness. 

Gene expression profiling in relation to the UFAGs-related 
risk signature

Differential expression analysis between risk groups led to 
KEGG and GO term enrichment analysis. Low-risk patients 
displayed enhanced activation of axoneme, cilium assembly, 
and cilium organization GO terms, while immune-related 
terms such as immunoglobulin complex, T cell receptor 
complex, antigen binding, and immunoglobulin production 
were suppressed (Figure 7A). Metabolic pathways including 
arachidonic acid (AA) metabolism and drug metabolism 
were upregulated, whereas cytokine signaling, natural killer 
(NK) cell activity, cell cycle, and interleukin (IL)-17 signaling 
pathways were downregulated in low-risk patients (Figure 7B).

UFAGs-related risk signature correlated with 
immunotherapy response

To evaluate the relationship between the UFAGs-related 
risk signature and the response to immunotherapy, 
we analyzed a cohort of BC patients undergoing anti-
programmed cell death-ligand 1 (PD-L1) immunotherapy. 
Our results showed that compared to NR, CR had 
significantly lower expression levels of ELOVL2 and 
ACOT2 ,  while the expression of ACAA1  remained 
unchanged (Figure 8A). The AUC values for predicting 
NR risk using ACOT2, ELOVL2, ACAA1 ,  and the 
riskscore were 0.625, 0.703, 0.504, and 0.668, respectively  
(Figure 8B-8E). The proportion of CR patients was higher 
in the high-risk group compared to the low-risk group 
(Figure 8F), and the riskscore in the CR group were 
significantly higher than those in the NR group (Figure 8G).  
These findings are consistent with the TIDE analysis, 
which showed that the risk scores of true responders 
were significantly higher than those of false responders  
(Figure 8H). These results suggest that UFAGs are 
associated with the response to immunotherapy, and a 
higher UFAGs-related risk score correlates with better 
immunotherapy outcomes.

Nomogram incorporating the UFAGs-related risk signature

Univariate and multivariate Cox regression analyses 
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identified the riskscore and age as independent prognostic 
factors for BC (Figure 9A,9B). A nomogram integrating the 
riskscore and age was developed for convenient estimation 
of 1-, 3-, and 5-year OS in BC patients (Figure 9C). 

Calibration curves confirmed the accuracy of nomogram 
predictions against observed survival (Figure 9D). Decision 
curve analysis highlighted the nomogram’s superiority over 
individual factors in BC prognosis, displaying a higher 
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standardized net benefit (Figure 9E). ROC analysis further 
supported the nomogram’s outstanding performance with 
AUCs of 0.734, 0.675, and 0.657 for 1-, 3-, and 5-year OS 
prediction, respectively (Figure 9F), validating its excellence 
in BC prognosis assessment.

Discussion

UFAs, particularly ω-3 fatty acids like eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA), and ω-6 
fatty acids such as AA, have been implicated in suppressing 
tumorigenesis, invasion, and metastasis, as reported in 
several studies (24,25). These lipids exert their effects 
through modulating inflammatory responses, inhibiting 
angiogenesis, inducing apoptosis in cancer cells, and 
enhancing chemosensitivity (26). Observations from 
multiple investigations link UFA intake to reduced 
incidence risks of various cancers, including breast, lung, 
and gastrointestinal cancers, potentially due to their 
immune-enhancing, anti-inflammatory, and antioxidative 

properties (27-29). Of note, ω-3 and ω-6 polyunsaturated 
fatty acids (PUFAs), through their immunomodulatory and 
inflammatory impacts, have emerged as pivotal regulators 
of carcinogenesis and progression, influencing both 
cancer cells and shaping the gut microbiota and immune 
landscape, as evidenced in colorectal and prostate cancer 
research (30,31). Therefore, elucidating the expression 
and prognostic significance of UFAGs in BC is of utmost 
importance for advancing our understanding of disease 
development and clinical intervention strategies.

In this study, leveraging gene expression and clinical 
data from TCGA, we initially identified five UFAGs 
significantly associated with BC prognosis. Through Lasso 
and Cox regression analyses, we established a prognostic 
model highlighting ACAA1, ACOT2, and ELOVL2 as novel 
potential biomarkers. These three genes are integral to the 
synthesis and metabolism of UFAs, with lipid metabolic 
pathways playing a pivotal role in BC progression. ACAA1 
catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, a 
key step in fatty acid synthesis, which is upregulated in BC, 
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correlating with tumor proliferation and survival. Inhibition 
of ACAA1 has been shown to suppress proliferation in 
triple-negative BC and enhance sensitivity to cyclin-
dependent kinase (CDK) 4/6 inhibitors (32), underscoring 
its potential involvement in metabolic reprogramming for 
tumor growth. It is also recognized as a prognostic factor 
in various malignancies (33,34). ACOT2, a member of 
an enzyme family that hydrolyzes long-chain fatty acyl-
CoAs, regulates cellular fatty acid levels and distribution, 
potentially affecting energy metabolism and signaling. Its 
elevation is linked to poor OS in acute myeloid leukemia 
and perturbed lipid metabolism, suggesting ACOT2 as a 
promising therapeutic target (35). ELOVL2 elongates fatty 
acids, contributing to the synthesis of long-chain fatty acids 
crucial for membrane fluidity, signaling, and inflammation 
control. Altered ELOVL2 expression may disrupt the balance 

of these critical fatty acids. ELOVL2 has been shown to 
inhibit prostate cancer proliferation, migration, and invasion 
via inositol polyphosphate-4-phosphatase type II B (INPP4B)  
regulation (36), and it is implicated in chemotherapy 
resistance and tumor progression in BC (37,38).

PD-L1 interaction with its receptor programmed cell 
death protein 1 (PD-1) on T cells negatively regulates T 
cell function, enabling immune evasion by cancer cells. 
Targeting PD-L1 is an attractive immunotherapeutic 
strategy in cancer, and ω-3 PUFAs like DHA can reduce 
PD-L1 expression in cancer cells both in vitro and in vivo. 
Our findings indicated that the riskscore derived from 
UFAGs were significantly higher in patients who respond 
to anti-PD-L1 therapy compared to NRs. Additionally, the 
expression levels of ELOVL2 and ACOT2 showed potential 
as biomarkers for predicting immune therapy response, 
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suggesting that targeting UFAGs may be a promising 
strategy to enhance the efficacy of immune therapy. Given 
that ELOVL2 is a rate-limiting enzyme in DHA synthesis, 
the impact of ELOVL2 on the response to immunotherapy 
may not be mediated through the accumulation of DHA. 
DHA promotes PD-L1 proteasomal degradation, reducing 
its expression and interaction with PD-1, thereby reversing 
PD-L1-mediated immune suppression and tumor growth 
inhibition (39). Monounsaturated fatty acids also decrease 
PD-L1 expression, implicating their role in immune 
response modulation. Animal models suggest potential 
synergistic therapy combining anti-PD-1 treatment with 
Ω-3 PUFA supplementation in esophageal squamous cell 
carcinoma (40). A recent study demonstrated that feeding 
DHA alone or in combination with alpha-linolenic acid 
reduced hepatic ELOVL2 activity (41), indicating that 
DHA may enhance immune therapy response by inhibiting 
ELOVL2 activity. Therefore, the role and mechanisms of 
UFAGs, particularly in the context of BC immune therapy 
response, warrant further investigation.

Chemotherapy resistance poses a substantial challenge 
to successful cancer treatment outcomes, and dysregulation 
of fatty acid metabolism genes may contribute to this 
resistance. DHA and EPA, two n-3 PUFAs, have garnered 
attention for their potential to alter membrane lipid 
composition and modulate the expression of cancer-
related genes such as B-cell  lymphoma-2 (Bcl-2), 
phosphatidylinositol 3-kinase (PI3K), nuclear factor kappa 
B subunit 1 (NK-κB), and phosphorylated AKT serine/
threonine kinase 1, potentially mitigating cancer risk  

(42-44 ) .  They  a l so  show promise  in  enhanc ing 
chemotherapeutic efficacy, particularly in resistant cells 
(44,45). The UFAGs-related risk signature developed 
herein exhibits a significant association with drug sensitivity, 
possibly mediated through UFA biosynthesis. ACAA1 
interacts with CDK4, and its inhibition blocks RB1 
phosphorylation, leading to G1-S cell cycle arrest, with 
reduced ACAA1 protein levels augmenting abemaciclib’s 
effectiveness (32). ELOVL2 has been shown to partially 
restore tamoxifen sensitivity in MCF-7/TamR cells and 
xenograft models, regulating a set of genes, including 
THEM4, involved in AKT and ERα signaling pathways 
crucial for resistance (37).

Despite these findings, our study has limitations. Primarily, 
the retrospective nature of the cohort analysis used for risk 
signature and nomogram construction lacks prospective 
validation, limiting immediate clinical applicability. 
Additionally, functional analyses of risk signature genes and 
their mechanistic roles in BC development lack in vitro and  
in vivo experimental validations.

Conclusions

In summary, this study systematically investigated the 
expression, mutational status, and prognostic relevance of 
UFAGs in BC, leading to the construction of molecular 
subtypes and a risk profile based on prognosis-associated 
UFAGs. We elucidated the associations between the UFAGs-
related risk profile and clinical-pathological characteristics, 
somatic features, gene expression patterns, tumor immune 
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microenvironment, drug sensitivity, and responsiveness to 
immunotherapy in BC patients. Ultimately, a nomogram 
was devised for prognostic assessment in BC by integrating 
the risk score with patient age. Nevertheless, the validity 
of the UFAGs-derived risk signature and nomogram 
necessitates further corroboration through prospective clinical 
investigations, while the underlying biological roles of UFAGs 
in BC pathophysiology require more extensive exploration.
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