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Background: There are individualized differences in the prognosis of radiochemotherapy for non-small cell 
lung cancer (NSCLC), and accurate prediction of prognosis is essential for individualized treatment. This study 
proposes to explore the potential of multiregional two-dimensional (2D) dosiomics combined with radiomics as 
a new imaging marker for prognostic risk stratification of NSCLC patients receiving radiochemotherapy.
Methods: In this study, 365 patients with histologically confirmed NSCLC, who had computed tomography 
(CT) scans before treatment, received standard radiochemotherapy, and had Karnofsky Performance Scale 
(KPS) scores ≥70 were included in three medical institutions, and 145 cases were excluded due to surgery, 
data accuracy, poor image quality, and the presence of other tumors. Finally, 220 patients were included in 
the study. Efficacy evaluation criteria for solid tumors are used to evaluate efficacy. Complete and partial 
remission indicate the radiochemotherapy-sensitive group, and disease stability and progression indicate the 
radiochemotherapy-resistant group. We combined all the data and then randomised them into a training 
cohort (154 cases) and a validation cohort (66 cases) in a 7:3 ratio. Radiomics and dosiomics features were 
extracted for gross tumor volume (GTV), GTV-heat, and 50 Gy-heat and screened. 2D dosiomics model 
(DMGTV and DM50Gy), radiomics model (RMGTV), 2D radiomics-dosiomics model (RDM), and combined 
models were constructed, and the predictive performances for radiochemotherapy resistance were compared. 
Subsequently, the predictive performance of various models for radiochemotherapy resistance was compared 
by receiver operating characteristic (ROC) curves and calculating accuracy, sensitivity and specificity. The 
multi-omics and clinical models were integrated for patient risk stratification. 
Results: DM50Gy had better predictive performance than RMGTV and DMGTV, with the area under the curve 
(AUC) of the ROC in the training and validation cohorts for DM50Gy were 0.764 [95% confidence interval (CI): 
0.687–0.841] and 0.729 (95% CI: 0.568–0.889). And the RDM performed significantly better than the single 
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Introduction

Background

Despite recent improvements in mortality rates, lung 
cancer is still a leading cause of cancer-related fatalities 

globally (1). Non-small cell lung cancer (NSCLC) accounts 
for roughly 85% of all lung cancers (2). Most patients 
with NSCLC are diagnosed in advanced stages, making 
surgery unsuitable due to the spread of cancer cells (3). 
Radiochemotherapy stands as the standard treatment for 
locally advanced NSCLC and plays a crucial role in the 
comprehensive treatment of lung cancer (4). Although 
advances in radiotherapy (RT) techniques and refinement of 
treatment strategies have improved lung cancer prognosis, 
the prognosis varies even at the same disease stage owing to 
tumor heterogeneity (5). 

Rationale and knowledge gap

Most NSCLC cases demonstrate locoregional treatment 
failure after radiochemotherapy (6), underscoring the 
critical need for early identification of patients prone to 
radiochemotherapy resistance. Initial treatment response 
can predict overall survival (OS), and early acquisition 
of treatment responses predicts favorable outcomes (7). 
Identifying patients at risk for progression and making 
t imely treatment adjustments may reduce disease 
progression and associated mortality. 

The issue of drug resistance is particularly prominent 
in the treatment of NSCLC. Currently, some biomarkers 
have been used to predict drug resistance in NSCLC 
treatment, such as circulating tumor DNA (ctDNA), tumor 
microenvironment (especially hypoxic environment), and 
abnormal expression of microRNAs (8-10). However, 
their clinical application is still not ideal. On the other 

Highlight box

Key findings
•	 This study found that dosiomics features extracted from two-

dimensional (2D) radiation dose distribution maps can be used as a 
novel imaging marker to predict radiochemotherapy resistance in non-
small cell lung cancer (NSCLC). 

•	 The 2D dosiomics model can better predict radiochemotherapy 
resistance than clinical and traditional radiomics models. 

•	 Combining radiomics, dosiomics, and clinical parameters can improve 
radiochemotherapy efficacy and prognosis prediction in NSCLC.

What is known and what is new? 
•	 Patients with NSCLC are prone to local treatment failure after 

radiochemotherapy, but the mechanism of action is complex, and 
existing models have limitations in their predictive ability.

•	 In this study, a new prediction tool is introduced to integrate radiomics, 
dosiomics, and clinical parameters to establish a prediction model for 
improving the prediction accuracy of resistance to and prognosis of 
radiochemotherapy.

What is the implication, and what should change now? 
•	 This study combines radiomics, 2D dosiomics, and clinical indicators 

to provide a new method for predicting radiochemotherapy resistance 
in NSCLC and stratifying the prognostic risk in patients with NSCLC, 
guiding clinicians in early detection and treatment regimen adjustment, 
which is, in turn, expected to improve patients’ outcomes. This might 
pave the way for more tailored NSCLC treatment. 

radiomics and dosiomics models, with AUC of 0.836 (95% CI: 0.773–0.899) and 0.748 (95% CI: 0.617–0.879), 
respectively. Hemoglobin level and T stage were independent predictors in the clinical model. The combined 
model containing independent predictors further improved the predictive performance in both the training and 
validation cohorts, with AUC of 0.844 (95% CI: 0.781–0.907) and 0.753 (95% CI: 0.618–0.887). Grouping of 
patients according to the critical value of the combined model revealed significant differences in progression-
free survival (PFS) and overall survival (OS) between the high-risk and low-risk groups (P<0.05).
Conclusions: Compared to the traditional radiomics model, the 2D dosiomics model demonstrates 
superior predictive performance. The combined model based on clinical data, radiomics, and dosiomics has 
improved the prediction of radiochemotherapy resistance in NSCLC and effectively performed survival 
stratification. Through precise risk assessment, doctors can better understand which patients may develop 
resistance to treatment and optimize treatment plans accordingly.
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hand, NSCLC exhibits high heterogeneity, and the genetic 
background, pathological type, and treatment history of 
different patients may lead to varying expressions of the 
same biomarkers in different patients (11). Moreover, 
most predictive models rely on invasive methods such 
as tissue biopsies or liquid biopsies, which may pose 
additional risks and discomfort to patients (12). Therefore, 
finding less invasive predictive methods is crucial. 
The development of radiomics and machine learning 
technologies has provided a non-invasive, efficient, and 
cost-effective new method for predicting tumor efficacy. 
Conventional radiomics can predict tumor response and 
prognosis using information from medical image data, 
including models from [18F]-fluorodeoxyglucose positron 
emission tomography (PET)/computed tomography (CT)  
(13-17). Radiomics development has improved the efficiency 
of assessing prognosis and treatment response; however, 
the aforementioned radiomics studies have focused on 
exploring the relationship between imaging data and clinical 
outcomes, ignoring the potential impact of radiation dose 
distribution. 

The local control rate of radiochemotherapy is 
significantly correlated with radiation dose (18), and dose 
distribution features affect RT outcomes. Dosiomics 
features from dose distribution images are mostly used 
to predict radiation pneumonitis, expanding radiomics 
development to predict RT toxicity (19,20). Dosiomics 
models are better than radiomics models, and their 
combination shows improved predictive performance 
(21,22). CT imaging can vividly show the anatomical 
structure of the human body, but it lacks contrast in soft 
tissues. The dose distribution map can depict the spread 
of radiation throughout the biological body; however, it 
lacks spatial localisation information. In RT, by fusing 
the dose distribution map with the CT image, we can 
compensate for the shortcomings of both, allowing us to 
more comprehensively understand the response of the 
tumour and surrounding tissues to RT, thus enabling 
more precise localization of lesions and better evaluation 
of treatment effects. Therefore, this combination may 
improve the prediction of radiochemotherapy response. 
The potential dosomics predictors of RT response are 
limited to dosimetry parameters (23-25); however, simple 
dosimetry parameters (dose-volume histograms and 
biologically effective doses) are limited in predicting 
treatment response. Therefore, new predictive biomarkers 
to accurately identify radiochemotherapy resistant cancer 
are urgently needed. 

Objective

This study introduced an imaging marker to predict 
RT response in NSCLC. A two-dimensional (2D) 
dosiomics model of different regions was constructed 
using radiation dose distribution images from patients at 
three independent centers. The predictive performance 
of this model in NSCLC radiochemotherapy resistance 
was compared to conventional radiomics. The value of 
predicting radiochemotherapy resistance was explored by 
combining radiomics, 2D dosiomics, and clinical models. 
Risk stratification of patients with NSCLC and assessment 
of prognostic value based on the combined model will 
facilitate individualized treatment strategies. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-1897/rc).

Methods

Patients enrollment

Figure 1 and Figure 2 show the criteria for patient 
enrollment and the flow of the radiomic analysis. Overall, 
783 patients with NSCLC receiving radiochemotherapy 
or RT at three medical institutions (The Second Affiliated 
Hospital of Guizhou Medical University; Guiyang Public 
Health Clinical Center; Qiandongnan Prefecture People’s 
Hospital) were initially screened. The inclusion criteria were 
histologically confirmed NSCLC, pretreatment planning 
CT scans, Karnofsky Performance Scale (KPS) score ≥70, 
and standard radiochemotherapy [including concurrent 
chemoradiotherapy (CCRT), sequential chemoradiotherapy, 
and RT]. The exclusion criteria were radical surgical 
treatment before treatment, incomplete clinical information 
combined with other malignant tumors, RT of non-
lung primary lesions, and poor image quality. Eventually,  
220 patients met the inclusion criteria, including 148 
from The Second Affiliated Hospital of Guizhou Medical 
University (April 2018–May 2023), 42 from Guiyang Public 
Health Clinical Center (October 2017–December 2022), 
and 30 from Qiandongnan Prefecture People’s Hospital 
(February 2017–December 2022). All data from the 
multicenter cohort were integrated and randomly separated 
into training (n=154) and validation (n=66) cohorts.

Research objectives and definitions

The main objective of the study was to assess the 
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effectiveness of local radiochemotherapy. Efficacy 
was evaluated by an experienced radiation oncologist 
using the single-diameter measurement method in the 
response evaluation criteria in solid tumors (RECIST) 
(Vers ion 1 .1 )  guide l ines ,  compar ing  CT images 
before and after radiochemotherapy. Patients with 
complete and partial remission were categorized into 
the radiochemotherapy-sensitive group, while those 
with disease stability and progression were categorized 
into the radiochemotherapy-resistant group. The 
progression-free survival (PFS) and OS were the study 
endpoints. PFS refers to the time from initial therapy 
to disease progression, death, or last follow-up, while 
OS is the time from first treatment to death or final 
follow-up. This study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The 
study was approved by the Institutional Review Board 

of The Second Affiliated Hospital of Guizhou Medical 
University (2020-LS-03), and prior notice was given to 
Qiandongnan Prefecture People’s Hospital and Guiyang 
Public Health Clinical Center, with consent obtained 
from both parties. Due to the retrospective nature of the 
study, written informed consent was not required.

Collection of clinical data 

Baseline clinical information was obtained by reviewing 
the case system, including sex, age, nationality (minority or 
non-minority nationality), KPS score, carcinoembryonic 
antigen (CEA) level, hemoglobin (Hb) level, smoking 
status, diabetes status, hepatitis B virus (HBV) status, 
Child-Pugh score, T stage, N stage, M stage, tumor-node-
metastasis (TNM) stage, histology (squamous carcinoma, 
adenocarcinoma, other), metastatic status (oligometastasis, 
polymetastasis),  RT technique [three-dimensional 
conformal radiation therapy (3D-CRT), intensity-
modulated radiation therapy (IMRT), image-guided 
radiotherapy (IGRT)], treatment mode [RT, short-course 
radiotherapy (SCRT), CCRT], and prescribed dose. CCRT 
included chemotherapy and RT simultaneously; SCRT was 
defined as chemotherapy followed by RT, while RT was 
radiation therapy only. 

Estimation of sample size

In the field of radiomics, the robustness of predictive 
classifier models depends on the availability of sufficient 
data. Research data suggests that for machine learning 
algorithms, the sample size should be no less than 80 for 
the root mean square error to be less than 0.01 and no less 
than 30 for the research data to be sufficient to support any 
statistical model. Empirical data suggests that for binary 
classifier models, the recommended feature selection is 
about one-tenth of the sample size (26). Based on the 
above research basis, the number of features and sample 
size of this study basically meet the requirements, and 
the overfitting problem caused by too many features or 
insufficient sample size can be avoided.

CT and dose distribution image acquisition

All patients underwent large-aperture CT (Philips 
Electronics, GE Medical Systems, Eindhoven, the 
Netherlands) within one week before RT to obtain the 
planned CT images. The scanning range was from the 

Eligible patients in this study (n=365)

Inclusion criteria:
(I)	 Histologically confirmed NSCLC
(II)	 Pretreatment planning CT scans
(III)	Standard radiochemotherapy (CCRT/SCRT/RT)
(IV)	KPS ≥70

Patients from three medical centers (n=783)

Exclusion criteria:
(I)	 Radical surgical treatment 

before treatment
(II)	 Incomplete clinical information
(III)	Combined with other 

malignant tumors
(IV)	Radiotherapy of non-lung 

primary lesions
(V)	 Poor image quality

Patients included in this study (n=220)

Training cohort
(n=154)

Validation cohort
(n=66)

Figure 1 Flowchart of patient inclusion and exclusion. CCRT, 
concurrent chemoradiotherapy; CT, computed tomography; 
KPS, Karnofsky Performance Scale; NSCLC, non-small cell lung 
cancer; RT, radiotherapy; SCRT, short-course radiotherapy.
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Figure 2 Flowchart of the radiomics analysis. (A) 2D segmentation of different regions of interest. (B) Radiomics features and 2D dosiomics 
features were extracted from each of the three regions of interest. (C) Feature selection using LASSO regression and 10-fold cross validation. 
(D) Constructing models based on the training cohort feature selection results, including clinical model, RMGTV, DMGTV, DM50Gy, RDM and 
combined model. (E) Model comparison and validation. 2D, two-dimensional; AUC, area under the curve; DM50Gy, 50 Gy dosiomics model; 
DMGTV, GTV dosiomics model; GTV, gross tumor volume; LASSO, least absolute shrinkage and selection operator; RDM, radiomics-
dosiomics model; RMGTV, GTV radiomics model; ROI, region of interest.
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submandibular margin to the subhepatic margin. During 

scanning, a high-pressure injector injects 2.5–3.0 mL/s of 

contrast agent (iohexol or iopamidol) into the elbow vein. 

Scanning was delayed by 25 s after injection completion 

to obtain arterial-phase CT, which was transmitted to the 

Varian Eclipse/Elekta planning system to produce an RT 

plan. The CT scanning systems and parameters of the three 

medical centers are listed in Table S1.

Selected 50 Gy dose distribution images of the largest 

lesion were downloaded in PNG format from the RT 

planning system and converted to DICOM format. These 

planning CT images were used to investigate the differences 

between the original 2D CT and radiation dose distribution 

images in predicting radiochemotherapy resistance.

https://cdn.amegroups.cn/static/public/TCR-24-1897-Supplementary.pdf
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Region of interest (ROI) segmentation

The ROIs of all images were segmented from the 2D 
planned CT images of the largest cross-section and 
radiation dose distribution images. The three ROIs were 
the gross tumor volume (GTV), GTV heat, and 50 Gy 
heat. The GTV was defined as the tumor region on the 
2D planned CT images, GTV heat was defined as the 
tumor region covered by the 2D radiation dose distribution 
images, and 50 Gy heat was defined as the region covered 
by the 50 Gy absolute dose on the 2D radiation dose 
distribution images. All ROIs were manually drawn by an 
experienced radiologist using ITK-SNAP version 4.0.1 
in the mediastinal window along the tumor edges of the 
2D planned CT image of the largest lesion, the tumor 
edges of the 2D radiation dose distribution image, and the 
edges of the 50 Gy absolute dose area of the 2D radiation 
dose distribution image, respectively, avoiding the pleural 
wall, bronchi, and large blood vessels. Finally, 2D tumor 
segmentation of the three regions was generated, and 
manual correction was performed by radiation oncology 
professionals with substantial clinical and imaging 
experience.

Extraction and selection of features

A total of 1,561 features, including 14 shape features,  
306 first-order statistical features, and 1,241 texture features, 
were extracted from the GTV, GTV-heat, and 50 Gy-heat 
using pyradiomics. Before feature selection, maximal and 
minimal normalization was applied to all radiomics and 2D 
dosiomics features to eliminate variances between features. 
The t-test or U test was used to exclude features not related 
to radiochemotherapy resistance. Finally, the least absolute 
shrinkage and selection operator (LASSO) regression 
method was employed to select radiomics and 2D dosiomics 
features that could predict optimal efficacy.

Model construction and validation

We developed six predictive models [clinical, GTV 
radiomics model (RMGTV), GTV dosiomics model (DMGTV), 
50 Gy dosiomics model (DM50Gy), radiomics-dosiomics 
model (RDM), and combined model] using binary logistic 
regression based on clinical and selected features of three 
independent regions. The predictive performance of these 
models was assessed using receiver operating characteristic 
(ROC) curve analysis, with accuracy, sensitivity, and 

specificity computed. In addition, we tested the model’s 
performance with a validation cohort. Decision curve 
analysis (DCA) was utilized to determine the clinical utility 
of various thresholds in patients with NSCLC.

Statistical analysis

The statistical analysis was performed using IBM SPSS 
(version 26.0), Python software (version 3.9.13), and the 
R language (version 4.3.1). The comparison of numerical 
variables was performed with a t-test or non-parametric 
test. Statistical analysis of categorical variables was carried 
out using Chi-squared tests or Fisher’s exact tests. Clinical 
variables linked with radiochemotherapy resistance were 
identified using univariate and multivariate analyses. 
Radiomic and 2D dosiomics characteristics were screened 
using LASSO regression in R, followed by the creation of 
a logistic regression model in SPSS, the display of ROC 
curves, and the computation of area under the curve (AUC) 
values (in general, the larger the AUC value, the better 
the categorization and the more accurate the prediction 
of efficacy). The clinical applicability of the model was 
evaluated using DCA. The Kaplan-Meier method was used 
to compare survival estimates. Statistical significance was set 
at P<0.05 (two-sided).

Results

Patient features

The clinical features and distributions of the 220 individuals 
enrolled in this study are reported in Table 1. In the training 
(n=154) and validation (n=66) groups, 88 (57.1%) and  
36 (54.5%) patients were minority nationality, respectively; 
91 (59.1%) and 38 (57.6%) had a pathological classification 
of squamous carcinoma; 80 (51.9%) and 35 (53.0%) had 
stage III disease; and 64 (41.6%) and 26 (39.4%) had stage 
IV disease. Among these cases, 65 (42.2%) and 25 (37.9%) 
were metastatic at baseline, and 44 (67.7%) and 18 (72.0%)  
were oligometastatic. In addition, 100 (65.0%) and  
40 (60.6%) patients received CCRT, and 98 (63.6%) and  
43 (65.2%) patients in both groups were treated with IGRT. 
The training and validation cohorts showed no significant 
difference in clinical features such as sex, age, nationality, 
KPS score, CEA, Hb, smoking, diabetes, HBV, Child-Pugh 
score, T stage, N stage, M stage, TNM stage, histology, 
metastatic status, RT technique, treatment mode, and 
prescribed dose (P>0.05).
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Table 1 Patient clinical features and distributions

Variables Categories Training Validation P value

Age (years) – 60.3±9.4 61.2±8.8 0.50

Sex Male 125 (81.2) 55 (83.3) 0.70

Female 29 (18.8) 11 (16.7)

Nationality Non-minority 66 (42.9) 30 (45.5) 0.72

Minority 88 (57.1) 36 (54.5)

Child-Pugh A 150 (97.4) 62 (93.9) 0.25

B 4 (2.6) 4 (6.1)

Smoking Yes 94 (61.0) 45 (68.2) 0.31

No 60 (39.0) 21 (31.8)

Diabetes Yes 14 (9.1) 9 (13.6) 0.31

No 140 (90.9) 57 (86.4)

HBV Yes 10 (6.5) 3 (4.5) 0.76

No 144 (93.5) 63 (95.5)

Tuberculosis Yes 16 (10.4) 13 (19.7) 0.06

No 138 (89.6) 53 (80.3)

T stage T1–2 45 (29.2) 17 (25.8) 0.60

T3–4 109 (70.8) 49 (74.2)

N stage N0–1 39 (25.3) 14 (21.2) 0.51

N2–3 115 (74.7) 52 (78.8)

M stage M0 90 (58.4) 40 (60.6) 0.77

M1 64 (41.6) 26 (39.4)

TNM stage I–II 10 (4.5) 5 (7.6) 0.93

III 80 (51.9) 35 (53.0)

IV 64 (41.6) 26 (39.4)

Metastatic status Oligometastasis 44 (67.7) 18 (72.0) 0.69

Polymetastasis 21 (32.3) 7 (28.0)

Histology Squamous carcinoma 91 (59.1) 38 (57.6) 0.96

Adenocarcinoma 57 (37.0) 25 (37.9)

Other 6 (3.9) 3 (4.5)

RT technique IMRT 46 (29.9) 16 (24.2) 0.46

IGRT 98 (63.6) 43 (65.2)

3D-CRT 10 (6.5) 7 (10.6)

Treatment mode RT 33 (21.4) 22 (33.3) 0.08

SCRT 21 (13.6) 4 (6.1)

CCRT 100 (65.0) 40 (60.6)

Table 1 (continued)
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Table 1 (continued)

Variables Categories Training Validation P value

KPS – 80.0 (80.0, 90.0) 80.0 (80.0, 90.0) 0.38

CEA (ng/mL) – 3.1 (1.8, 8.1) 3.7 (1.6, 19.8) 0.26

Hb (g/L) – 121.8±17.3 122.8±17.8 0.70

Prescribed dose (Gy) – 63.0 (60.0, 66.0) 62.0 (60.0, 66.0) 0.60

Continuous variables that follow a normal distribution are represented by the mean ± standard deviation, while numerical variables that 
do not follow a normal distribution are represented by the median (interquartile range). Categorical variables are represented by frequency 
(percentage). 3D-CRT, three-dimensional conformal radiotherapy; CCRT, concurrent chemoradiotherapy; CEA, carcinoembryonic antigen; 
Hb, hemoglobin; HBV, hepatitis B virus; IGRT, image-guided radiotherapy; IMRT, intensity-modulated radiation therapy; KPS, Karnofsky 
Performance Status; RT, radiotherapy; SCRT, sequential chemoradiotherapy; TNM, tumor-node-metastasis.

Feature selection and associated analysis of clinical factors

There were 1,561 features extracted from the three 
ROIs. First, to exclude features not significantly related 
to radiochemotherapy resistance, we employed the t-test 
or Mann-Whitney U test to assess normally and non-
normally distributed radiomics features, respectively. 
After excluding features with P≥0.05, 19, 19, and 181 

features were included from GTV, GTV-heat, and 50 Gy-
heat, respectively. Subsequently, to optimize the model, 
we employed LASSO regression and 10-fold cross-
validation to identify critical features. Finally, feature 
screening resulted in the identification of eight, nine, and 
eight radiomics and 2D dosiomics features significantly 
associated with radiochemotherapy resistance (Figure 3). 
Tables 2-4 list the significant characteristics together with 
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their weight coefficients. In univariate analysis, Hb level 
was substantially linked with radiochemotherapy resistance 
(P=0.03) (Table S2). Following the univariate analysis 
results, multivariate analysis of clinical variables with P<0.1 
revealed Hb level and T stage as independent risk factors 
for radiochemotherapy resistance [odds ratio (OR) and 
95% confidence interval (CI): 0.975 (0.956–0.996), 0.432  
(0.199–0.934)].

Logistic regression analysis of clinical risk factors affecting 
radiochemotherapy resistance 

Using the screened features, radiomics and 2D dosiomics 
models (RMGTV, DMGTV, and DM50Gy) were constructed 
to explore the predictive value of 2D radiation dose 
distribution images on radiochemotherapy resistance 
in NSCLC and the differences between them and 
conventional CT images. In both cohorts, the DM50Gy 
AUC [0.764 (95% CI: 0.687–0.841) and 0.729 (95% CI: 
0.568–0.889)] were better than those of DMGTV (AUC 0.746 
and 0.683) and RMGTV (AUC 0.694 and 0.613). Therefore, 
the 2D dosiomics features extracted from radiation 
dose distribution images displayed promising predictive 
capabilities for radiochemotherapy efficacy, outperforming 
the 2D radiomics model based on planned CT images. 
Particularly, the 2D dosiomics model extracted from the 
50 Gy absolute dose distribution images demonstrated the 
strongest performance. In addition, the RDM combining 
radiomics and each 2D dosiomics feature showed even 
better predictive performance in both cohorts [AUC 0.836 
(95% CI: 0.773–0.899) and 0.748 (95% CI: 0.617–0.879), 
respectively] (Table S3). 

Construction and evaluation of the combined model

Based on the multivariate analysis results, a combined 
model was established using binary logistic regression. 
The combined model’s AUCs were 0.844 (95% CI: 

Table 2 Selected GTV radiomics features and their coefficients

Feature name (GTV) Coefficient

[0] (Intercept) 0.394

[1] exponential_glcm_Correlation −0.0504

[2] lbp.3D.k_glszm_SizeZoneNonUniformity −0.163

[3] square_gldm_LargeDependenceLowGrayLevelE
mphasis 

0.014

[4] wavelet.HHH_firstorder_Range −0.064

[5] wavelet.HHL_glcm_Correlation −0.057

[6] wavelet.HLH_firstorder_Mean −0.145

[7] wavelet.HLH_glszm_
SizeZoneNonUniformityNormalized

0.028

[8] wavelet.LHH_glcm_DifferenceVariance −0.035

GTV, gross tumor volume.

Table 3 Selected GTV-heat dosiomics features and their 
coefficients

Feature name (GTV-heat) Coefficient

[0] (Intercept) 0.038

[1] lbp.3D.k_glszm_GrayLevelNonUniformity 0.016

[2] lbp.3D.k_glszm_GrayLevelNonUniformityNorma
lized 

−0.039

[3] logarithm_firstorder_Skewness 0.017

[4] squareroot_firstorder_Kurtosis −0.023

[5] wavelet.HLH_gldm_DependenceEntropy 0.015

[6] wavelet.HLH_gldm_DependenceNonUniformity
Normalized

−0.005

[7] wavelet.LHH_firstorder_Range −0.016

[8] wavelet.LHH_glrlm_GrayLevelNonUniformityNo
rmalized 

0.004

[9] wavelet.LHH_glrlm_GrayLevelVariance −2.269e−16

GTV, gross tumor volume.

Table 4 Selected 50 Gy-heat dosiomics features and their 
coefficients

Feature name (50 Gy-heat) Coefficient

[0] (Intercept) 0.389

[1] squareroot_firstorder_InterquartileRange −0.227

[2] squareroot_firstorder_
RobustMeanAbsoluteDeviation 

−0.295

[3] wavelet.HHH_glszm_
SmallAreaHighGrayLevelEmphasis 

0.239

[4] wavelet.HHH_glszm_ZonePercentage 0.127

[5] wavelet.HHL_gldm_LargeDependenceHighGray
LevelEmphasis

−0.08

[6] wavelet.HLH_firstorder_90Percentile 0.197

[7] wavelet.HLH_glrlm_ShortRunEmphasis −0.19

[8] wavelet.LLL_glcm_InverseVariance −0.317

https://cdn.amegroups.cn/static/public/TCR-24-1897-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1897-Supplementary.pdf
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0.781–0.907) in the training cohort and 0.753 (95% CI: 
0.618–0.887) in the validation cohorts, indicating that the 
combined model integrating Hb and T stage had high 
diagnostic performance in predicting radiochemotherapy 
resistance. Figure 4 shows the ROC curves for all models. 
Figure 5 shows the DCA for the clinical, RDM, and 
combination models. The combined model demonstrated 
more accurate and reliable efficacy prediction in predicting 
radiochemotherapy resistance and slightly outperformed 
the RDM in most threshold ranges.

Survival risk stratification

The cut-off value (0.498) was calculated using the ROC 
curves of the combined model, which was used to group 
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patients with NSCLC as low-risk and high-risk, allowing 
for the subsequent comparison in their survival prognosis. 
The log-rank test revealed significant differences in PFS 
and OS between the two groups, with high-risk patients 
having worse PFS and OS (Figure 6A,6B). Testing in the 
validation cohort using the same cutoff values yielded 
similar results (Figure 6C,6D). Further subgroup analyses 
revealed a worse prognosis in the radiochemotherapy-
resistant group than the radiochemotherapy-sensitive group 
(Figure S1).

Discussion

Key findings

This study extracted dosiomics features from 2D dose 
distribution images, which can reflect the changes after 
radiochemotherapy, and provide new ideas for local 
control and prognostic evaluation of NSCLC after 
radiochemotherapy. Based on the pre-treatment CT image 
data and 50 Gy dose distribution image, we selected 2D data 
of the largest lesion and extracted the radiomics features and 

dosiomics features of different regions. The results showed 
that DM50Gy was superior to DMGTV, conventional radiology, 
Hb level, and T stage in predicting radiochemotherapy 
resistance. The combination of radiomics, dosiomics, and 
clinical parameters significantly improved the accuracy of 
prediction. Furthermore, we found that the cut-off values of 
the combined model successfully achieved risk stratification 
for patients with NSCLC, with worse PFS and OS for 
patients at a higher risk (P<0.05).

Strengths and limitations

This is the first research to integrate radiation dose 
distribution mapping with CT imaging, resulting in 
a novel method for predicting radiochemotherapy 
resistance in NSCLC. By merging multi-omics data to 
create a combined model, risk classification of NSCLC 
radiochemotherapy patients may be achieved, allowing for 
early detection of high-risk groups and prompt treatment 
plan adjustments. But our study had some limitations. First, 
due to its retrospective nature, it lacked an external test 
cohort; hence, more data are needed for validation to avoid 

https://cdn.amegroups.cn/static/public/TCR-24-1897-Supplementary.pdf
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model overfitting. Second, differences in image acquisition 
and quality across centers may affect the applicability of 
the model. Third, because of multicenter differences, 
we were unable to investigate the potential impact of 
radiation toxicity and normal organ radiation dose on 
radiochemotherapy efficacy and prognosis.

Comparison with similar research

Radiochemotherapy resistance is a key factor in the 
development of NSCLC, but there is no effective 
intervention. Therefore, early diagnosis and timely 
adjustment of the treatment regimen for patients with 
radiochemotherapy resistant NSCLC are urgent problems 
to be solved in clinical practice. Existing RECIST efficacy 
evaluation criteria are inadequate in the assessment of early 
response in tumors (27), and dynamic changes in the tumor 
diameter can be detected only when macroscopic changes 
in tumor volume occur. In clinical practice, it is highly 
inaccurate to rely solely on the change in the maximum 
diameter of the tumor to reflect the early response of the 
tumor. Therefore, the key to promoting individualized 
treatment finding is in finding new valuable predictors.

Radiomics can capture small changes in tumor tissue 
during RT (28) and is important for evaluating patient 
response and prognosis (29,30). Based on the radiomics 
method, the 3D dose distribution generated by the dose 
calculation method can be used to extract the dosiomics 
characteristics, which can effectively predict the therapeutic 
effect of RT; this will greatly improve the predictive power 
of RT response (20,31). A recent meta-analysis delved 
into the relationship between radiomics and dosiomics 
data. The study found that the combination of the two 
has a synergistic effect, validating the effectiveness of 
integrating radiomics with dosiomics, marking a significant 
advancement in the field of radiation therapy (32). 
However, current research on dosiomics primarily relies 
on Anisotropic Analytical Algorithm (AAA) or Acuros XB 
(AXB) algorithms to describe the radiation dose distribution 
characteristics in RT plans. There are differences in 
the dose distributions produced by the AXB and AAA 
algorithms, with AXB being more accurate than AAA (33). 
Furthermore, the study indicated that changes in dose 
calculation grids, types, and versions can alter dosiomics 
features, and the effect of dose calculation algorithms on 
dose distributions may be more significant for tumor sites 
with greater tissue inhomogeneity, such as the lungs (34). To 
explore and solve this series of clinical problems, the real 2D 

dose distribution map of multicenter RT planning was used 
to extract the dosiomics characteristics of different regions 
for the first time, to explore the relationship between 
radiochemotherapy resistances. We constructed the models 
of DMGTV and DM50Gy radiochemotherapy resistance by 
extracting dose-group characteristics from GTV and 50 Gy 
radiation dose region. We found that DM50Gy outperformed 
DMGTV and the traditional radiomics model (RMGTV) in 
predicting radiochemotherapy resistance. This may be 
because the effective dosiomics features extracted from 
the 50 Gy dose area can more comprehensively reflect the 
relationship between the tumor and the microenvironment 
of adjacent tissues and the response to radiochemotherapy. 
After all, differences in the environmental biological 
characteristics of adjacent tumors can be reflected by 
radiomics (35). Although there are no previous studies on 
dosiomics models to predict NSCLC radiochemotherapy 
resistance, dosiomics models have been used to predict 
RT response in other solid tumors. Buizza et al. (36)  
studied 57 patients with skull-base chordoma (SBC) who 
received carbon-ion radiotherapy (CIRT). Magnetic 
resonance imaging (MRI) and CT radiomics features 
and dosiomics features based on dose maps were found 
to be associated with local control rates of RT. Thus, 
the combination of dosiomics and radiomics may be 
a promising factor affecting the local control of SBC. 
Kawahara et al. (37) showed that combining radiomics with 
dosiomics can improve the accuracy of predicting response 
in patients with esophageal cancer who receive radical RT. 
Similar to the above results, the 2D dosiomics model based 
on the radiation dose distribution image was superior to the 
traditional radiomics model in performance. In addition, the 
combination of the 2D radiomics model with the dosiomics 
model and the clinical model was more effective than 
either model alone. We considered not only the medical 
imaging data but also the effect of dose distribution in the 
RT plan on treatment outcomes. The combination of these 
three methods can evaluate the response of patients with 
NSCLC to radiochemotherapy and their prognosis more 
comprehensively, thus achieving more accurate prediction, 
and provide a basis for timely adjustment of treatment in 
the clinical setting.

Explanation of findings

We chose to segment the largest lesion on 2D, mainly 
considering the following factors. First, there is still 
considerable controversy regarding the use of 2D or 3D 
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radiomics features in radiological analyses (38-41). Second, 
although 3D models can provide richer information on 
tumor biological characteristics, their fabrication process is 
more complex and often difficult to implement in a clinical 
setting (42). In contrast, 2D imaging data are simpler and 
faster in radiomics analysis, and therefore are preferred 
for clinical applications. Multiple studies have shown that 
the performance of 2D radiomics is comparable to that of 
3D radiomics, and that 2D radiomics performs even better 
in assessing the accuracy of treatment responses (43-45). 
In general, the prediction model based on 2D radiomics 
features is feasible. 

Implications and actions needed

We discovered that dosiomics features extracted from 
2D dose distribution maps, combined with radiomics and 
clinical indicators, can more accurately predict NSCLC 
radiochemotherapy resistance and prognosis, providing a 
theoretical basis for the adjustment of treatment regimens 
in high-risk populations of NSCLC. However, in the 
emerging field of 2D dosiomics, the differences among 2D, 
3D, or even multiple dosiomics characteristic sections need 
to be explored for studying radiochemotherapy resistance.

Conclusions

The combination of dosiomics and radiomics effectively 
predicted radiochemotherapy resistance in NSCLC. 
Additionally, the combined model with clinically independent 
predictors further improved the predictive efficacy and 
effectively stratified patients’ survival status. These findings 
are important references for personalized medicine, helping 
to identify high-risk populations in a timely manner and 
guide towards more effective treatment strategies.
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