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Background: Unlike traditional survival analysis methods, conditional survival (CS) provides enhanced 
insight by offering a personalized prognosis estimation as time advances for tumor patients. This study aimed 
to estimate CS and devised a novel CS-nomogram for real-time prediction of 10-year CS for patients with 
spinal chordoma.
Methods: Patients diagnosed with spinal chordoma from 2000 to 2019, as documented in the Surveillance, 
Epidemiology, and End Results (SEER) database, were included in this study. CS represents the likelihood 
of surviving an additional y years given that the patient has already survived x years. It is computed using 
the equation CS(x|y) = S(x + y)/S(x), where S(x) denotes the patient’s survival rate at x years. The univariate 
Cox hazard regression, least absolute shrinkage and selection operator (LASSO) analysis and best subset 
regression (BSR) methods were employed for variable selection. Based on these selected factors, the CS-
based nomogram and a risk classification system were developed. Finally, several approaches were used to 
validate the performance of our model.
Results: Between 2000 and 2019, the SEER database identified 730 patients with spinal chordoma, 
distributed into 510 in the training group and 220 in the validation group. CS analysis showed that patients 
experienced a gradual augmentation in their 10-year survival rates over the course of each additional year 
post-diagnosis. We also successfully created a CS-based nomogram model for forecasting 3-, 5-, and  
10-year overall survival, along with 10-year CS. The CS-based nomogram incorporating age, tumor 
size, tumor extension, multiple primary tumors, and surgery demonstrated robust predictive capabilities. 
Moreover, a novel risk classification system was constructed to aid in tailored management strategies and 
personalized treatment decisions for spinal chordoma patients.
Conclusions: In contrast to traditional survival assessment methods, our analysis of CS yielded more 
dynamic and real-time outcomes for spinal chordoma patients. Via our CS-based nomogram model and 
risk classification system, we have provided more precise prognostic insights for these patients, aiding in 
treatment planning and follow-up strategy formulation in clinical settings.
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Introduction

Chordoma, originating from notochordal remnants, is a 
comparatively uncommon malignant tumor, representing 
approximately 3–4% of all primary bone tumors (1-3). 
Chordomas are primarily located in the sacrum (50%), 
followed by the skull base (30%), and the mobile spine 
(20%) (4-6). In the United States, the reported incidence 
of chordoma is 0.08 per 100,000 individuals (7). Despite 
being classified as a malignancy of low-to-moderate grade, 
it is crucial to emphasize that chordomas originating in the 
sacrococcygeal and spinal regions exhibit a more aggressive 
behavior compared to those originating in the skull area 
(8,9). As a result of their localized aggressiveness, patients 
may experience significant deterioration in both survival 
and quality of life. The overall 5-year survival rate is 
estimated to be approximately 65% (10-12), underscoring 
the importance of conducting further in-depth research 
specifically targeting the spinal tumor population. 

Considering the low morbidity but aggressive character 
of spinal chordomas, patients harbor significant concerns 
regarding their prognosis following diagnosis (13). To 
address this concern, conditional survival (CS) emerges as 
a preferable alternative to accrued survival (14-17). CS(x/y) 
refers to the likelihood of surviving for an additional y years, 
provided that a patient has already survived for x years 
following the diagnosis of spinal chordomas. Hence, unlike 
conventional survival analysis methods, CS could offer 
enhanced insight by furnishing a personalized prognosis 
estimation as time advances (17). Presently, prognostic 
assessment of spinal chordomas is largely confined to 
traditional overall survival (OS), with the CS trajectory of 

these patients remaining unexplored.
The nomogram, typically depicted graphically, correlates 

each predictive factor with a corresponding score, which 
is then combined to calculate the probability of a specific 
event, making it widely employed in tumor prognosis 
prediction (18-20). Therefore, in this study, we attempted 
to integrate CS analysis into the nomogram model, 
thus combining their respective strengths to create a 
convenient tool for clinical use in predicting CS prognosis. 
Moreover, in light of the uncommon occurrence of this 
tumor, we utilized the vast sample cohorts provided by 
the Surveillance, Epidemiology, and End Results (SEER) 
public database. This allowed us to analyze the CS profile 
tailored to this specific tumor type and to train and validate 
a relatively large-scale CS-nomogram model. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-1912/rc).

Methods

Patient

This retrospective cohort study extracted patients diagnosed 
with chordoma from the SEER database, which gathers 
clinical cancer data from 18 different cancer registries 
spanning since 1973, encompassing around 30% of the 
total U.S. population. The data for this observational study 
was exclusively sourced from the freely accessible SEER 
database, and patient consent was waived accordingly. 
Subject selection criteria were established as follows: (I) 
diagnosis of chordoma (9370/3, 9371/3, 9372/3) based on 
International Classification of Disease for Oncology, version 
3, histological codes; (II) diagnosis between 2000 and 2019 to 
ensure adequate follow-up time; (III) primary site of vertebral 
column (C41.2) or pelvis, sacrum, or coccyx (C41.4); (IV) 
diagnosis obtained from a living patient rather than from a 
death certificate or autopsy; (V) complete follow-up duration 
without missing data. Exclusion criteria encompassed: 
(I) unknown race and tumor extension; (II) undisclosed 
treatment approach. In this study, we use the term ’spinal 
chordoma’ to refer to both spinal and sacrococcygeal 
chordomas. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Variable selection and outcomes

Patient clinical characteristics were delineated as follows: 
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age at diagnosis, race, sex, marital status, household 
income and treatment modalities encompassing surgery, 
radiotherapy and chemotherapy. Tumor-specific attributes 
such as tumor site, tumor size, tumor extension and number 
of primary tumors were also considered. Tumor extension 
was categorized into localized (tumor encasement within 
the periosteum), regional (further contiguous extension 
beyond the periosteum without distant involvement), and 
distant metastasis. Surgical procedures were identified 
based on the “RX Summ-Surg Prim Site (1998+)” field 
and subsequently grouped into three distinct categories: no 
surgery, subtotal resection (STR) and gross total resection 
(GTR). OS was defined as the duration from the diagnosis 
of spinal and pelvic chordoma to either death from any 
cause or censoring.

CS analysis

The concept of CS delves into the probability of a patient 
surviving an additional y years given they have already 
survived for x years. This statistical representation can be 
succinctly expressed as the CS (x|y) = S (x + y)/S (x), where 
S (x) denotes the cumulative survival rate over x years. To 
calculate the CS, we utilized life table survival data, enabling a 
comprehensive understanding of survival dynamics over time. 
This methodological approach not only offers insight into 
immediate survival prospects but also accounts for the evolving 
nature of disease prognosis over extended periods (21).

CS-nomogram construction and validation

The cohort of all patients was divided into training 
and validation sets at a ratio of 7:3 for CS-nomogram 
construction and validation (22). To initiate preliminary 
variable selection, the training group underwent assessment 
via three distinct methodologies: univariate Cox hazard 
regression, least absolute shrinkage and selection operator 
(LASSO) analysis and best subset regression (BSR) (23-25).  
Subsequently, a backward stepwise multivariable Cox 
regression analysis was conducted to ascertain the ultimate 
significant independent prognostic factors. During the 
univariate Cox hazard regression analysis, variables with a 
P value <0.05 were identified for potential inclusion in the 
ensuing multivariable Cox regression analysis. The LASSO 
method was employed to mitigate severe multicollinearity, 
achieving this by implementing a penalty function to shrink 
variable coefficients, thus averting overfitting. Similarly, the 
BSR method facilitated the selection of an optimal model 

given prevailing variable conditions, guided by the criterion 
of adjusted R2 (25). Ultimately, the optimal predictive model 
was determined through a comprehensive comparison of 
receiver operating characteristic (ROC) curves and Akaike 
information criterion (AIC) values, ensuring robustness 
and accuracy in prognostic modeling (26). The AIC serves 
as a versatile tool for assessing and comparing the relative 
quality of various models, aiding in the selection of the 
most suitable one. Lower AIC values signify models that 
strike a superior balance between fit and parsimony, thereby 
indicating their superiority in capturing essential patterns 
within the data while avoiding unnecessary complexity.

Following the identification of variables, a comprehensive 
multivariable Cox regression analysis was performed 
to validate the prognostic significance of these selected 
factors. Ultimately, a comprehensive CS-nomogram was 
constructed to facilitate the prediction of survival outcomes, 
encompassing 3-, 5-, and 10-year OS, as well as 10-year 
CS. This nomogram was developed utilizing the refined 
multivariable Cox regression model, incorporating key 
prognostic factors to provide a practical and user-friendly 
tool for estimating survival probabilities across various time 
horizons.

The validation group was employed to validate 
the CS-nomogram model, ensuring its reliability and 
generalizability across different patient cohorts. The 
evaluation of the nomogram’s predictive performance 
involved multiple methodologies. Calibration curves were 
employed to gauge the agreement between predicted and 
observed outcomes, providing insights into the nomogram’s 
calibration capability. Concordance index (C-index) and 
the ROC curve, along with its associated area under the 
curve (AUC), served as primary metrics for assessing 
predictive accuracy (27). Furthermore, decision curve 
analysis (DCA) was conducted to appraise the clinical utility 
of the nomogram, shedding light on its practical value in 
informing clinical decision-making (28). Through these 
comprehensive analyses, the nomogram’s effectiveness in 
real-world clinical settings were thoroughly examined.

Risk system classification development

We utilized the CS-nomogram to generate risk scores 
for each patient. Subsequently, based on the optimal risk 
stratification cutoff values determined by restricted cubic 
spline (RCS) curve (29,30), patients were stratified into 
distinct risk groups, namely low- and high-risk categories. 
Kaplan-Meier curves, together with the log-rank tests, 
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were employed to visually depict and compare the survival 
outcomes among patients stratified into different risk 
categories. This stratification process facilitated a nuanced 
understanding of patients’ prognostic profiles, aiding in 
tailored management strategies and personalized treatment 
decisions.

Statistical analyses

Categorical variables were presented as counts and 
proportions. All statistical analyses were performed with use 
of R (www.r-project.org). A statistical significance threshold 
is typically set at a two-tailed P value of less than 0.05.

Results

Baseline characteristics

Between 2000 and 2019, the SEER database identified 
a total of 730 patients diagnosed with spinal chordoma. 
Following random assignment facilitated by R software, 
the training group encompassed 510 patients, while the 
validation group comprised 220 individuals. Across the 
entire cohort, a notable majority of patients were aged 
over 60 years (57.9%), male (60.0%), and White ethnicity 
(87.1%). The primary site of tumors was predominantly 
within pelvic bones (58.1%), with a sizable proportion 
being localized (46.2%). And patients with this type of 
tumor concurrently have other tumors, accounting for 
27.4%. Treatment modalities varied, with 73.7% of patients 
undergoing surgery, 49.7% receiving radiotherapy, and only 
4.8% undergoing chemotherapy. Regarding the extent of 
surgical resection, 35.6% of patients underwent STR, while 
38.1% underwent GTR. A comprehensive overview of 
patient clinical characteristics is provided in Table 1.

CS

Utilizing the Kaplan-Meier method, we derived estimates 
of OS rates for patients diagnosed with spinal chordoma, 
projecting rates of 81%, 70%, and 45% at 3, 5, and  
10 years, respectively. Interestingly, there was a discernible 
upward trajectory observed in the 10-year CS survival. 
Over the course of each additional year post-diagnosis, 
patients experienced a gradual augmentation in their  
10-year survival rates, advancing from an initial rate of 
45% to subsequent rates of 49%, 53%, 56%, 60%, 65%, 
71%, 76%, 84%, and 91% after surviving for 1 to 9 years, 

respectively. This progression underscores the evolving 
nature of survival outcomes for spinal chordoma patients 
over time. A graphical representation of the 10-year CS 
rates at various intervals is provided in Figure 1, offering a 
visual depiction of these dynamic trends.

Variable selection

To initiate variable selection, we employed univariate 
Cox hazard regression, LASSO, and BSR methods. 
Univariate Cox hazard regression identified six variables 
with P values <0.05, encompassing age, tumor size, tumor 
extension, multiple primary tumors, surgery, and marital 
status, as illustrated in Figure 2A. Subsequently, the BSR 
analysis finalized a set of five variables, including age, 
tumor size, tumor extension, multiple primary tumors, 
and surgery (Figure 2B). In the LASSO regression analysis, 
four variables associated with the lambda.1se value were 
identified: age, tumor size, tumor extension, and surgery 
(Figure 2C,2D). Following this initial selection process, the 
variables derived from each regression approach underwent 
a backward stepwise multivariable Cox regression analysis. 
This iterative process led to the formulation of three 
predictive models, as detailed in Table 2. Upon analysis 
using R software, the predictive model established through 
multivariate Cox regression, incorporating variables selected 
by univariate Cox regression and BSR, exhibited the 
lowest AIC value (AIC =2,029.2, Figure 2E). Furthermore, 
it yielded the highest AUC values for the ROC curves 
(Figure 2F). Consequently, the final predictive model 
included the following variables: age, tumor size, tumor 
extension, multiple primary tumors, and surgery. And we 
further illustrated the significant prognostic relevance of 
the selected variables through a forest plot generated by 
multivariable regression analysis (Figure 3).

CS-nomogram construction and validation

We introduced an innovative approach by integrating CS 
analysis into the nomogram model, thus creating a CS-
based survival prediction model. Utilizing the multivariable 
Cox model,  we formulated the CS-nomogram for 
forecasting 3-, 5-, and 10-year OS, along with 10-year CS 
(Figure 4). 

Then, multiple methods were employed to assess the 
performance of our predictive model in both the training 
and validation cohorts. The calibration plots indicated 
strong concordance between the model’s predictions and the 

http://www.r-project.org


Ren et al. CS for spinal chordoma1714

© AME Publishing Company.   Transl Cancer Res 2025;14(3):1710-1724 | https://dx.doi.org/10.21037/tcr-24-1912

Table 1 Baseline clinicopathological characteristics

Characteristics Total cohort (N=730), n (%) Training group (N=510), n (%) Validation group (N=220), n (%)

Age at diagnosis, years

<60 307 (42.1) 218 (42.7) 89 (40.5)

60–69 161 (22.1) 112 (22.0) 49 (22.3)

70–79 152 (20.8) 108 (21.2) 44 (20.0)

≥80 110 (15.1) 72 (14.1) 38 (17.3)

Sex

Male 438 (60.0) 298 (58.4) 140 (63.6)

Female 292 (40.0) 212 (41.6) 80 (36.4)

Race

White 636 (87.1) 444 (87.1) 192 (87.3)

Non-White 94 (12.9) 66 (12.9) 28 (12.7)

Tumor size

≤65 mm 280 (38.4) 195 (38.2) 85 (38.6)

>65 mm 282 (38.6) 199 (39.0) 83 (37.7)

Unknown 168 (23.0) 116 (22.7) 52 (23.6)

Primary site

Vertebral column 306 (41.9) 202 (39.6) 104 (47.3)

Pelvic bones 424 (58.1) 308 (60.4) 116 (52.7)

Tumor extension

Localized 337 (46.2) 237 (46.5) 100 (45.5)

Regional 313 (42.9) 219 (42.9) 94 (42.7)

Distant 80 (11.0) 54 (10.6) 26 (11.8)

Multiple primary tumors

No 530 (72.6) 369 (72.4) 161 (73.2)

Yes 200 (27.4) 141 (27.6) 59 (26.8)

Surgery

No surgery 192 (26.3) 139 (27.3) 53 (24.1)

STR 260 (35.6) 176 (34.5) 84 (38.2)

GTR 278 (38.1) 195 (38.2) 83 (37.7)

Radiotherapy

No 367 (50.3) 259 (50.8) 108 (49.1)

Yes 363 (49.7) 251 (49.2) 112 (50.9)

Chemotherapy

No 695 (95.2) 488 (95.7) 207 (94.1)

Yes 35 (4.8) 22 (4.3) 13 (5.9)

Table 1 (continued)
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observed outcomes, with the 3-, 5- and 10-year predictive 
calibration curves closely resembling the ideal curve  
(Figure 5A,5B). The C-index values for the predictive model 
in the training and validation cohorts were 0.757 and 0.748, 
respectively. To assess the discriminative performance of 
the nomogram in predicting the endpoint event, we utilized 
ROC curves. The AUC values for predicting 3-, 5-, and  
10-year OS were found to be 0.756, 0.730 and 0.725 
in training cohort (Figure 5C). Upon validation, the 
corresponding AUC values in the validation cohort 
were 0.716, 0.733, and 0.665 (Figure 5D). Furthermore, 
the  analys i s  conducted on DCA curves  revea led 
compelling evidence supporting the potential utility of 
the CS-nomogram as a valuable tool for guiding medical 
interventions, resulting in a significant net benefit in both 
training and validation cohorts (Figure 6A,6B). These results 
indicated the robustness and consistency of the nomogram’s 
predictive performance.

Development of nomogram-based risk stratification system

The risk stratification prediction model was formulated by 
utilizing the points assigned to each patient in the training 
cohort, computed through the nomogram. Subsequently, 
RCS analysis was performed to explore the correlation 
between the risk score and all-cause mortality, and to 
determine the optimal cutoff point for the risk score. 
The RCS analysis unveiled that the risk of mortality 
remained relatively stable until approximately 114.5 score, 
after which it began to escalate rapidly (Figure 7A). This 
method enabled the classification of all patients into low- 
and high-risk groups based on their respective risk scores. 
The Kaplan-Meier survival curves demonstrated a clear 

Table 1 (continued)

Characteristics Total cohort (N=730), n (%) Training group (N=510), n (%) Validation group (N=220), n (%)

Marital status

Single 276 (37.8) 193 (37.8) 83 (37.7)

Married 422 (57.8) 295 (57.8) 127 (57.7)

Unknown 32 (4.4) 22 (4.3) 10 (4.5)

Household income, USD

<70,000 380 (52.1) 257 (50.4) 123 (55.9)

≥70,000 350 (47.9) 253 (49.6) 97 (44.1)

STR, subtotal resection; GTR, gross total resection; USD, United States dollar. 

Figure 1 CS of spinal chordoma patients. (A) CS curves adjusted 
for survival duration. (B) Updated survival data incorporated into 
the survival analysis. CS, conditional survival. 

A

B

Given conditional survival

0                       3                       6                       9

0      1       2      3      4       5      6      7      8       9    10     11
Survival probability to reach X years

N
um

be
r 

at
 r

is
k

0      1       2      3      4       5      6      7      8       9    10     11
Years

730  618   518  457   382  320  267  219  176   143  115   89

Time, years

0-year
1-year
2-year

3-year
4-year
5-year

6-year
7-year
8-year

1.00

0.75

0.50

0.25

0.00

0.0

2.5

5.0

7.5

10.0

All

9-year
10-year

G
iv

en
 y

ea
rs

 o
f s

ur
vi

va
l

S
ur

vi
va

l p
ro

ba
bi

lit
y



Ren et al. CS for spinal chordoma1716

© AME Publishing Company.   Transl Cancer Res 2025;14(3):1710-1724 | https://dx.doi.org/10.21037/tcr-24-1912

Figure 2 Three methods of screening predictors. Univariate Cox regression analysis (A), BSR (B), and LASSO regression (C,D); comparison 
AIC (E) and ROC curves with AUC values (F) among different models. BSR, best subset regression; LASSO, least absolute shrinkage and 
selection operator; ROC, receiver operating characteristic; AUC, area under the curve; AIC, Akaike information criterion; GTR, gross total 
resection; STR, subtotal resection; CI, confidence interval.
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Figure 3 The forest plot of multivariate Cox hazard regression in the training cohort. STR, subtotal resection; GTR, gross total resection; 
CI, confidence interval; HR, hazard ratio.

differentiation in OS among patients across various risk 
groups in both training and validation groups, as predicted 
by the risk stratification prediction model (P<0.005,  
Figure 7B,7C). This highlighted the model’s ability to 
accurately discern survival outcomes based on individual 
risk profiles.

Discussion

Traditional survival analysis in clinical research typically 
examines the distribution of patients’ survival time from the 
date of diagnosis or treatment initiation. However, estimates 
of survival based on fixed time points may be affected by 

changes in the mortality rate and could potentially mislead 
both physicians and patients. Therefore, it is crucial to 
understand how prognosis evolves over time, accounting for 
the duration of patient survival. Additionally, considering 
the elevated risk of recurrence and the difficulties associated 
with achieving complete resection in spinal conventional 
chordoma cases (2,31,32), there is a need for a concise 
and accurate nomogram developed on a population-based 
cohort with sufficient follow-up duration. Therefore, in 
this study, by integrating CS analysis into the nomogram 
model (21,33,34), we amalgamated the advantages of both 
methodologies, resulting in the development of a user-
friendly tool for clinical application in predicting CS 
prognosis. This integration enabled a more comprehensive 
and accurate assessment of CS outcomes, enhancing its 
utility in clinical practice.

In our retrospective cohort study, we firstly analyzed data 
from the population-based SEER database to investigate the 
dynamic survival trends in patients with spinal chordoma. 
We found that with the progression of each successive year 
following diagnosis, patients observed a steady increase 
in their 10-year CS rates, with the initial rate of 45% 
evolving to subsequent rates of 49%, 53%, 56%, 60%, 
65%, 71%, 76%, 84%, and 91% after surviving for 1 to 9 
years, respectively, indicating that the residual risk of death 

Table 2 Variable selection results via three methods

Model Variable selection

Uni-Cox Age, tumor size, tumor extension, multiple primary 
tumors, surgery

BSR Age, tumor size, tumor extension, multiple primary 
tumors, surgery

LASSO Age, tumor size, tumor extension, surgery

BSR, best subset regression; LASSO, least absolute shrinkage 
and selection operator.

 Variable                                                 HR       Lower 95% CI     Upper 95% CI        P value

Log2 HR
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substantially diminished over time. These encouraging 
results could alleviate patients’ concerns, enhance their 
resilience in battling cancer, and elevate their overall well-
being.

Then, we utilized a combination of three approaches: 
univariate Cox regression, BSR, and LASSO, in a stepwise 
manner to construct a multivariable Cox regression model, 

with the objective of mitigating the risks of overfitting and 
underfitting. Following a comprehensive evaluation of the 
AUC and AIC values across different models, we proceeded 
to develop a predictive model utilizing the variables that 
were identified during the comparison process. Ultimately, 
we successfully established the CS-based nomogram model 
to provide real-time dynamic predictions of the prognosis 

Figure 4 CS-based nomogram to predict 3-, 5-, and 10-year OS and 10-year CS for spinal chordoma patients. CS, conditional survival; OS, 
overall survival; GTR, gross total resection; STR, subtotal resection.
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Figure 5 Model performance evaluation. The calibration curves of the nomogram in training (A) and validation (B) groups. The time-
dependent ROC curves of the nomogram in training (C) and validation (D) groups, respectively. ROC, receiver operating characteristic; 
AUC, area under the curve.

for patients with spinal chordoma. Then, we rigorously 
validated this model using various statistical methods, and 
the results demonstrated excellent predictive performance. 
In addition to the CS-nomogram, this study also designed 
a risk stratification system that categorized the target 
population into low- and high-risk groups. This prognostic 
risk prediction model can assist physicians in formulating 
personalized treatment and follow-up strategies, enhancing 
doctor-patient communication, and optimizing clinical 
management processes.

In our nomogram model, we ultimately included five 
variables: age, tumor size, tumor extension, multiple 
primary tumors, and surgery. Besides age, surgery appeared 
to exert the most significant influence on prognosis (35).  
Despite the inherent risks accompanying surgical 

intervention, it persists as a viable and dependable treatment 
modality for individuals diagnosed with spinal chordoma 
(9,32,36). Additionally, our findings suggested that extensive 
resection leads to better long-term prognostic outcomes, 
which is consistent with previous research findings (8,35,37). 
Several studies have highlighted that incomplete surgical 
resection can result in significant morbidity and high 
recurrence rates, particularly when adjuvant therapies 
are not applied. Grouping all surgical patients together 
without considering additional treatments, morbidity, and 
recurrence creates challenges, as it overlooks the variability 
in outcomes and fails to account for the distinct treatment 
approaches needed for patients who are not surgical 
candidates. To address this, future studies should aim to 
separate surgical and non-surgical patients in their analysis 
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Figure 6 The decision curve analysis of the nomogram for predicting 3-, 5-, and 10-year survival of the training (A) and validation (B) 
groups. DCA, decision curve analysis.

and include detailed information on additional treatments 
and outcomes. This approach would allow for more 
accurate assessments of treatment efficacy and better reflect 
the complexity of clinical decision-making.

Due to the resistance of chordomas to chemotherapy, 
radiation is commonly used as an adjunctive treatment 
to support surgical excision of these tumors (9,38,39). 
Advancements in technology have led to increased 
interest in focused radiation modalities, such as photon 
therapy, proton beam therapy, and carbon ion therapy. 
Of these, focused photon therapy is the most accessible 

and commonly used (9). Current consensus suggests 
radiation should be used as an adjuvant or neoadjuvant to 
improve local control after chordoma resection. Recent 
studies have also indicated that patients who receive 
radiotherapy immediately after surgery experience 
prolonged progression-free survival (40-43). However, our 
research did not demonstrate a strong correlation between 
radiotherapy and OS. In one regard, the SEER database 
lacks detailed information on the provision of radiotherapy, 
which may have led to result bias. On the other hand, some 
studies have indicated that radiotherapy did not improve 

Figure 7 Risk classification system development. Results of restricted cubic spline of risk score in training cohort (A). Kaplan-Meier curves 
with log-rank tests by different risk groups in both training (B) and validation (C) cohorts. HR, hazard ratio; CI confidence interval; RCS, 
restricted cubic spline.
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the prognosis of patients who underwent complete tumor 
resection. However, these studies also relied on database 
analyses, which share similar limitations to those in the 
current study (44,45). Zhou et al. also found no significant 
association between survival outcomes and radiation 
therapy in their study involving 682 spinal chordoma 
patients (13). Our study, which aggregated all case analyses 
without stratifying patients, may have resulted in an 
underestimation of the benefits of radiotherapy. Moreover, 
due to limitations in the SEER database, information on 
tumor recurrence was not available for further analysis. 
Therefore, further research is needed to clarify the survival 
benefits of radiotherapy, identify patient characteristics 
that would benefit most from this treatment, and establish 
appropriate radiotherapy protocols. Additionally, in the 
implementation of radiotherapy plans, due to the potential 
toxicity and side effects of radiation, a more precise, safe, 
and effective approach is required in the delineation of the 
primary clinical target volume, fractionation schedule, and 
total dose to be administered.

Chemotherapy’s role in the treatment of spinal 
chordomas is relatively limited. However, for some patients 
who cannot undergo surgical resection or experience 
recurrence after radiation therapy, chemotherapy may be 
used as an alternative treatment option. And several small 
molecule tyrosine kinase inhibitors have been explored, 
including sunitinib, lapatinib, imatinib, sorafenib, and 
erlotinib. Among these, promising early results have been 
reported for the PDGFR inhibitor imatinib and the EGFR 
inhibitor erlotinib (9). Additionally, immunotherapies such 
as the anti-PD-1 antibody nivolumab (NCT02989636 and 
NCT03173950) and the anti-CTLA4 antibody ipilimumab 
(NCT02834013) are currently under investigation in 
clinical trials (9,46).

Due to the SEER database’s use of binary yes/no 
coding for treatments such as surgery, chemotherapy, and 
radiotherapy, it lacks detailed information on treatment 
regimens, dosages, and schedules. This simplification 
may lead to incomplete or inaccurate data, introducing 
potential bias and selection errors. The absence of detailed 
treatment data makes it difficult to control for confounding 
factors. However, the large sample size and long follow-up 
data provided by the database offer valuable insights into 
the prognosis of the tumor. The simple categorization of 
treatment information should be interpreted with caution, 
but it can highlight the potential clinical value of these 
treatments, thereby laying the foundation for more in-depth 
and detailed research.

Our study encountered several limitations. Firstly, due 
to its retrospective nature, inherent biases may have been 
present, as is common in such studies. And information 
bias is also a concern, as the data are derived from clinical 
records that may not always be complete or consistently 
recorded. Due to the low incidence of this disease, we 
selected patients with a broader time span to ensure an 
adequate number of cases for sufficient statistical power. 
However, the rapid advancements in diagnostics and 
treatments over the past decade may introduce some level 
of heterogeneity. Variability in documentation practices 
across different registrations could lead to discrepancies in 
key variables. Secondly, it also does not provide detailed 
information on radiotherapy and chemotherapy plans, 
including mode, dosage, and so on. The absence of detailed 
treatment analysis may obscure potential interactions 
between therapies, which could be critical for understanding 
how combinations of treatments influence outcomes. Some 
complications occurring during the follow-up period, as 
well as recurrence status, are also unavailable. These factors 
should be considered to correct for the impact of covariates 
on outcomes and thus enhance the performance of the 
model. Moreover, our model requires further validation 
with external cohorts to enhance its generalizability. 
However, it is undeniable that the SEER database stands 
as a well-recognized national repository, offering both a 
sizable cohort and extensive longitudinal follow-up, which 
are essential prerequisites for investigating CS of spinal 
chordomas.

Conclusions

The CS of spinal chordoma exhibited a dynamic pattern, 
showing an increase with each additional year survived. 
In contrast to traditional survival assessment methods, 
our analysis of CS yielded more dynamic and real-time 
outcomes. By developing our CS-based nomogram model 
and a risk classification system, we have provided more 
precise prognostic insights for these patients. Our clinical 
tool will further facilitate the development of treatment 
plans and the formulation of follow-up strategies in clinical 
practice.
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