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Background: Intrahepatic cholangiocarcinoma (ICC) is a highly invasive bile duct cancer with poor 
prognosis due to frequent recurrence and limited effective treatments. Cancer stem cells (CSCs) contribute 
to ICC’s therapeutic resistance and recurrence, driven by distinct cellular subpopulations with variable 
tumorigenic properties. Recent advances in single-cell RNA sequencing (scRNA-seq) have enabled a deeper 
exploration of cellular heterogeneity in tumors, offering insights into unique CSC subgroups that impact 
ICC progression and patient outcomes. This study aimed to investigate the effect of CSC heterogeneity on 
the prognosis of ICC.
Methods: The scRNA-seq dataset GSE142784 was retrieved from the Gene Expression Omnibus (GEO) 
database, and Bulk RNA-seq data were obtained from The Cancer Genome Atlas (TCGA) databases. 
Hallmarks and AUCell R package were adopted for analyzing the signaling pathway activity, CellChat 
for observing cell communication between subgroups, and SCENIC for analyzing transcription factors 
expression. The immune cell infiltration and drug sensitivity of the model were analyzed using the 
CIBERSORT algorithm and the “pRRophetic” R packages, respectively. And immunohistochemistry (IHC) 
tests were used to evaluate expression of transcription factors in ICC patients. 
Results: Based on scRNA-seq data, five clusters (DLK+, CD13+, CD90+, CD133+, and other 
cholangiocarcinoma cells) were observed in ICC, which presented different signaling pathway activities, 
such as HSF1 and STAT1 were highly expressed in the CD133 cluster, and consistent with the results of 
IHC tests. Pathways like Notch and Wnt/β-catenin signaling transferred among above subgroups. Further, 
subgroups favored varied immune response and drug sensitivity, and CD133+ subgroup patients showed 
significantly shortened recurrence-free survival (RFS).
Conclusions: Configuring the subgroup of ICC is helpful for predicting the prognosis and drug resistance 
in ICC and can provide new strategies for cancer treatment.
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Introduction

Intrahepatic cholangiocarcinoma (ICC), originated from 
epithelial cells of intrahepatic and extrahepatic bile ducts, 
is the second leading hepatic malignancy, characterized 
by high invasiveness and refractory to chemotherapy (1). 
Over the past decade, ICC has become a major global 
health concern due to its increasing morbidity and 
mortality, compounded by high recurrence and metastasis 
rates after treatment (2-4). According to statistics, only 
5% of ICC patients survive more than 5 years, and 
satisfactory solutions for this low survival rate have not 
been established (5). 

A major factor in ICC’s aggressive behavior is the presence 
of cancer stem cells (CSCs), a unique subset of tumor cells 
capable of self-renewal and differentiation. Unlike normal 
stem cells, CSCs evade regulatory mechanisms, allowing 
unchecked expansion and continuous production of 
tumorigenic progeny, which drive recurrence and metastasis 
in ICC (6,7). Critical signaling pathways play essential roles 
in maintaining CSC characteristics within ICC. The Notch 
pathway, for instance, is known to regulate CSC self-renewal 
and differentiation in liver cancers, where its activation 
supports tumorigenic properties and contributes to ICC 
progression and therapy resistance (8). Similarly, Wnt/
β-catenin signaling is crucial for maintaining CSC stemness, 
and its abnormal activation in ICC is associated with increased 
invasiveness and therapeutic resistance, making it a promising 
target for disrupting CSC-driven tumor growth (9),  

positioning CSCs as a crucial focus in ICC therapy. And 
it is reported that targeting CSC can significantly reduce 
metastasis and recurrence rates in other cancers, including 
gastric cancer and breast cancer (10,11).

Recent advances in systemic therapies, including 
immunotherapy and targeted molecular treatments, 
offer promising options for addressing CSC-driven ICC 
progression. For instance, novel immunotherapies are being 
explored to enhance the immune response against ICC 
by targeting immune evasion mechanisms (12). Targeted 
therapies directed at specific mutations, like fibroblast growth 
factor receptor (FGFR) and isocitrate dehydrogenase (IDH), 
are also promising as they focus on molecular alterations 
unique to ICC tumors (13). However, these treatments come 
with risks; for example, immune checkpoint inhibitors (ICIs) 
have been linked to liver-specific toxicities, including elevated 
transaminase levels, which require careful monitoring, 
especially in ICC patients (14). This highlights the need 
for a refined therapeutic approach that balances efficacy 
with safety. However, ICC CSC populations are highly 
heterogeneous, with distinct subtypes exhibiting variable 
molecular characteristics and responses to treatment, 
making therapeutic targeting complex.

The advent of single-cell RNA sequencing (scRNA-seq) 
has transformed our understanding of CSC heterogeneity 
by providing an unprecedented resolution of the cellular 
composition within tumors. Unlike conventional bulk 
RNA sequencing, which aggregates gene expression across 
all cell types, scRNA-seq allows for a cell-by-cell analysis, 
uncovering the diversity of CSC subpopulations within ICC 
and their unique molecular profiles. This technology has 
already been applied in several cancers, such as esophageal 
squamous cell carcinoma and ovarian cancer, where it 
has enabled the identification of prognostic markers and 
therapeutic targets within CSC populations (15,16). In ICC, 
scRNA-seq has shed light on interactions between CSCs 
and cancer-associated fibroblasts (CAFs) (17,18), revealing 
the immune status of the ICC tumor microenvironment, 
and providing new biomarkers for ICC prognosis (19). 
However, existing studies on ICC have largely overlooked 
the detailed heterogeneity of CSCs, often lacking the 
resolution to identify distinct subpopulations and their 
unique roles in immune evasion and drug resistance, and 
no research has yet explored the relationship between 
CSC heterogeneity and patient prognosis in ICC. Here, 
we provide a comprehensive analysis of CSC subgroups 
(CD13+, CD90+ and CD133+), their signaling pathways, and 
interactions within the tumor microenvironment based on 

Highlight box

Key findings
• Distinct cancer stem cell (CSC) subpopulations, including CD13+, 

CD90+, and CD133+ cells, have been identified in intrahepatic 
cholangiocarcinoma (ICC), each with unique signaling and 
immune profiles.

• The CD133+ subgroup is associated with poorer prognosis and 
shorter recurrence-free survival.

What is known and what is new? 
• It is established that CSCs play a role in ICC progression and 

treatment resistance.
• Our study reveals that specific CSC subpopulations in ICC show 

unique molecular traits, with CD133+ cells linked to an unfavorable 
prognosis.

What is the implication, and what should change now? 
• Recognizing the impact of CSC heterogeneity in ICC could enable 

more personalized therapies that target distinct CSC subgroups, 
offering the potential to improve patient outcomes.
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scRNA-seq data. By integrating this heterogeneity into a 
prognostic model, we aim to enhance outcome prediction 
and identify targeted therapeutic strategies, advancing 
personalized treatment approaches for ICC. We present 
this article in accordance with the REMARK reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-1286/rc).

Methods

Data collection

Single-cell transcriptome data for CSCs in ICC and 
adjacent tissue samples were obtained from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/), accession number GSE142784 (17),  
including four treatment-naive ICC samples, one recurrent 
ICC sample, and three adjacent tissues; clinical sample 
information and gene expression data for ICC were 
obtained from The Cancer Genome Atlas (TCGA) database 
(https://www.ncbi.nlm.nih.gov/geo/). 

scRNA-seq data processing

R language scripts were written for analysis of the obtained 
scRNA-seq data. First, sequencing data were merged via 
the “Seurat” R package, and then log-normalization of the 
merged datasets was performed using the “NormalizeData” 
function. Next, the 2,000 most highly variable genes were 
selected after quality control using “FindVariableFeatures”. 
Subsequently, the “ScaleData” function was employed 
to further correct the data; the t-distributed stochastic 
neighbor embedding (t-SNE) algorithm was used to cluster 
cell groups; the “RunTSNE” function was used to generate 
clusters; the “FindAllMarker” function was used to annotate 
each cluster; and the “FindMarkers” function was used to 
identify differentially expressed genes between two clusters. 
In addition, the “Seurat” and “DoHeatmap” functions 
were used to assess features and generate heatmaps of gene 
expression, respectively, and SCENIC was used to further 
analyze changes in the expression of transcription factors. 
Clusters consisting of CSCs were extracted and reprocessed 
in the same way as described above, and each CSC type 
was further divided into subclusters. Marker genes for each 
stem cell subset were identified by comparison of the CSC 
subsets with the corresponding normal subsets, and P<0.05 
was considered to indicate a significant difference. Finally, 
marker genes for each CSC subgroup were regarded as 

differentially expressed genes.

Pseudotime analysis of single-cell gene expression

Pseudotime analysis was performed using Monocle2 (version 
2.18.0), and the assessed time was scaled from 0 to 1 (20). 
The indicated channel acted as the input dimension. Then, 
hub genes in each cluster were identified based on the 
“diffialGeneTest” function in the “Monocle2” package. 
According to the q value (q<0.01), the top 2,000 genes 
were filtered out. The expression profiles were reduced 
to two dimensions using the DDRTree method through 
the “reduceDimension” function in Monocle2 (max_
components =2). Then, the “orderCells” function was 
applied to order malignant cells and assign a “time” value.

Calculation of cell signaling pathway activity

Hallmark gene sets of signaling pathways, including the 
epithelial mesenchymal transition (EMT) pathway, P53 
pathway, Notch signaling pathway and Wnt/β-catenin 
pathway, were obtained from the Molecular Signatures 
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/
msigdb/). Briefly, key genes involved in metastasis were 
obtained using MSigDB. Subsequently, CellChat was used 
to assess the viability of individual cells according to each 
gene set.

Cell-cell communication

To investigate cell-cell communication and interactions 
and identify mechanisms of communication at single-
cell resolution, the R package “CellChat” (version 1.0.0) 
was applied to cells in five cell groups, namely, CD13 
cells, CD133 cells, CD90 cells, dual leucine zipper kinase 
(DLK)1 + ICC cells, and ICC cells. Specifically, CellChat 
was used to construct cell-cell communication networks 
and visualize the signals of each cell group. Additionally, 
the “computeNetSimilarity” function was adopted 
for identifying signal groups with similar functions or 
structures, and the “netAnalysis_signalingRole_heatmap” 
function was used for visualizing signaling pathways.

Immunohistochemical staining

Specimens from 10 treatment-naive ICC patients were 
collected from the Third Affiliated Hospital of Sun Yat-sen 
University. The study was conducted in accordance with 
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the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institute Research Ethics Committee 
of the Third Affiliated Hospital of Sun Yat-sen University 
(No. [2023]02-167) and informed consent was taken from 
all individual participants.

The EnVision immunohistochemistry (IHC) system was 
used to analyze the expression of CD13, CD133, CD90, 
HSF1 and STAT1. The slides were incubated with rabbit-
derived monoclonal antibodies against CK19 (ab76539, 
Abcam, Cambridge, USA, 1:1,000), CD90 (ab92574, Abcam, 
1:200), CD13 (GB11356, Servicebio, Wuhan, China, 1:500), 
CD133 (ab222782, Abcam, 1:1,000), HSF1 (GB11932, 
Servicebio, 1:500) and STAT1 (GB111363, Servicebio, 
1:1,000) as the primary antibodies and then incubated with 
a horseradish peroxidase (HRP)-labeled secondary antibody 
(Dako Envision, Glostrup, Denmark). Phosphate buffer 
saline (PBS) was used as the negative control.

Prediction of prognostic features

After collecting cholangiocarcinoma-related datasets from 
the TCGA, bulk RNA-seq data from the ssGSEA tool was 
used for data scoring, ConsensusClusterPlus was used for 
unsupervised clustering, and the entire dataset was used for 
observing the predictive ability of cell subgroups. In addition, 
Kaplan-Meier curves were generated to analyze recurrence-
free survival (RFS) outcomes in different groups of patients.

Cell subgroup and immune-related analyses

After grouping the TCGA patients, CIBERSORT was 
used to observe immune-related cell scores and analyze 
the correlations among these scores, and ESTIMATE was 
used to calculate and observe the overall immune score and 
stromal score of tumor samples.

Prediction of the sensitivity of cell subgroups to drugs

Drug response prediction was performed using the 
“pRRophetic” package in R. Specifically, ridge regression 
was used to estimate the half-maximal inhibitory 
concentration (IC50) for each patient, and the accuracy of 
prediction was determined by 10-fold cross-validation based 
on the Genomics of Drug Sensitivity in Cancer database.

Statistical analysis

Single-cell sequencing data were analyzed through the 

R package, single-cell analysis plots were generated via 
the “ggplot2” package, and Kaplan-Meier analysis was 
performed with the “glmnet” and “survival” packages. 
P<0.05 was considered to indicate statistical significance, 
and all the statistical analyses were performed using R 
language version 3.6.1.

Results

Sorting of ICC cell groups

Via the t-SNE algorithm, the heterogeneity of CSCs in 
ICC patients was sorted to observe. After dimensionality 
reduction and unsupervised cell clustering, we identified 
malignant (48.30%; EPCAM, KRT7, KRT19), biliary 
epithelia (30.18%; KRT7, KRT19), macrophages (8.74%; 
CD14), T (5.33%; CD2, CD3D, CD3E), endothelial (2.26%; 
ENG, VWF), dendritic (1.49%; CD1C), fibroblasts (2.13%; 
ACTA2, COL1A2), B (1.33%; CD79α), and hepatocytes 
(0.23%; APOC3, FABP1, APOA1) cells as nine distinct 
lineages based on marker gene expression (Figure 1A,1B). 
And EPCAM were highly expressed in malignant cells than 
the other cells (Figure 1C,1D). As EPCAM, an epithelial cell 
adhesion molecule and one of Wnt/beta-catenin signaling 
components, was identified as a marker for stem/progenitor 
cells, and serves as a prognostic marker, a therapeutic target, 
and an anchor molecule on circulating and disseminated 
tumor cells (CTCs/DTCs), which are considered the major 
source for metastatic cancer cells (21,22). 

Sorting of ICC stem cell groups

Subsequently, the CSCs in ICC were assessed using CD13, 
CD90, and CD133 (Figure 2). And Grassi et al. recently 
demonstrated that DLK1, a non-canonical NOTCH 
ligand, was discovered as a regulator of stem cell pools 
and tissue differentiation in liver (23). According to the 
t-SNE algorithm, the cholangiocarcinoma cells were 
divided into the following five groups: CD13-positive CSCs 
(14.74%), CD133-positive CSCs (18.72%), CD90-positive 
CSCs (0.41%), DLK1-positive cholangiocarcinoma cells 
(18.01%), and other cholangiocarcinoma cells (48.12%), 
respectively (Figure 2A,2C). Then, dot plot exhibiting the 
gene expression of different cell groups: ANPEP, SOX9, 
and ICAM1 were highly expressed in CD13-positive CSCs; 
PCAM, PROM1 and NANOG were highly expressed in 
CD133-positive CSCs; THY1 was most highly expressed 
in CD90-positive CSCs; and CD44, DLK1, SOX2 and 
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Figure 1 Sorting of intrahepatic cholangiocarcinoma cell groups. (A) Cancer stem cells in intrahepatic cholangiocarcinoma patients were 
grouped by the t-SNE algorithm according to surface receptor markers; (B) pie chart for proportions of each cell group; (C) distribution 
and expression levels of EPCAM, KRT7 and KRT19 antigen positive cell groups; (D) surface antigen expression for cell groups. t-SNE, 
t-distributed stochastic neighbor embedding.

APOC3 were most highly expressed in DLK1-positive 
cholangiocarcinoma cell groups (Figure 2B).

Further, heatmap of highly variable genes for the five major 
lineages presented that: FDCSP was highly expressed in 
CD13-positive CSCs; ITIH5, SPINK1, FXYD2, HSD17B11, 

and SERPINA1 were significantly upregulated in CD133-
positive CSCs; SAA1 was highly expressed in DLK1-
positive cholangiocarcinoma; and PSCA, LY6D, KRT6A, 
ALDH3A4, and AKR1C2 were significantly upregulated in 
cholangiocarcinoma cells vs. other cell types. These findings 
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Figure 2 Sorting of intrahepatic cholangiocarcinoma stem cell groups. (A) Clustering of cancer stem cells in intrahepatic 
cholangiocarcinoma patients through the t-SNE algorithm based on surface receptor markers; (B) expression of tumor-associated genes 
in different cell groups; (C) pie chart showing the proportions of each cell group among all cells in tumor samples; (D) expression levels of 
different genes in different cell groups; (E) pseudotime analysis for paths of cell growth and development. CCA, cholangiocarcinoma; CSC, 
cancer stem cell; t-SNE, t-distributed stochastic neighbor embedding.
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indicated that different expression levels of mRNAs in different 
cell groups predict their different developmental trajectories 
(Figure 2D). Moreover, the pseudotime trajectory axis derived 
from Monocle 2 showed the dynamic characteristics and 
heterogeneity of malignant epithelial cells: the cells in the 
Naive group were mainly CD13-positive and CD133-positive 
cells, while cells in the Recurrent group were mainly CD133-
positive cells (Figure 2E).

Signaling pathway analysis in different ICC cell groups

To further investigate the differences in signaling pathway 
enrichment among various cell groups, we analyzed the 
expression patterns of ANPEP, PROM1, THY1, CEBPD, 
HSF1, and STAT1 using pseudotime analysis. This analysis 
revealed that the expression distribution of these genes 
corresponded well with the distribution of the respective 
cell groups (Figure 3A). Consequently, the differentially 
expressed genes were subjected to Hallmark gene set 
enrichment analysis to identify key signaling pathways. In 
summary, compared to cholangiocarcinoma cells, CSCs 
exhibited significant upregulation of EMT-related genes 
and downregulation of P53 pathway-related genes across 
the three subgroups. Additionally, genes associated with 
Notch signaling, Wnt/β-catenin signaling, and tumor 
necrosis factor-alpha (TNF-α) signaling were notably 
upregulated in the CD13, CD133, and CD90 subgroups, 
respectively (Figure 3B,3C).

Interactions between ICC cell groups and differences in 
transcription factors

Interactions between cell groups were analyzed using 
CellChat, which revealed the intercellular communication 
network among different cell clusters, indicating significant 
changes in interaction strength and cell type (Figure 4A).  
To clearly illustrate the differences in interactions, 
heatmaps were generated showing the relative expression 
of components of interaction networks, including genes 
in the EGF, HGF, Notch, WNT, and TGF-β pathways, 
across different ICC cell groups. Specifically, EGF signals 
may be transferred from cholangiocarcinoma cells to other 
subgroups, such as the CD13 or CD90 subgroups; HGF 
signals may be transferred from DLK1 subgroup cells to 
CD13 subgroup cells; Notch signals may be transferred 
from CD13 subgroup cells to other cells; and WNT signals 
may be transferred from CD90 subgroup cells to other cell 
groups (Figure 4B).

Furthermore, the expression of transcription factors in 
different cell groups was analyzed using SCENIC, which 
indicated that CEBPD was highly expressed in the CD13 
and CD133 subgroups, while HSF1 and STAT1 were 
highly expressed in the CD133 subgroup (Figure 4C). The 
expression distributions of these genes were also examined 
using t-SNE analysis, and the results were consistent with 
those of the differential ex-pression analysis (Figure 4D).

For further validation of the above results, we performed 
IHC to evaluate expression of cluster marker proteins and 
related transcription factors in 10 ICC samples. The out-
comes showed that CD90 expression was restricted to a 
few cells within ICC, while CD13 and CD133 were partly 
expressed by ICC cells. In addition, approximately 50% of 
tumor epithelial cells were positive for HSF1 or STAT1, 
which overlapped the cells positive expressing CD13 or 
CD133 (Figure 4E).

Clinical prognostic ability of CSC subgroups

To assess the relationship between CSC subgroup 
enrichment and patient prognosis, we selected the top 20 
differentially expressed genes with elevated expression in 
the three CSC populations (Figure 5A). First, ICC-related 
data were obtained from the TCGA database. Patients 
with cholangiocarcinoma in the TCGA cohort were then 
clustered and scored using unsupervised clustering with the 
ssGSEA tool. This process identified three CSC groups 
(clusters A, B, and C) (Figure 5B).

Next, we evaluated the predictive value of CSC cluster 
membership and marker gene expression for RFS. The 
patients with high CSC133 expression had significantly 
shorter RFS compared to patients with low CSC133 
expression [P=0.02, hazard ratio (HR) =0.7568, 95% 
confidence interval (CI): 0.3038–1.886]. Although the 
RFS was also shorter in the subgroup with high CD90 
expression, this difference was not statistically significant 
(Figure 5C). Moreover, cluster A exhibited the shortest RFS 
among the highly enriched clusters (Figure 5D).

Additionally, pattern recognition analysis revealed the 
relationship between the expression levels of different genes 
and patient prognosis (Figure 5E). In cluster A, most patients 
were female, with tumors primarily located in the liver and a 
few around the hilum, and a high recurrence rate. For cluster 
B, none of the patients experienced recurrence; however, 
none of the clusters showed distinct characteristics in the 
disease course (Figure 5F). In summary, CSC heterogeneity is 
closely associated with ICC prognosis.
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C
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A

Figure 3 Signaling pathway analysis for different intrahepatic cholangiocarcinoma cell groups. (A) Pseudotime analysis of the expression and distribution 
of ANPEP, PROM1, THY1, CEBPD, HSF1 and STAT1. Pseudo-time reflects the relative progression of cells along a trajectory and is dimensionless. (B) 
Hallmark analysis of differentially enriched signaling pathways in cancer stem cells; (C) expression of related signaling pathways in different cell groups 
according to t-SNE. CCA, cholangiocarcinoma; CSC, cancer stem cell; NES, Normalized Enrichment Score; GSEA, Gene Set Enrichment Analysis; 
AUC, area under the curve; t-SNE, t-distributed stochastic neighbor embedding.
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Figure 4 Interactions between intrahepatic cholangiocarcinoma cell groups and differences in transcription factors. (A) Cell-cell interaction; 
line segment thickness indicates the weight (upper) or number (lower) of interactions between groups, and loops indicate autocrine 
interactions. (B,C) The export (left) and input (right) signal patterns (B) and differences in transcription factors in different cell groups (C) 
shown in heatmaps. The bars represent relative signaling strength, which is dimensionless and derived from normalized interaction scores. 
(D) Violin plot showing the ex-pression of CEBPD, HSF1, and STAT1. (E) Representative IHC images for expression of CD13, CD133, 
CD90, HSF1 and STAT1 in ICC samples. For CK19, CD90, CD13 and CD133 staining, positive staining can be seen in the membrane 
of the tumor cells, while positive staining of HSF1 and STAT1 can be seen in the nuclear of the tumor cells. (Original magnification ×200; 
inset shows an enlarged area at ×400). CCA, cholangiocarcinoma; CSC, cancer stem cell; ICC, intrahepatic cholangiocarcinoma; IHC, 
immunohistochemistry. 
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Figure 5 Clinical prognostic ability of cancer stem cell subgroups. (A) Upregulated differentially expressed genes in different cancer stem 
cell subgroups. (B) Clustering and scoring of intra-hepatic cholangiocarcinoma-related data in the TCGA database were performed with the 
ssGSEA tool. (C,D) Kaplan-Meier curves showing relapse-free survival in patients with high and low CD13/CD90/CD133 expression (C) 
and in different patient clusters (D). (E,F) Pattern recognition analysis for the correlations of different patient clusters with sex, pathological 
tissue, disease duration, and recurrence. CCA, cholangiocarcinoma; CSC, cancer stem cell; FC, fold change; CDF, cumulative distribution 
function; TCGA, The Cancer Genome Atlas.
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Correlation between CSC subgroup and immunity

To determine whether the CSC subgroup membership is 
associated with immune features, we assessed the levels of 
immune cells in clusters A, B, and C using CIBERSORT 
analysis. Notably, cluster A, which exhibited a high 
recurrence rate, had significantly reduced levels of activated 
B cells, effector memory CD4 T cells, and neutrophils. In 
contrast, cluster B, which had no recurrence events, showed 
significantly increased levels of neutrophils (Figure 6A).

We then calculated the immune score and stromal 
score for all patients using the ESTIMATE algorithm. 
The results indicated a significant correlation between the 
stromal score and subtype classification (Figure 6B). Further 
analysis of immunotherapy-related gene expression revealed 
high levels of CD276 and NRP1 in clusters A and C, while 
TNFRSF25 expression was markedly decreased in these 
clusters (Figure 6C).

Using CIBERSORT to calculate immune cell scores 
for ICC patients in the TCGA database, we found that 
CD133 expression negatively correlated with effector 
memory CD4 T-cell levels. Conversely, CD90 and CD13 
expressions positively correlated with the levels of most 
cell types (Figure 6D). Overall, the heterogeneity of CSCs 
may be associated with variations in immune cell profiles, 
suggesting potential implications for immuno-therapy in 
ICC patients.

Drug sensitivity in CSC subgroups

To assess the sensitivity of different CSC subgroups to drugs, 
we predicted the sensitivity of different CSC subgroups to 
drugs via the pRRophetic tool. According to the prediction 
results, among the groups, the CD13-positive subgroup had 
significantly lower IC50 values for etoposide (Figure 7A),  
GDC0941 (Figure 7B), and pazopanib (Figure 7C);  
the CD133-positive subgroup had significantly lower IC50 
values for OSI.906 (Figure 7D) and lapatinib (Figure 7E); 
and the CD90 subgroup had notably decreased sensitivity 
to midostaurin (Figure 7F), CMK (Figure 7G), AZD7762 
(Figure 7H), and BX.795 (Figure 7I).

Discussion

In this study, we employed scRNA-seq to comprehensively 
delineate the transcriptomic landscape of human ICCs. 
Five clusters (DLK+, CD13+, CD90+, CD133+, and other 
cholangiocarcinoma cells) were observed in ICC, which 
presented different signaling pathway activities, such as 
HSF1 and STAT1 were highly expressed in the CD133 
cluster, and consistent with the results of IHC tests. And 
signaling, like Notch and Wnt/β-catenin, transferred 
between above subgroups. Further, subgroups favored 
varied immune response and drug sensitivity, with CD133+ 
patients experiencing significantly shortened RFS. These 
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Figure 6 Correlations between cancer stem cell subgroups and immune features. (A) CIBERSORT analysis method for observing immune 
cells in cluster A/B/C; (B) ESTIMATE algorithm for calculating immune and stromal scores in the 3 groups of patients; (C) observation 
of the expression of genes related to the immunotherapy response in the three groups; (D) CIBERSORT for calculating the correlation 
of cholangiocarcinoma immune cells with the CD133, CD13, and CD90 subgroups in the TCGA cohort. The bars represent the number 
of samples. *, P<0.05; **, P<0.01; ns, not significant. PRG, prognostic-related genes; CSC, cancer stem cell; MDSC, myeloid-derived 
suppressor cells; TCGA, The Cancer Genome Atlas.
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findings underscore the clinical potential of delineating ICC 
subgroups to predict prognosis and drug resistance, paving 
the way for personalized therapeutic strategies in ICC.

The initiation of cancer is stochastic, and cancer 
development and progression do not follow a fixed 
procedure. In other words, cancer development is dynamic 
and continuous, which causes tumor heterogeneity. Cancer 
cells have distinct molecular profiles that play a major 
role in disease progression and treatment failure. Tumor 
heterogeneity confers different proliferation and metastatic 
abilities to cancer cells, as well as different sensitivities 
to drugs (24). Notably, scRNA-seq, has emerged as an 

effective and accurate tool for directly investigating 
intratumorally heterogeneity in samples from patients with 
a variety of cancers, such as lung and prostate cancers, and 
has facilitated great advancements in cancer treatment and 
prognosis evaluation (25). However, there are few studies 
on CSC heterogeneity, especially CSC heterogeneity in 
ICC. Yet, scRNA-seq data on ICCs are now available.

By analyzing scRNA-seq data on ICCs, CSCs accounted 
for 33.87%, aligning with prior findings by Cardinale  
et al. (26). Further analysis indicated that CD13, CD90 
and CD133 could divide CSCs into three subgroups. The 
hepatocyte marker genes of CD90+ subgroup cells are 
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Figure 7 Drug sensitivity in cancer stem cell subgroups. The pRRophetic tool was applied to predict the IC50 of different subgroups of 
CSCs for different drugs. (A-C) Sensitivity of the CD13-positive subgroup to etoposide, GDC0941, and pazopanib; (D,E) sensitivity of the 
CD133-positive subgroup to OSI.906 and lapatinib; (F-I) sensitivity of the CD90-positive subgroup to midostaurin, CMK, AZD7762, and 
BX.795. CSC, cancer stem cell; IC50, half maximal inhibitory concentration.

APOA1 and APOC3 (27), indicating their bidirectional 
differentiation potential. The expression levels of the 
proliferation-associated gene NANOG were significantly 
increased in the CD133+ subgroup (28), and the expression 
levels of the metastasis- and differentiation-associated gene 
SOX9 were notably increased in the CD13+ subgroup (29), 
indicating differences in the proliferation, differentiation, 
and metastasis abilities of these subgroup cells. Therefore, 
CSCs can be distinguished using CD13, CD90 and CD133, 
and we confirmed the heterogeneity of these tumor cells in 
clinical samples.

After further analysis, the EMT pathway was enriched in 
all three subgroups of CSCs relative to cholangiocarcinoma 
cells, while the P53 pathway was significantly downregulated, 

suggesting that CSCs have increased metastatic ability 
and decreased apoptosis (30). In addition, Notch signaling 
was significantly enriched in the CD13+ subgroup, Wnt/
β-catenin signaling was enriched in the CD133+ subset, 
and TNF-α signaling was enriched in the CD90+ subset. 
Notch signaling is associated with cell differentiation and 
metastasis (31), Wnt/β-catenin signaling is correlated 
with cancer cell proliferation (32), and TNF-α signaling is 
involved in regulating immune regulation (33). According to 
the expression profile of transcription factors, CEBPD and 
STAT1 were most highly expressed in the CD13+ subgroup. 
Previous studies have shown that CEBPD can initiate the 
expression of proteins involved in cell differentiation (34), 
and STAT1 is involved in apoptosis (35). Moreover, HSF1 
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was most highly expressed in the CD133+ subgroup. HSF1 
is a transcription factor that resists cellular stress and is 
utilized to drive cell proliferation in a variety of cancer 
cells (36). The analyses of transcription factor levels and 
signaling pathway enrichment suggested that the CD13+ 
subgroup may have greater metastatic and differentiation 
abilities, the CD133+ subgroup may have greater proliferative 
ability, and the CD90+ subgroup may include tumor cells 
that escape immunity. Interestingly, according to the 
pseudotime analysis, we observed the reverse differentiation 
of cholangiocarcinoma cells into CD13+, CD90+ and CD133+ 
cells in ICC. Choi et al. have also revealed this phenomenon 
and suggested that it may be caused by tumor cell evasion of 
the immune response or hypoxic environmental stress (37).

Based on pseudotime analysis, the impact of CSC 
subtypes on lymph node metastasis and recurrence varied. 
Consequently, we performed unsupervised clustering of 
online data using our defined hallmarks and found that 
CD133+ cell levels were strongly associated with RFS in 
patients. Yamashita et al. previously reported that CD133 
expression was a poor prognostic factor in human lung 
adenocarcinoma, correlating with significantly shorter 
RFS (38). Similarly, Tachikawa et al. observed that positive 
CD133 expression was strongly linked to shortened RFS 
and high recurrence rates in colorectal cancer patients 
following chemoradiotherapy (39). Razmi et al. also have 
shown that in ICC patients, higher CD133 expression 
is associated with increased metastasis and recurrence 
rates, with patients displaying elevated CD133 levels 
experiencing shorter overall survival (OS) and RFS (40). 
Overall, CD133 is a prognostic risk marker across multiple 
cancers, supporting the credibility of our predictive model 
in this study. Furthermore, immunotherapy-related gene 
expression varied among the three clusters, suggesting 
that CSC heterogeneity may influence immunotherapy 
response. Using the pRRophetic tool, we predicted drug 
sensitivities across CSC subgroups (41,42), with results 
indicating that the three clusters also differed in their 
sensitivity to specific drugs.

This study holds considerable potential to advance the 
field by offering a foundational understanding of CSC-driven 
mechanisms in ICC. By precisely identifying the molecular 
characteristics and unique signaling pathways of specific 
CSC subtypes, we provide critical data for designing targeted 
therapies that address these CSC subpopulations, potentially 
leading to more effective and individualized treatments. 
Additionally, our approach in identifying prognostic 
biomarkers within CSC subpopulations enhances our ability 

to predict ICC outcomes and tailor treatments accordingly. 
Despite these advancements, several knowledge gaps remain. 
While our study has demonstrated the existence and roles 
of distinct CSC subpopulations in tumor progression and 
resistance, the mechanisms by which these CSC subtypes 
interact with the immune microenvironment and evade 
immune surveillance are still unclear. Additionally, our 
understanding of how CSC subtypes dynamically respond 
to treatments in vivo is limited. To address these gaps, 
future studies could incorporate multi-omics approaches, 
such as spatial transcriptomics and proteomics, to gain a 
comprehensive view of CSC interactions within the tumor 
microenvironment. Moreover, in vivo and in vitro models 
will be essential for elucidating the specific contributions 
of CSC subtypes to ICC progression, treatment response, 
and resistance. Looking ahead, we foresee significant 
advancements in CSC-targeted research within ICC over the 
next 5 years. As scRNA-seq technology and computational 
methods evolve, they are likely to provide even deeper 
insights into the molecular dynamics of CSCs, uncovering 
novel therapeutic targets and refining our understanding of 
the tumor microenvironment. Integrating scRNA-seq data 
with clinical datasets could also enable the development of 
more accurate prognostic models and improved prediction 
of treatment responses, facilitating personalized medicine 
for ICC patients. We also anticipate that novel CSC-specific 
therapeutic targets will emerge, paving the way for more 
precise and effective interventions against CSC-driven ICC 
progression.

This study has certain constraints that should be 
acknowledged. First, while scRNA-seq provides detailed 
snapshots of gene expression, it does not capture the temporal 
dynamics of CSC populations, which may change in response 
to treatment or disease progression. Furthermore, our study 
focused on specific CSC markers (CD13+, CD90+, CD133+), 
which may not encompass the full spectrum of CSC diversity 
within ICC. Although we validated the expression of these 
CSC subgroups in human ICC specimens through IHC, 
further in vivo and in vitro studies are needed to confirm the 
differential roles of CSC subtypes in tumor progression. 
Expanding the marker panel and conducting longitudinal 
studies would also strengthen these findings.

Conclusions

In summary, we identify CD13, CD90, and CD133 as key 
biomarkers for distinguishing CSC heterogeneity in ICC and 
suggest that the distribution of these subgroups correlates 
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with differences in tumor progression, drug sensitivity, and 
RFS. We believe this study provides a timely contribution 
to ICC research; by advancing our understanding of CSC 
subpopulations and their roles in ICC progression, we are 
one step closer to developing therapies that can effectively 
target this aggressive, treatment-resistant cancer, ultimately 
improving patient outcomes.
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