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Background: RNA-binding proteins (RBPs) are known to be involved in the initiation and development 
of malignant tumors, but the roles of RBPs in esophageal cancer (EC) remain unclear. This study aims to 
establish a prognostic signature based on RBPs through genome-wide analysis to predict the prognosis of 
EC patients and provide new insights into chemoresistance.
Methods: The gene expression profiles and clinical data of patients with EC were downloaded from the 
Xena database. Candidate genes were obtained by taking the intersection of RBP genes, Kyoto Encyclopedia 
of Genes and Genomes pathway-related genes, and differentially expressed RBP genes from cluster analysis. 
Hub genes were extracted via protein-protein interaction network construction. A Cox proportional hazards 
regression model with seven prognostic RBPs (TRMT2A, PDHA1, MPRIP, KRI1, IL17A, HSPA1A, and 
HIST1H4J) was built. The risk score of each patient in internal and external dataset cohorts was calculated, 
and then the patients were divided into two groups based on the median value.
Results: There were significant differences in survival curves between the two risk groups in the internal 
and external dataset cohorts (P<0.05). In terms of chemotherapy, there was a significant association 
between RBP risk score and response to chemotherapy, with low-risk patients being more likely to achieve 
complete response. Finally, univariate and multivariate analyses indicated that the risk score was significantly 
correlated with overall survival (P<0.05), and pathological stage could also be used independently to predict 
the prognosis of EC.
Conclusions: Our study indicated that the RBP signature could serve as a prognostic biomarker of EC and 
provided new insights into the chemoresistance of this disease.
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Introduction

Esophageal cancer (EC), with an estimated 604,000 new 
cases (ranking seventh) and 544,000 deaths (ranking sixth) in 
2020 worldwide, is a highly prevalent and lethal cancer (1).  
Esophageal adenocarcinoma (EAC) and esophageal 
squamous cell carcinoma (ESCC) are the two main types 
of EC. EAC represents roughly two-thirds of EC cases 
in high-income countries, while ESCC has the leading 
incidence (>90%) in certain high-risk areas in Asia (e.g., 
China). Despite progress in screening and treatment, the 
mortality of EC remains high, with an average 5-year 
survival rate of less than 15% (2). In recent years, even with 
numerous diagnostic molecular markers available, clinicians 
have failed to achieve accurate early-stage detection of EC. 
Large amounts of gene expression data provide clinicians an 
excellent opportunity to identify potential tumor molecular 
markers, which may be of crucial clinical significance for 
early EC detection, diagnosis, and prognosis.

RNA-binding proteins (RBPs) are a class of proteins that 
interact with different types of RNAs. At present, genome-
wide screening in humans has identified over 1,500 RBPs (3).  
Research on RBPs in cancer has revealed their roles in 

regulating a wide array of biological processes associated with 
tumorigenesis, namely gene expression, apoptosis, epithelial-
mesenchymal transition (EMT), and autophagy (4-6). In 
addition, the dysfunction of RBPs is also closely related to 
immune system disorders, neurodegenerative diseases, and 
other diseases of the human body (7,8). As a novel type of 
biomarker, RBPs have demonstrated potential to serve as 
therapeutic targets in various cancers, including colorectal, 
breast, and cervical cancer (9-11). A gene signature composed 
of multiple RBP-related genes can effectively predict the 
prognosis of certain patients with cancer (12). Although RBPs 
are known to be involved in the initiation and development of 
malignant tumors, the roles of RBPs in EC development still 
need to be elucidated. Moreover, no study has systematically 
evaluated RBP expression patterns, which may help us fully 
understand their roles in EC. Therefore, we downloaded 
EC RNA-sequencing and clinical data from public databases 
including The Cancer Genome Atlas (TCGA) and the 
Xena databases. After analysis, we identified differentially 
expressed RBPs between EC and normal samples and 
explored their functional roles and potential clinical value. 
Finally, we established a prognostic model based on the hub 
RBPs, identifying them as clinically significant prognostic 
biomarkers of EC. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-2024-2561/rc).

Methods

Data download

The gene expression profiles and clinical data of patients 
with EC were downloaded from the Xena database (https://
xenabrowser.net/). A total of 161 tumors and 11 adjacent 
normal tissues were obtained for further analyses. RBP-
related genes were extracted from the Eukaryotic RBP 
Database (EuRBPDB) (http://eurbpdb.gzsys.org.cn/) and 
related articles (13), and a total of 4,528 RBP-related genes 
were obtained.

Identification of hub genes

Initially, we obtained differentially expressed RBP-related 
genes. To identify differentially expressed genes (DEGs) 
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between EC and adjacent normal tissues, differences in 
expression were determined using the “limma” package in 
R (The R Foundation for Statistical Computing, Vienna, 
Austria) with a threshold of P<0.05. Furthermore, the 
differentially expressed RBP-related genes were determined 
by intersecting DEGs with RBPs. These RBP-related genes 
selected as initial candidates were used to establish the 
prognostic RBP signature in the subsequent step.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of the differentially expressed 
RBPs was performed. “ClusterProfiler” R package was used 
to identify the KEGG pathways these genes were enriched 
in, with P<0.05 indicating statistical significance. Following 
this, KEGG pathway-related genes were identified as 
candidate-RBP-geneset1 (cd-RBP-geneset1). Cluster analysis 
was performed via the “ConsensusClusterPlus” package in 
R (repetitions =100, pItem =0.8, pFeature =1, clusterAlg = 
“km”, distance = “euclidean”). Survival analysis was used to 
compare the overall survival (OS) between categorical data. 
Differences in the expression of the results from cluster 
analysis were determined using the “limma” R package, with 
P<0.05 indicating statistical significance. The differentially 
expressed RBP genes were identified as candidate-RBP-
geneset2 (cd-RBP-geneset2). Principal component analysis 
(PCA) was performed to facilitate data visualization.

Candidate genes were obtained via the intersection of 
RBP genes, cd-RBP-geneset1, and cd-RBP-geneset2. We 
used the “WGCNA” package in R software to build a gene 
coexpression network, and the minimum number of module 
genes was set at 50 to ensure the reliability of the results. 
Correlations between coexpression modules and clinical 
characteristics were analyzed, and the most clinically 
significant module was selected for protein-protein 
interaction (PPI) network construction to extract hub genes 
through Cytoscape 3.8 plugins.

Construction and validation of the prognostic RBP 
signature

We further investigated the hub genes selected for 
constructing the prognostic RBP-related signature. 
Prognostic RBPs were identified using univariate Cox 
regression analysis. We built a least absolute shrinkage and 
selection operator (LASSO) regression model using the 
“glmnet” R package to remove the redundancy factor via 
10-fold cross-validation.

Subsequently, the model was validated in terms of 
prediction effect evaluation via Kaplan-Meier survival 

analysis and receiver operator characteristic (ROC) curves 
through the “survival” and “survivalROC” packages in R 
software. We then evaluated the model stability in different 
clinical subgroups using Kaplan-Meier survival analysis in a 
clinical gene dataset from TCGA. For external validation, 
the GSE72873 dataset was selected and analyzed in a 
similar manner. We also conducted pancancer analysis 
using a clinical gene dataset from TCGA and compared our 
proposed model with existing RBP-related models.

Correlation analysis of clinical features and biomarkers of 
immune checkpoint inhibitor (ICI) response

We explored the differences in RBP risk scores between 
different clinical features using independent t-tests. 
Additionally, numerous biomarkers for predicting ICI 
response have been explored in recent years, including 
t u m o r  m u t a t i o n a l  b u r d e n  ( T M B ) ,  h o m o l o g o u s 
recombination deficiency (HRD), neoantigen load (NAL), 
stemness index, loss of heterozygosity (LOH), large-scale 
state transition (LST), telomeric allelic imbalance (TAI), 
immune cell infiltration, immune score, stromal score, 
tumor purity, somatic mutation, and copy number variation 
(CNV). We characterized the relationship between 
RBP risk scores and biomarkers and the differences in 
biomarkers between the high-risk and low-risk groups. 
TMB was calculated with the R “maftools” package. 
HRD was downloaded from the Xena database (https://
xenabrowser.net/). NAL was downloaded from the Tumor-
Specific NeoAntigen database (TSNAdb) (http://biopharm.
zju.edu.cn/tsnadb/). The stemness index was obtained from 
a previous study (14). The Pearson correlation coefficient 
test was used to estimate the relationship between the 
risk score and biomarkers. Immune cell infiltration was 
evaluated with the CIBERSORT algorithm. The immune 
score, stromal score, and tumor purity were analyzed with 
the “estimate” package in R, while somatic mutations were 
analyzed with the “maftools” package in R. A CNV map 
was drawn according to the segment of copy number in 
EC, and CNVs were compared between the high-risk and 
low-risk groups. Differences between the two groups were 
assessed with independent t-tests.

Prediction of response to treatment and prognosis

We evaluated the clinical significance of the RBP risk 
score in predicting the response to ICI treatment in the 
IMvigor210CoreBiologies dataset, containing 348 clinical 
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samples, of which, 298 containing immunophenotypes. 
We also evaluated the ability of the RBP risk score to 
predict responses to chemotherapy in TCGA database. 
The R package “pRRophetic” was employed in the 
sensitivity prediction of chemotherapeutic drugs (cisplatin, 
doxorubicin, mitomycin C, sorafenib, and vinblastine).

Independent prognostic value of the prognostic RBP 
signature

To assess the prognostic value of the RBP signature, 
we applied both univariate and multivariate analyses of 
prognostic factors using Cox proportional hazards models. 
Age and risk score were treated as continuous variables. 
Sex, T stage, M stage, N stage, pathological stage, and 
differentiation were treated as categorical variables. Factors 
with P<0.05 in both univariate and multivariate analyses 
were identified as independent prognostic variables. Finally, 
we constructed a nomogram that could predict the OS 
probability of patients with EC.

Immunohistochemical (IHC) staining of hub genes

IHC staining was performed to verify differential hub gene 
expression between EC tumors and their adjacent normal 
tissues. Details of the experiment procedures are described in 
the Appendix 1. This study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). All patients 
provided written informed consent before tissues were 
collected, and this research was approved by the institutional 
Ethical Committee of the First Affiliated Hospital of 
Zhengzhou University (No. 2023-KY-1440-001).

Statistical analysis

All statistical analyses were performed using R software 
(version 4.0.3) and SPSS (version 26.0). Analysis of variance 
(ANOVA) or t-tests were used to assess differences in RNA 
expression levels between different subgroups. Prognostic 
models were constructed using univariate Cox regression 
and LASSO regression, and validated through Kaplan-
Meier survival analysis and ROC curves. A chi-square test 
was used to analyze the correlation between risk-score 
and EC clinicopathological parameters. Survival analysis 
was performed using the Kaplan-Meier method. Pearson 
correlation analysis assessed the relationship between the 
RBP risk score and clinical features, as well as biomarkers of 
ICI response. The independent prognostic value of the RBP 

signature was evaluated using Cox proportional hazards 
models, adjusting for clinical variables. Unless otherwise 
specified, P values <0.05 were considered to indicate 
statistical significance, and all the P values were calculated 
as two-tailed tests.

Results

Basic information

The gene expression profiles of 172 samples (161 tumors 
and 11 adjacent normal tissues) from patients with EC were 
obtained from the Xena database. RBP-related genes were 
downloaded from the EuRBPDB and relevant articles (13), 
and a total of 4,528 RBP-related genes were obtained. A total 
of 337 hub genes were obtained through DEG analysis and 
weighted gene co-expression network analysis (WGCNA). 
Among these genes, prognostic RBPs were identified using 
univariate Cox regression analysis. Subsequently, a LASSO-
penalized Cox proportional hazards regression model with 
multiple prognostic RBPs was built. It was validated in the 
internal and external [GSE72873 (n=44)] dataset. Finally, 
pancancer analysis was performed, and correlations between 
the RBP risk score and immunotherapy biomarkers, 
including TMB, mismatch repair defects, and neoantigens, 
were identified. The detailed workflow is shown in Figure 1.

Identification of differentially expressed RBP genes in 
patients with EC 

In this study, we obtained 1,898 DEGs from the Xena 
database (Figure 2A,2B; table available at https://cdn.
amegroups.cn/static/public/tcr-2024-2561-1.xlsx). We 
then performed KEGG pathway enrichment analysis of 
the differentially expressed RBPs, and 62 pathways with 
1,331 RBP-related genes were identified (cd-RBP-geneset1) 
(Figure 2C; tables available at https://cdn.amegroups.
cn/static/public/tcr-2024-2561-2.xlsx and https://cdn.
amegroups.cn/static/public/tcr-2024-2561-3.xlsx).

We found that 1,879 RBP genes could reflect the 
prognosis of patients with EC. Fifty-four DEGs were 
obtained via the log-rank test and Cox proportional hazards 
regression (P <0.05). Hence, we performed a consensus 
unsupervised analysis of all samples based on these 54 RBP 
genes. We determined the optimal number of clusters 
using the consistent cumulative distribution function graph 
and the delta area plot (Figure 2D,2E). The final number 
of clusters was k =2. Therefore, two clusters of patients 
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Transcriptomic data of EC RBP genes

KEGG analysis

RBP genes Related genes by cluster analysis

Construction of risk prediction model

Correlation analysis of clinical feature and biomarker for predicting ICI response

Prediction of response in treatment and prognosis

Independent prognostic value of prognostic RBP signature

Pathway-related genes

Differentially expressed RBP genes

Candidate genes

Internal and external validation

Model stability validation

Hub genes

Difference analysis

Figure 1 Flowchart of the study. EC, esophageal cancer; ICI, immune checkpoint inhibitor; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; RBP, RNA-binding protein. 

were identified as follows: C1 (n=98, 40.33%) and C2 
(n=64, 26.34%). Subsequently, Kaplan-Meier analysis was 
used to evaluate the relationship between the clusters and 
prognosis. The results indicated that the C2 cluster was 
associated with better prognosis in terms of OS (Figure 2F).  
Furthermore, 635 DEGs were obtained from cluster 
analysis (cd-RBP-geneset2) (table available at https://cdn.
amegroups.cn/static/public/tcr-2024-2561-4.xlsx). PCA was 
effectively able to distinguish between the above subtypes 
(Figure 2G,2H).

Construction of the prognostic RBP signature

To further identify the association between RBPs and 
patients with EC with different clinical characteristics, the 
expression data profiles of RBP genes, cd-RBP-geneset1, 
and cd-RBP-geneset2 (Figure 3A) were transformed into a 
gene coexpression network using the “WGCNA” package 
in R (Figure 3B,3C). A total of 16 coexpressed modules 

were obtained through a one-step network construction 
method (Figure 3D-3F). Furthermore, we performed a 
correlation analysis between different coexpression modules 
and OS/OS time (Figure 3D,3E). The results indicate that 
the turquoise module had the most significant correlation 
with OS (correlation coefficient =0.19; P=0.02) (Figure 3F). 
However, there were no modules significantly correlated 
with OS time. The distribution of the modules’ average 
gene significance related to OS and OS time are shown 
in Figure 3D,3E, respectively. The turquoise module 
was selected as the most clinically significant module of 
OS for PPI network construction to extract hub genes 
through Cytoscape plugins. As a result, 337 hub genes 
were identified (Figure 3G; table available at https://cdn.
amegroups.cn/static/public/tcr-2024-2561-5.xlsx).

Among these 337 hub genes, 24 prognostic RBPs (6 
newly predicted) were identified using univariate Cox 
regression analysis (Figure S1). Subsequently, we performed 
multivariate Cox regression analysis (Figure 4A) and LASSO 
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regression analysis (Figure 4B) separately using these  
24 genes. We then intersected the statistically significant 
genes from the multifactorial Cox regression with the 14 
candidate genes selected by LASSO analysis, ultimately 

identifying 7 risk score genes. The formula for the risk 
score was as follows: risk score = TRMT2A × (−0.9916) + 
PDHA1 × 0.9129 + MPRIP × (−1.121) + KRI1 × (−0.6753) 
+ IL17A × 1.282 + HSPA1A × 0.2014 + HIST1H4J × 1.256 



Sun et al. Genome-wide profiling of a prognostic RBP signature in EC1434

© AME Publishing Company.   Transl Cancer Res 2025;14(2):1428-1446 | https://dx.doi.org/10.21037/tcr-2024-2561

0 5 10 15 20 25 30
Soft threshold (power)

0 5 10 15 20 25 30
Soft threshold (power)

1.0

0.9

0.8

0.7

H
ei

gh
t

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

G
en

e 
si

gn
ifi

ca
nc

e

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

G
en

e 
si

gn
ifi

ca
nc

e

1.0

0.8

0.6

0.4

0.2

0.0S
ca

le
-f

re
e 

to
po

lo
gy

 m
od

el
 fi

t, 
si

gn
ed

 R
2

600

400

200

0

M
ea

n 
co

nn
ec

tiv
ity

1

0.5

0

−0.5

−1

MEbrown

MEsalmon

MEmagenta

MEyellow

MEgreenyellow

MEpurple

MEblue

MEcyan

MElightcyan

MEturquoise

MEblack

MEtan

MEpink

MEgreen

MEred

MEgrey

B
la

ck

B
lu

e

B
ro

w
n

C
ya

n

G
re

en

G
re

en
ye

llo
w

G
re

y

Li
gh

tc
ya

n

M
ag

en
ta

P
in

k

P
ur

pl
e

R
ed

S
al

m
on Ta

n

Tu
rq

uo
is

e

Ye
llo

w

B
la

ck

B
lu

e

B
ro

w
n

C
ya

n

G
re

en

G
re

en
ye

llo
w

G
re

y

Li
gh

tc
ya

n

M
ag

en
ta

P
in

k

P
ur

pl
e

R
ed

S
al

m
on Ta

n

Tu
rq

uo
is

e

Ye
llo

w

Gene significance across modules, P-value =6.9e−55

Gene significance across modules, P-value =3e−09

Module-trait relationships

Scale independence Mean connectivity

Cluster dendrogram

383

191

3,714 623

RBP-genes cd-RBP-geneset1

cd-RBP-geneset2

647

61

Dynamic tree cut

Merged dynamic

OS

OS tim
e

−0.13
(0.11)

0.0098
(0.9)

0.07
(0.38)

−0.025
(0.76)

−0.13
(0.098)

−0.017
(0.83)

−0.041
(0.61)

−0.069
(0.39)

−0.063
(0.43)

−0.056
(0.48)

−0.044
(0.58)

−0.01
(0.9)

0.0051
(0.95)

−0.032
(0.69)

−0.14
(0.086)

0.11
(0.15)

0.19
(0.02)

0.088
(0.27)

−0.043
(0.59)

−0.024
(0.76)

−0.15
(0.054)

−0.09
(0.26)

0.11
(0.17)

−0.09
(0.26)

0.035
(0.66)

−0.046
(0.57)

−0.034
(0.67)

−0.032
(0.69)

−0.034
(0.67)

0.12
(0.14)

0.093
(0.24)

0.02
(0.8)

A B

C D F

E

G

Figure 3 Construction of the prognostic RBP signature. (A) Venn diagram showing the RBP genes, cd-RBP-geneset1, and cd-RBP-
geneset2. (B) The effect of different power values on the scale independence and average connectivity degree of coexpression modules 
of RBP-related genes. (C) The constructed coexpression modules of RBP-related genes via the “WGCNA” R software package. (D) 
The distribution of the average gene significance related to OS in different modules is shown. (E) The distribution of the average gene 
significance related to OS time in different modules is shown. (F) The heatmap visualizes the correlation between the modules and the 
patient’s clinical characteristics. (G) Protein-protein interaction network construction. ME, module; OS, overall survival; RBP, RNA-binding 
protein; WGCNA, weighted gene co-expression network analysis.



Translational Cancer Research, Vol 14, No 2 February 2025 1435

© AME Publishing Company.   Transl Cancer Res 2025;14(2):1428-1446 | https://dx.doi.org/10.21037/tcr-2024-2561

11.5

11.0

10.5

10.0

9.5
P

ar
tia

l  
lik

el
ih

oo
d 

de
vi

an
ce

−1.0 −0.5 0.0 0.5 1.0
Coefficients

−6 −5 −4 −3 −2
Log(λ)

23 22 22 22 21 20 17 15 15 14 12 10 3 1

0.5 1.5 2.5 3.5 4.5 5.5
Hazard ratio

Gene         Hazard ratio (95% CI)                                                 P value

TRMT2A

PDHA1

MPRIP

KRI1

IL17A

HSPA1A

HIST1H4J

G
en

e

CYCS

PDHA1

PSMC6

EGFR

POMP

HDAC1

KRI1

DDX24

EIF4A3

RAB1A

SMARCB1

EIF1AX

IL17A

TRMT2A

HSPA1A

POLDIP3

HIST1H4J

CHD3

PTPN1

CLDN3

MPRIP

CLDN23

CSNK1E

CLDN7

1.66 (1.14–2.41)

2.81 (1.71–4.62)

2.32 (1.23–4.38)

0.8 (0.66–0.97)

1.49 (1.02–2.18)

1.72 (1.02–2.9)

0.43 (0.24–0.8)

0.48 (0.24–0.95)

1.83 (1.05–3.19)

2.44 (1.08–5.48)

0.48 (0.27–0.85)

1.72 (1.06–2.79)

3.01 (1.65–5.47)

0.44 (0.22–0.87)

1.22 (1–1.49)

0.24 (0.12–0.5)

2.1 (1.24–3.58)

0.69 (0.48–0.99)

0.57 (0.33–0.97)

1.12 (1.02–1.22)

0.45 (0.24–0.84)

1.19 (1.01–1.4)

0.44 (0.24–0.81)

1.27 (1–1.6)

0.008

<0.001

0.009

0.02

0.04

0.04

0.007

0.04

0.03

0.03

0.01

0.03

<0.001

0.02

0.049

<0.001

0.006

0.045

0.04

0.02

0.01

0.04

0.009

0.047

A B C
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(Figure 4C).
Additionally, we analyzed the expression levels of these 

7 genes through IHC in EC tissue and adjacent normal 
tissues. And the results showed that the expression of hub 
genes in EC tumor tissue was higher than that in adjacent 
normal tissues. The H-scores in the tumor samples were 
significantly higher than those in their matched normal 
tissues (Figure 5).

Validation of the risk model

The risk model was further validated in the internal and 
external [GSE72873 (n=44)] dataset.

In the internal dataset cohort, the risk score of each 
patient was calculated, and patients were divided into two 
groups based on the median, with 80 patients in each of the 
high- and low-risk groups. The risk score distribution and 
survival status for this cohort are displayed in Figure 6A,6B. 
The survival curves in Figure 6C show that the prognosis 
of patients in the high-risk group was significantly poorer 
than that of patients in the low-risk group (P<0.001). The 
heatmap of risk gene expression in both groups is shown 
in Figure 6D, and the area under the curve (AUC) values at 
1, 2, and 3 years were 0.789, 0.821, and 0.797, respectively, 
indicating the good predictive accuracy of the risk score 
model (Figure 6E). For the external dataset cohort, a similar 
division was made, with 22 patients in each risk group. The 
risk score distribution and survival status for this cohort are 
displayed in Figure 7A,7B. The survival curves also show the 
same trend (P=0.008) (Figure 7C). The heatmap of risk gene 

expression in both groups is shown in Figure 7D, and the 
AUC value at 3 years for this cohort was 0.701 (Figure 7E). 

We then evaluated the model stability in different 
clinical subgroups, and the age, sex, grade, stage, and T 
classification subgroups showed significant differences in 
OS between the high-risk and low-risk groups (Figure S2). 
In the TCGA pancancer analyses, except for breast cancer 
(BRCA), all other cancer types [adenoid cystic carcinoma 
(ACC), colon adenocarcinoma/rectum carcinoma (COAD), 
kidney renal clear cell carcinoma (KIRC), and low-
grade glioma (LGG)] showed significant differences in 
OS between the high- and low-risk groups (Figure S3). 
We further compared our proposed model with two 
existing RBP-related models, prognostic model 1 (15) and 
prognostic model 2 (16), and our model achieved a higher 
AUC value (Figure S4).

Correlations of RBP risk score with clinical features and 
biomarkers of ICI response

We explored the differences in RBP risk scores between 
different clinical features, and the results are shown in 
Figure 8. There were significant differences between the 
RBP risk score and clinical features such as sex (Figure 8B), 
M classification (M1 vs. M0) (Figure 8D), N classification 
(N1 and N2 vs. N0) (Figure 8E), and stage (stage III and 
stage IV vs. stage I, stage IV vs. stage II) (Figure 8F), while 
no statistical differences were found in age (Figure 8A), 
pathological grading (Figure 8C), and T classification  
(Figure 8G). We further explored the relationship between 

https://cdn.amegroups.cn/static/public/TCR-2024-2561-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-2024-2561-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-2024-2561-Supplementary.pdf
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the RBP risk score and biomarkers of ICI response 
(including TMB, HRD, NAL, stemness index, LOH, 
LST, and TAI) in cancer, and the results showed that there 
was a remarkable relationship between messenger RNA 
expression-based stemness index (mRNAsi) and the RBP 
risk score, while the other biomarkers had no significant 
correlations (Figure S5).

We then explored the differences in biomarkers for 
predicting ICI response (immune cell infiltration, immune 
score, stromal score, tumor purity, somatic mutation 
and CNV) between the high-risk and low-risk groups. A 
difference analysis of the content of various immune cells in 

the high- and low-risk groups revealed high levels of follicular 
helper T cell (Tfh cell) and resting dendritic cell infiltration 
in the low-risk group, while there were no significant 
differences in the infiltration levels of other immune 
cells (Figure 9A). The estimation of stromal and immune 
cells in malignant tumor tissues using expression data 
(ESTIMATE) analysis showed that there were no significant 
differences regarding the stromal score (Figure 9B), the 
immune score (Figure 9C) or tumor purity (Figure 9D).  
Similarly, there were no differences regarding the somatic 
mutation type or frequency (Figure 9E). High-risk patients 
had significantly higher CNVs than did their low-risk 

https://cdn.amegroups.cn/static/public/TCR-2024-2561-Supplementary.pdf
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counterparts (P<0.001) (Figure 9F).

Evaluation of the RBP risk score for the prediction of 
response to treatment and prognosis

In terms of immunotherapy, there was no significant 
difference in OS between the high- and low-risk groups 
(P=0.64) (Figure 10A). The differences in RBP risk scores 
between patients with different responses to treatment 
were not significantly different (P>0.05) (Figure 10B). 
Additionally, the proportions of complete response (CR)/
partial response (PR) and stable disease (SD)/progressive 

disease (PD) in the high-risk group were 25.5% and 74.5%, 
respectively, while those in the low-risk group were 20.13% 
and 79.87%, respectively, and were not significantly 
different (Figure 10C). 

In terms of chemotherapy, there was a significant 
association of RBP risk score and response to chemotherapy, 
with low-risk patients being more likely to achieve CR 
(Figure 10D). The AUC value for the prediction of 
chemotherapy response was 0.796 (Figure 10E) and the 
relative proportions of CR, PR, SD and PD were 56.41%, 
0%, 10.26% and 33.33%, respectively, in the high-risk 
group, while they were 70.69%, 1.72%, 1.72% and 25.86%, 
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respectively, in the low-risk group (Figure 10F). We further 
analyzed the association of chemoresistance with the RBP 
risk score, and the results showed that low-risk patients 
tended to be more sensible to cisplatin and vinblastine, 
while high-risk patients tended to be more sensible to 
doxorubicin, mitomycin C and sorafenib (Figure 10G).

Independent prognostic value of the RBP signature and 
clinical parameters

The risk score was found to be significantly related to 
OS according to univariate (Figure 11A) and multivariate  
(Figure  11B )  analyses  (P<0.05) .  The resul ts  a l so 
demonstrated that pathological stage and the risk model 
could be used independently to predict the prognosis of EC. 
Furthermore, we found that the nomogram (Figure 11C) was 
more accurate than the risk score and pathological stage in 
predicting OS at 3 years. In fact, the AUCs at 3 years for the 
nomogram, the risk score, and pathological stage were 0.837, 
0.76, and 0.762, respectively (Figure 11D). The calibration 
curves indicate that the survival probabilities predicted by 
our model have a good fit with the actual probabilities of 
patient survival at 1, 2, and 3 years (Figure 11E-11G).

Discussion

EC is the most common malignant tumor of the digestive 
tract and has a poor prognosis. Studies have established 
several novel biomarkers signatures to determine the 

prognosis of patients with EC, with research directions 
involving microRNA (17,18), autophagy (19), DNA repair 
(20,21), m6A RNA methylation (22), long noncoding 
RNA (23), epigenetics (24), lymph node metastasis (25), 
urinary metabolomic (26), and immunology (27). RBP-
related biomarkers have demonstrated reliable predictive 
capabilities for tumor risk characteristics in various cancers 
(28-33). In EC, existing research has focused on the 
diagnostic and prognostic predictive abilities of the models, 
with a lack of systematic investigation into the potential 
biological characteristics of these models (12,34). Therefore, 
this study constructed a novel RBP-related prognostic 
signature, further validated the expression of the signature 
through IHC, and systematically analyzed the relationship 
between the signature and clinical characteristics, response 
to ICIs, and response to immunotherapy.

Notably, not all 7 prognostic RBP-related genes have 
been reported to be associated with prognosis in cancer. 
For TRMT2A, only one study has reported that TRMT2A 
protein expression is a biomarker of increased risk of 
recurrence in patients with human epidermal growth factor 
receptor 2 (HER2)-positive breast cancer and may be used 
to predict the response to adjuvant chemotherapy (35). 
However, as shown in our prediction model, TRMT2A was 
found to be a gene associated with improved prognosis, but 
this needs further validation in EC. Recent studies have 
shown that PDHA1 plays a multifaceted role in cancer 
biology, including its potential as a therapeutic target, its 
involvement in the metabolic reprogramming of tumor cells, 
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and its impact on immune responses and the pluripotency 
of stem cells. In EC, PDHA1, as a cuproptosis-related gene, 
can effectively predict the immune status and prognosis of 
tumors (36,37). IL17A is a member of the IL17 cytokine 
family and is released by immune, stromal and tumor cells, 

into the tumor microenvironment. Among all the IL17 
cytokine family members, IL17A is the most controversial 
in terms of its role in regulating tumor immunity, and its 
prognostic value varies across cancer types. Generally, 
tumor-infiltrating IL17A-producing cells (IL17A+ cells) 
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are associated with elevated antitumor immunity (38). A 
study demonstrated that IL17A deficiency reduces tumor 
latency and promotes metastasis in lung cancer (39), while 
other research showed that IL17A mRNA expression could 
be used as a predictive biomarker for superior response 
to adjuvant chemotherapy and can indicate better patient 
survival in gastric cancer (40). In pancreatic cancer, an 
anti-IL17A antibody can enhance the antitumor response 
to gemcitabine (41), which implies that IL17A may be 
involved in the development of drug resistance. IL17A 
polymorphisms have been associated with the risk of various 
cancers, and the IL17A rs4711998 A>G polymorphism was 
reported to be associated with a decreased risk of EC (42). 
In our study, IL17A could indicate poor survival in patients 
with EC. Research suggests that HSPA1A is associated with 
unfavorable survival and poor clinicopathological features in 
several kinds of tumors (43-45). Furthermore, HSPA1A was 
demonstrated to mediate breast cancer radioresistance (46). 
However, no study has examined the effects that HSPA1A 
exerts on malignant biological properties, treatment 
sensitivity, or prognosis in EC. Importantly, no studies have 
reported MPRIP, KRI1, or HIST1H4J as being associated 
with prognosis in cancer, and thus our findings are the first 
to identify their association with EC prognosis.

In this study, we established a seven-gene biomarker as 
a novel prognostic model and analyzed its ability to predict 
prognosis in different cohorts. Although the number of 
adjacent normal tissues from TCGA was relatively small 
(n=11), it did not affect the reliability of the results. The 
prognostic performance of the model was confirmed by 
internal and external validation. Importantly, the RBP 
signature represented also a strong independent indicator 
of survival with adjusted clinical parameters, including age, 
sex, tumor grade and stage, T, N, and M classification. 

We further analyzed the predictive value of the RBP 
signature for chemotherapy and immunotherapy response. 
Interestingly, our signature could predict the efficacy of 
chemotherapy, while the efficacy of immunotherapy was 
not well predicted. Many of the chemotherapy agents used 
in the treatment of cancer interfere with the production of 
nucleic acids, thus, chemotherapy may interfere with the 
binding of RBPs to RNAs. In turn, the expression of RBPs 
may influence chemotherapy, leading to drug sensitivity or 
resistance. The chemotherapy agents considered (cisplatin, 
doxorubicin, mitomycin C, sorafenib and vinblastine) in 
our study can provide new ideas and serve as a basis for 
future clinical drug research. However, as shown in our 

study, there were no significant differences in most of the 
biomarkers for predicting ICI responses and immune cells 
in the immune microenvironment. This is probably the 
main reason for the unpredictability of immunotherapy. 
Variability in responses to treatment and mechanisms of 
resistance stem from different antitumor mechanisms. This 
might suggest that different signatures are needed to predict 
drug sensitivity/resistance and prognosis. Various immune 
gene signatures have been identified to predict therapeutic 
effects in a variety of tumors (47-50). Wang et al. identified 
a prognostic immune gene signature in EC; however, this 
signature did not predict immunotherapy response (27).  
Therefore, further studies are needed to predict the 
therapeutic effect of immunotherapy in EC. Finally, we 
validated the differential expression of hub genes in EC 
using clinical samples and IHC staining.

Conclusions

In conclusion, we established a prognostic signature with 
seven prognostic RBPs as biomarkers for patients with EC. 
Our study could also contribute to providing new insight 
into chemoresistance in these patients.
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