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Background: Breast cancer (BRCA) remains by far the most life-threatening malignancy in women. 
Resistance to BRCA treatment may be counteracted by the induction of ferroptosis in combination with 
immunotherapy. The study aims develop iron death-related prognostic models to predict prognosis and 
immunotherapy effects in BRCA patients.
Methods: We collected and organized 22 ferroptosis-related pathways and quantified their pathway 
activities using single-sample gene set enrichment analysis (ssGSEA). Coenzyme Q10 (CoQ10) is a 
pathway associated with prognosis in patients with BRCA. We compared the differences between patients 
with different CoQ10 expressions in terms of prognosis, biological function, mutational profile, immune 
infiltration, immunotherapy, and chemotherapeutic drug sensitivity.
Results: Patients with high CoQ pathway activity had a worse prognosis. In addition, patients with high 
CoQ activity showed greater cell cycle activation and lower immune infiltration. Based on different CoQ10 
expression patterns, we developed a CoQ10-related prognostic model. The accuracy and stability of CoQ10-
related prognostic models were well validated in the training set and multiple validation sets. High-risk 
patients showed a propensity for immune depletion and tolerance to immunotherapy. There were also some 
differences in the sensitivity to different chemotherapeutic agents between high- and low-risk patients.
Conclusions: We have constructed and validated a CoQ10-related gene model that can predict the 
prognosis of BRCA. Critically, it may serve as a reference standard to guide outcome prognostication in 
patients with BRCA.
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Introduction

Breast cancer (BRCA) is the most prevalent and deadliest 
malignant tumor in women worldwide. Approximately, 
2,300,000 women are diagnosed with BRCA each year, 
30% of whom succumb to this disease (1). Typically, BRCA 
is classified into five subtypes based on historical and 

molecular differences, including HER2-positive, triple-
negative/basal, normal, and luminal A and B (2). Surgery 
combined with radiotherapy, targeted therapy, endocrine 
therapy, and immunotherapy are the specific options 
available to treat patients with the different subtypes of 
BRCA (3-6). However, there is a considerable variability in 
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the prognosis of patients with BRCA primarily due to the 
enormous intratumor heterogeneity across the different 
endogenous subtypes. Cases of BRCA also differ in terms 
of the immune microenvironment (7-10). Immunotherapy, 
which mainly consists of immune checkpoint inhibitors 
(ICIs) and immune cell therapies, has significantly 
improved the prognosis of patients with advanced BRCA 
(11,12). However, due to the lack of large-scale prospective 
clinical trials, it remains unclear how immunotherapy can 
be specifically and practically applied in clinic (13,14). 
Therefore, in order to obtain relevant evidence regarding 
the development of appropriate individual treatment 
strategies, signatures that can credibly assess the prognosis 
and response to immunotherapy in patients with BRCA are 
urgently needed.

Ferroptosis is an iron-dependent form of non-apoptotic 
cell death (15,16). It has attracted considerable attention 
in recent years due to its unique mechanism of cell death. 
It is essentially an imbalance in the antioxidant system 
due to lipid peroxidation resulting from intracellular 
iron accumulation. The field of iron death has long been 
focused on the membrane lipid repair enzyme, glutathione 
peroxidase (GPX4) (17). Recently, researchers have 
become interested in discovering a regulator of iron death 
independent of GPX4, and ferroptosis suppressor protein 1  
(FSP1) is the first factor to have been discovered that can 

regulate ferroptosis independently of the GPX4 system (18).  
FSP1 uses NADPH to convert oxidized coenzyme Q10 
(CoQ10) to reduce CoQ10, which directly reduces the 
formation of lipid peroxides and prevents the onset of 
ferroptosis (19). CoQ10 is a coenzyme present in all 
eukaryotes undergoing aerobic respiration and acts 
mainly in the mitochondrial oxidative phosphorylation 
process. In addition, it is a fat-soluble antioxidant that 
plays an important role in the metabolism of fatty acids, 
pyrimidines, and lysosomes. CoQ10 has been widely used 
due to its powerful antioxidant properties in numerous 
diseases, such as cardiovascular disease, diabetes mellitus, 
neurodegenerative diseases, and certain cancers. High-
throughput sequencing is a rapidly evolving technology 
that may provide a basis for revealing CoQ10-related 
and prospective prognostic biomarkers. Therefore, we 
performed this comprehensive bioinformatics analysis to 
investigate the relevant functions of CoQ10 to determine 
their potential value in predicting survival among patients 
with BRCA.

Interferon gamma-mediated ferroptosis secreted by 
CD8+ T cells exerts a synergistic role in immunotherapy. 
This is a key antitumor mechanism of iron death and can 
be widely used in the immunotherapy of tumors in clinic. 
However, whether CoQ10 plays a considerable role in 
this process remains unknown. In this study, we identified 
CoQ10-related biomarkers by studying the CoQ10 pathway 
associated with iron death. We constructed a CoQ10-
associated signature that demonstrated good predictive 
accuracy for predicting outcomes; this study may provide a 
theoretical basis for immunotherapeutic targets in BRCA. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-2025-425/rc). 

Methods

Bulk RNA-sequencing data acquisition and preprocessing

The transcriptomic data and associated clinical information 
for BRCA were sourced from The Cancer Genome Atlas 
(TCGA) database, which is available on the cBioPortal 
database (20). To ensure consistency between patient 
samples, we excluded samples with incomplete survival 
data. Additionally, we retrieved RNA-sequencing (RNA-
seq) data and relevant clinical information from the Gene 
Expression Omnibus (GEO) database for BRCA cohorts 
GSE20711, GSE20685, and GSE19615 (21-23). Data with 
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a cohort of patients with melanoma treated with nivolumab, 
GSE91061, were also obtained from the GEO database (24). 
We addressed issues related to duplicate gene symbols or 
multiple probes by selecting genes with the highest average 
expression levels. A total of 22 ferroptosis-related metabolic 
pathways were collected from the relevant literature and 
databases (table available at https://cdn.amegroups.cn/
static/public/tcr-2025-425-1.xlsx). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Differential gene expression

Differential gene expression analysis was performed using 
the “DESeq2” software package (25), with an absolute log 
fold change (|logFC|) threshold of greater than 1 and a  
P value of less than 0.05 used as the criteria for significance.

Construction of the CoQ10-related prognostic signature 

To establish a CoQ10-related prognostic signature, we 
conducted a series of analyses including univariate and 
multivariate Cox regressions, as well as 10-fold cross-
validation with least absolute shrinkage and selection 
operator (LASSO) regression (26). In the LASSO 
regression, we selected the “lambda.min” package to prevent 
overfitting. A set of thirteen genes (POU3F2, ABCC2, CEL, 
CD24, PXDNL, SPINK8, ACTL8, PAX7, CLEC3A, LRP1B, 
TNN, FABP7, and DTHD1) was used to construct the 
prognostic formula for the risk score as follows: risk score = 
∑ni(Coefi × Expi), where Coefi represents the coefficients 
of the genes, and Expi represents the relative expression of 
genes in the cohort.

Validation and performance assessment

We performed Kaplan-Meier analysis to compare the 
overall survival (OS) rates of high-risk and low-risk 
subgroups based on the median risk score. The accuracy of 
the risk score in predicting 1-, 3-, and 5-year survival rates 
was evaluated using receiver operating characteristic (ROC) 
curves via the “timeROC” R package (The R Foundation 
for Statistical Computing) (27). Additionally, a prognostic 
nomogram incorporating the risk score and other clinical 
features was constructed using the “rms” R package (28). 
The performance of the nomogram was assessed through 
calibration curves and decision curve analysis (DCA).

Functional enrichment analysis

Functional enrichment analysis was conducted using the 
“clusterProfiler” R package, with a focus on Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways (29). Additionally, gene set enrichment 
analysis (GSEA) and gene set variation analysis (GSVA) 
were employed to compare pathway activation between 
different groups (30). The relevant pathways were sourced 
from the Molecular Signatures Database (MSigDB) and 
associated research studies (31-33).

Immune infiltration analysis and immunotherapy 
responsiveness

The ESTIMATE (Estimation of Stromal and Immune 
Cells in Malignant Tumor Tissues Using Expression 
Data) algorithm was used to assess variations in immune 
scores, stromal scores, ESTIMATE scores, and tumor 
purity among samples (34). To investigate immune cell 
infiltration, we employed the Tumor Immune Estimation 
Resource 2.0 (TIMER2.0) algorithm to predict immune 
cell infiltration based on the gene expression data of tumors 
(http://timer.cistrome.org/). Additionally, the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm was 
used to predict the response of patients with BRCA to ICI 
treatment.

Prediction of drug response

We used the R package “oncoPredict” to assess the 
predictive ability of risk score on chemotherapeutic 
agents by calculating patients’ half maximal inhibitory 
concentration (IC50) for various common chemotherapeutic 
agents (35).

Statistical analysis

All data analyses were performed using R software version 
4.2.0. Unless otherwise specified, the two-tailed Wilcoxon 
test was used for comparisons. The Fisher exact test was 
used for contingency table analysis. Pearson correlation 
analysis was conducted to assess the correlations between 
variables. Survival differences were evaluated using Kaplan-
Meier survival curves and log-rank tests. A P value of less 
than 0.05 was considered statistically significant. If not 
specified, P value abbreviations in the text represent (ns, 
P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001).
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Results

CoQ10 as a key ferroptosis metabolic pathway in BRCA

Heterogeneity in metabolic pathways leads to differences 
in clinical outcomes, and we sought to examine the key 
ferroptosis metabolic pathways associated with clinical 
outcomes. Through survey and statistics, we collected 
22 metabolic pathways associated with ferroptosis from a 
series of studies. The 22 pathway activities were quantified 
by single-sample GSEA (ssGSEA) (Figure S1), and those 
that were associated with patients’ clinical prognosis were 
examined, with the most representative being CoQ10 
(Figure S2A). Based on the median CoQ10 pathway activity, 
patients with BRCA were subtyped as having high or low 
CoQ10 activity. Higher CoQ10 activity was associated 
with poorer OS (Figure 1A) and with disease-free survival 
(DFS), disease-specific survival (DSS), and progression-free 
survival (PFS) (Figure 1B-1D). The overall level of CoQ10 
activity and immune infiltration was further clarified. As 
shown in Figure 1E-1H, CoQ10 activity was significantly 
negatively correlated with immune and stromal infiltration 
and positively correlated with tumor purity (Figure 1E). 
In the immune cell infiltration analysis, there was a 
significant negative correlation between CoQ10 activity 
and the majority of immune cell infiltration, with the most 
significant negative correlations with naïve B-cell and CD8+ 
T-cell infiltration (Figure 1F). CoQ10 activity was also 
significantly negatively correlated with a variety of potential 
immune checkpoints, including CD274, HAVCR2, 
PDCD1, and CTLA4 (Figure 1G). Core biological pathway 
analysis indicated that CoQ10 activity was significantly 
negatively correlated with tumor-associated immune 
pathways including antigen presentation, cytokines, natural 
killer (NK) cell activity, and TGF-β (Figure 1H). Overall, 
CoQ10 metabolism appears to be a key metabolic pathway 
affecting the prognosis and immune microenvironment of 
BRCA.

PDSS2 as a hub gene for CoQ10 metabolism

Given the importance of the CoQ10 metabolic pathway, 
we constructed a protein-protein interaction (PPI) pathway 
gene network and found extensive interactions within it. 
CoQ10 metabolic genes contained mainly PDSS family 
and COQ family proteins. In the gene network, PDSS2 
was located in the central region (Figure S2B). The CoQ10 
metabolic genes as a whole also showed good concordance 
in the TCGA data (Figure S2C). One-way Cox analysis 

showed that PDSS2 was significantly associated with the OS 
of patients with BRCA (Figure S2D). The PDSS2 protein is 
an enzyme that synthesizes the isoprene side chain of CoQ 
or ubiquinone, which determines the initiation of CoQ 
biosynthesis. In summary, we concluded that PDSS2 is a 
hub gene for CoQ10 metabolism.

Functional characterization between different CoQ10 
subtypes

To further determine the differences in biological 
functionality between the two clusters, we conducted 
an analysis of the differentially expressed genes (DEGs) 
(Figure 2A). Subsequent to this, we employed gene 
GSEA, leveraging the fold changes identified in the DEG 
analysis, which indicated that CoQ10-high cluster patients 
exhibited heightened enrichment scores in E2F targets, 
G2M checkpoint, and MTORC1 signaling (Figure 2B). 
Conversely, patients with BRCA in the CoQ10-low cluster 
exhibited elevated enrichment in epithelial-mesenchymal 
transition (EMT), interferon (IFN) response, and 
myogenesis signaling pathways. Furthermore, we conducted 
comprehensive KEGG and GO functional enrichment 
analyses, which revealed a prominent upregulation of cell 
cycle-related signaling pathways in the CoQ10-high cluster. 
These pathways were related to nuclear division, meiotic 
cell cycle, and mitotic nuclear division (Figure 2C,2D). In 
contrast, CoQ10-low cluster patients displayed a heightened 
enrichment in a spectrum of immune-related pathways, 
particularly cytokine-cytokine receptor interaction, antigen 
processing and presentation, and leukocyte-mediated 
immunity (Figure S3A,S3B). To obtain a more detailed 
understanding of the transcriptional heterogeneity across 
patients with BRCA, we used the GSVA algorithm to 
quantify 16 recurrent cancer cell states that interface with 
the tumor microenvironment (TME), forming organized 
systems conducive to immune evasion, metastasis, and 
drug resistance. Our findings indicated that the patients 
in the CoQ10-high cluster were enriched in a variety of 
gene modules, such as cycle and oxidative phosphorylation 
modules.  In contrast,  patients in the CoQ10-low 
cluster demonstrated a higher score for astrocyte (AC)-
like, oligodendrocyte progenitor cell (OPC)-like, and 
neural progenitor cell (NPC)-like modules (Figure 2E). 
Collectively, our systematic exploration of the functional 
state disparities between the two molecular subtypes 
of BRCA not only underscores their distinct biological 
characteristics but also offers fresh perspectives into the 

https://cdn.amegroups.cn/static/public/TCR-2025-425-Supplementary.pdf
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Figure 1 Prognostic significance and immune correlation of CoQ10 score. (A-D) Kaplan-Meier curves illustrating the OS, DFS, DSS and 
PFS differences between the two clusters. (E-H) Correlation heatmap showing the association of CoQ10 score with immune factor score, 
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Figure 2 Differences of biological functions between CoQ10 subgroups. (A) Volcano plot of DEGs between clusters, with CoQ10-low as 
control (| logFC |>1, P<0.05). (B) Bar plot showing different pathways enriched between CoQ10-low and CoQ10-high. (C) GO analysis 
highlighting the BP enriched in CoQ10-high. (D) KEGG pathways enriched in CoQ10-high. (E) Boxplots showing the signature score of 
16 cancer cell states between CoQ10-low and CoQ10-high. (F) The value of TMB between low/high CoQ10-low and CoQ10-high. ns, 
P>0.05; **, P<0.01; ****, P<0.0001. AC, adenylate cyclase; BP, biological process; CoQ10, Coenzyme Q10; DEG, differentially expressed 
gene; FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NPC, neural progenitor cell; OPC, 
oligodendrocyte precursor cell; pEMT, partial epithelial-mesenchymal transition; PPAR, peroxisome proliferator-activated receptor; TMB, 
tumor mutational burden. 
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intricate mechanisms that underpin BRCA progression.

Mutational spectrum of different CoQ10 insomnia

Somat ic  mutat ions  p lay  a  key  ro le  in  ag ing and 
tumorigenesis, so we additionally examined the differences 
in  mutat ional  prof i les  between di f ferent  CoQ10  
isoforms (36). Tumor mutational burden (TMB) is the 
number of somatic nonsynonymous mutations in a given 
genomic region. A study has shown that patients with a 
higher TMB may benefit from ICI therapy (31). In this 
study, patients with high CoQ10 activity had higher TMB 
levels (Figure 2F). In addition, the TP53 and CDH1 genes 
also differed between CoQ10 isoforms, as indicated in 
the mutation waterfall plot in Figure S3C. In addition, 
patients with better CoQ10 activity showed high loading 
in terms of aneuploidy, mutation count, and frequency  
(Figure S3D-S3F). Overall, there was a level of variation 
in tumor mutation profiles between CoQ10 subtypes, with 
patients with higher CoQ10 activity having a higher TMB.

Distinct immune landscapes of the CoQ10 subtypes

We next sought to determine whether variations in CoQ10-
related gene expression patterns reflect intertumoral 
immune heterogeneity and microenvironmental differences 
in BRCA by detecting a panel of immunologically 
pertinent signatures. We found that in the CoQ10-low 
group, a substantial proportion of immune-associated 
pathways exhibited augmented enrichment (Figure 3A and  
Figure S4A-S4D). To further substantiate our results, we 
used the GSVA algorithm to analyze the TME scores 
across the two CoQ10 clusters. Intriguingly, the CoQ10-
low cluster exhibited higher HLA and TFG-β expression, 
suggesting a more pronounced immune presence  
(Figure 3B). Recognizing the heterogeneity in the TME 
between these two clusters, we employed CIBERSORT-
ABS to assess the relative abundance of distinct immune 
cell subpopulations in BRCA. Notably, the CoQ10-low 
cluster was characterized by higher infiltration levels of 
M1-like macrophages, M2-like macrophages, and CD8+ T 
cells (Figure 3C and Figure S4E-S4J). Thus, this cluster was 
considered to exhibit an immune “hot” phenotype, partly 
explaining why patients in this group had better outcomes 
compared to those in the CoQ10-high cluster. Moreover, 
through TIDE analysis, we found the CoQ10-low cluster 
exhibited notably elevated TIDE scores, exclusion scores, 
and dysfunction scores, suggesting a heightened likelihood 

of immune evasion among these patients (Figure 3D-3F). 
Additionally, we observed a diminished immunotherapy 
response among patients in the CoQ10-low cluster as 
compared to those in the CoQ10-high cluster (Figure 3G). 
Overall, we comprehensively characterized the immune 
landscape and responsiveness to immunotherapy across the 
distinct BRCA subgroups, underscoring the complexity and 
heterogeneity of the immune microenvironment in BRCA.

Development of a CoQ10-related prognostic model  
for BRCA

The aforementioned findings were able to substantiate 
the link between CoQ10-related genes and both the 
prognosis and response to immunotherapy among patients 
with BRCA, indicating the potential of CoQ10-related 
classification for evaluating prognosis and treatment 
efficacy. Consequently, we built a novel CoQ10-related 
prognostic model based on the DEGs between these BRCA 
clusters. By using univariate Cox regression and LASSO 
analysis, we selected 13 genes, including POU3F2, ABCC2, 
CEL, CD24, PXDNL, SPINK8, ACTL8, PAX7, CLEC3A, 
LRP1B, TNN, FABP7, and DTHD1, and developed a risk 
assessment model using data of the patients with BRCA 
among the TCGA cohort as the training set (Figure 4A). 

Following the computation of the CoQ10-related risk 
score for each patient within the BRCA cohort, we stratified 
patients into high-risk and low-risk groups based on the 
median risk score (Figure 4B). In parallel, we determined the 
survival status of the patients (Figure 4C) and the expression 
patterns of the 13 genes comprising the prognostic 
signature (Figure 4D). We noted that patients with higher 
CoQ10-related risk scores exhibited poorer survival 
outcomes, which was mirrored by the increased expression 
levels of the “risk” genes, specifically POU3F2 and ABCC2. 
We then employed a Sankey diagram to visually illustrate 
the intricate interplay between the identified clusters, 
CoQ10-related risk subgroups, and the survival outcomes 
in BRCA (Figure 4E). This diagram vividly demonstrated 
that patients with elevated CoQ10-related risk scores were 
disproportionately represented in the CoQ10-high cluster 
and were more likely to have a poorer prognosis. This 
observation was corroborated by Kaplan-Meier survival 
analysis (Figure 4F), which corroborated the significant 
survival advantage for patients in the low-risk group, 
further validating the prognostic value of the CoQ10-
related prognostic model in stratifying patients with BRCA 
according to OS outcomes.
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Figure 3 Immune infiltration and responsiveness to immunotherapy across clusters. (A) Boxplots showing the signature score of immune-
related pathways between CoQ10-low and CoQ10-high. (B) The mean value of scaled estimate scores between CoQ10-low and CoQ10-
high. (C) Boxplots showing the proportion of 22 immune cells in CoQ10-low and CoQ10-high of BRCA estimated by CIBERSORT-
ABS. (D-G) TIDE analysis including TIDE score, Exclusion score, Dysfunction score and potential immunotherapy responder. ns, 
P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. aDCs, activated dendritic cells; APC, antigen-presenting cell; BRCA, breast 
cancer; CCR, chemokine receptor; CoQ10, Coenzyme Q10; DCs, dendritic cells; HLA, human leukocyte antigen; IFN, interferon; IFN-γ, 
interferon-gamma; MHC, major histocompatibility complex; NK, natural killer; pDCs, plasmacytoid dendritic cells; TIDE, Tumor Immune 
Dysfunction and Exclusion; TGF-β, transforming growth factor-beta; TILs, tumor-infiltrating lymphocytes.
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Figure 4 Establishment and validation of the CoQ10-related prognostic signature. (A) Multivariate Cox coefficients for candidated genes in 
the prognostic signature. (B) Riskscore distribution among BRCA patients, sorted from lowest to highest. (C) Survival status categorized by 
Riskscore for each BRCA patient. (D) Heatmap displaying expression levels of seven genes in different Riskscore groups. (E) Sankey diagram 
correlating clusters, Riskscore groups, and BRCA survival status. (F) Kaplan-Meier analysis comparing overall survival between high and low 
Riskscore groups in BRCA (P<0.0001). (G) ROC curves depicting Riskscore signature’s predictive performance for 1-, 3-, and 5-year overall 
survival in BRCA. (H-L, I-M) Kaplan-Meier analysis and time-dependent ROC curves in external validation sets: GSE20711, GSE20685 
and GSE19615. AUC, area under the curve; BRCA, breast cancer; CoQ10, Coenzyme Q10; OS, overall survival; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas.
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To evaluate the predictive value of our prognostic 
signature, we drew ROC curves for OS at 1, 3, and 5 years 
(Figure 4G). The area under the curve (AUC) yielded 
values of 0.76, 0.77, and 0.74, respectively, supporting 
predictive ability of our model, particularly in long-term 
survival predictions. Additionally, we verified the accuracy 
of our signature in three distinct external validation 
sets (GSE20711, GSE20685, and GSE19615), yielding 
satisfactory results and higher 1-, 3-, and 5-year AUC 
values (Figure 4H-4M). These findings not only confirm the 
robustness of our prognostic model but also highlight its 
potential for clinical application.

Establishment of a nomogram for forecasting survival in 
BRCA

We additionally conducted univariate and multivariate 
Cox regress ion analyses ,  and the CoQ10-related 
prognostic signature score emerged as an independent 
prognostic factor for patients with BRCA, regardless of 
age, pathological stage, and histologic grade (Figure 5A).  
Subsequently, we devised a predictive nomogram to 
enhance the prognostic efficacy of the CoQ10-related 
risk model. This nomogram serves as a quantitative and 
visualization tool for predicting 1-, 3-, and 5-year OS rates 
(Figure 5B). To assess the performance of the nomogram, 
we plotted calibration curves, which demonstrated that the 
prediction curves of the model closely aligned with the ideal 
curve, indicating good agreement between predicted and 
observed outcomes (Figure 5C). Moreover, the nomogram 
exhibited a significant positive net benefit in predicting the 
risk of death, surpassing the traditional age and tumor node 
metastasis (TNM) staging system in this regard (Figure 5D).  
In summary, these findings underscore the substantial 
clinical value of the nomogram model in predicting survival 
outcomes among patients with BRCA.

Functional and characteristics features of patients in the 
high- and low-risk groups

For patients in the different risk groups, we first analyzed 
differences in mutation profiles. We depicted the mutation 
profiles of patients with BRCA in the high- and low-risk 
and observed that the most frequently mutant genes showed 
comparable mutation frequency; however, TP53, CDH1, 
and SPTA1 showed higher mutation frequency (Figure 6A).  
Interestingly, patients in the high-risk group had 
significantly higher TMB levels, and the risk scores were 

significantly positively correlated with TMB (Figure 6B,6C).  
Aneuploidy, mutation frequency, and microsatellite 
instability scores were higher in the high-risk patients 
than in the low-risk group (Figure 6D-6G). To gain further 
insights, we conducted GSEA, which revealed that E2F, 
G2M, and oxidative phosphorylation were enriched in 
high-risk patients, suggesting a more aggressive phenotype. 
In contrast, IFN-γ response and IL6-JAK-STAT3 signaling 
pathway were highly enriched in low-risk patients, 
indicative of a more indolent disease state (Figure 6H). 
By applying GSVA to calculate the signature scores of 16 
recurrent cancer cell states, we found that the cycle and 
oxidative phosphorylation gene modules were significantly 
overexpressed in high-risk patients as compared to in low-
risk patients (Figure 6I). Collectively, these findings indicate 
there being distinct functional and genomic characteristics 
between high- and low-risk BRCA patients, providing 
valuable insights into the underlying biological mechanisms 
that differentiate these two risk strata.

TME heterogeneity and immunotherapy responses in the 
two risk groups

Despite the limited body of research investigating the 
relationship between CoQ10 and TME, elucidating the 
TME landscape in the context of varying CoQ10 expression 
patterns in BRCA is of paramount importance. Consequently, 
this study sought to delineate the differences in TME 
characteristics between high-risk and low-risk BRCA patients. 
Initial analysis using the ESTIMATE algorithm demonstrated 
that TME scores were significantly higher in patients 
with lower risk scores, exhibiting a negative correlation 
with the risk score (Figure 7A and Figure S5A-S5D).  
Furthermore, the CIBERSORT algorithm was employed 
to characterize the compositional variations in TME 
between high-risk and low-risk patients (Figure 7B). High-
risk BRCA patients displayed an increased abundance of 
M2-like macrophages, coupled with a reduced presence 
of CD8+ T cells and M1-like macrophages (Figure 7B). 
Notably, the risk score exhibited a positive correlation 
with the abundance of M2-like macrophages, while 
demonstrating a negative correlation with the levels of 
CD8+ T cells and M1-like macrophages (Figure S5E-S5G).  
Of particular interest, the CoQ10-related risk score 
was inversely correlated with the expression of multiple 
immune checkpoint markers (Figure 7C). Given that TME 
heterogeneity is a critical determinant of immunotherapy 
responsiveness, we conducted TIDE analysis to predict the 
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Figure 5 Survival prediction nomogram based on Riskscore. (A) Univariate Cox regression analysis of clinical characteristics and Riskscore. 
Factors with P<0.05 were included in subsequent multivariate Cox regression analysis. (B) Nomogram incorporating age, stage and 
Riskscore, utilized for 1-, 3-, and 5-year survival predictions. (C) Calibration curves at 1-, 3-, and 5-year, respectively, demonstrating 
nomogram’s predictive accuracy. (D) DCA evaluating the clinical utility of the nomogram. CI, confidence interval; DCA, decision curve 
analysis; HR, hazard ratio; OS, overall survival.
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immunotherapy response in patients from both risk groups. 
The results revealed that high-risk patients had significantly 
lower TIDE and dysfunction scores (Figure 7D,7E). 
Moreover, a higher proportion of high-risk patients were 

predicted to exhibit a favorable response to immunotherapy 
(Figure 7F). To corroborate these findings, we analyzed 
additional immunotherapy datasets, observing consistent 
results in melanoma patients treated with nivolumab 
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Figure 6 Differences in biological functions between risk subgroups. (A) Waterfall diagram of top 20 mutated genes. (B) The value of TMB 
between low/high risk group. (C) Scatter plots showing the correlation between the risk score and TMB. (D-G) The value of several somatic 
cell mutation between low/high risk group. (H) Bar plot showing different pathways enriched between low/high risk group. (I) Boxplots 
showing the signature score of 16 cancer cell states between low/high risk groups. ns, P>0.05; *, P<0.05; ***, P<0.001; ****, P<0.0001. AC, 
adenylate cyclase; FDR, false discovery rate; NFKB, nuclear factor kappa B; NPC, neural progenitor cell; OPC, oligodendrocyte precursor 
cell; pEMT, partial epithelial-mesenchymal transition; TMB, tumor mutational burden; TNFA, tumor necrosis factor alpha. 
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Figure 7 Immune infiltration and responsiveness to immunotherapy across risk group. (A) The mean value of scaled estimate score between 
low/high risk group. (B) Boxplots showing the proportion of 22 immune cells in low/high risk groups of BRCA estimated by CIBERSORT. 
(C) Bar plot of the correlation between immunomodulators and the risk score. (D-F) TIDE analysis including TIDE score, dysfunction 
and potential immunotherapy responders. (G) Differences of immunotherapy response of high/low-risk patients in the GSE91061 dataset. 
ns, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NA, not available; NK, natural killer; OS, overall survival; TIDE, Tumor 
Immune Dysfunction and Exclusion. 
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(Figure 7G). Collectively, these findings underscore the 
distinct TME profiles between high-risk and low-risk 
BRCA patients and provide compelling evidence that high-
risk patients may derive greater therapeutic benefit from 
immunotherapy compared to their low-risk counterparts.

Comparison of anticancer drug sensitivity between the 
different risk groups

A critical consequence of tumor heterogeneity is the 
differential response of distinct cancer patient subgroups 
to various therapeutic interventions, which can result in 
treatment inefficacy and tumor recurrence. To elucidate 
the relationship between drug sensitivity, the CoQ10-
related risk score, and candidate prognostic genes, we 
computed the IC50 values for each drug in the training set 
samples. We subsequently evaluated the significance and 
associations among drug sensitivities, risk scores, and the 
expression levels of candidate prognostic genes in BRCA 
patients (Figure 8A). Our analysis revealed that the low-
risk group exhibited greater sensitivity to palbociclib and 
ribociclib compared to the high-risk group (Figure 8B,8C). 
Conversely, patients in the high-risk group demonstrated 
increased sensitivity to entinostat and lapatinib relative to 
those in the low-risk group (Figure 8D,8E). These findings 
highlight the potential utility of the CoQ10-related risk 
score in guiding personalized therapeutic strategies for 
BRCA patients.

Discussion

Approximately 2.3 million patients are diagnosed with 
BRCA worldwide each year, representing a massive 
burden on human health. However, due to the highly 
heterogeneous tissue origin of BRCA, the efficacy of 
standard therapies varies greatly from patient to patient. In 
recent years, immunotherapy has been meaningfully applied 
in the treatment of BRCA, not only improving treatment 
outcomes but also reducing the adverse effects of treatments 
such as radiotherapy. However, similar to standard therapies, 
immunotherapy has considerable heterogeneity (37).  
Identifying populations that can potentially benefit from 
ICIs has been challenging and warrants further research 
attention (38). The advent of high-throughput sequencing 
has enabled the mining of a large number of cancer-related 
biomarkers, offering the possibility of addressing these 
challenges.

Ferroptosis is newly discovered mode of non-apoptotic 

cell death caused by the iron-dependent accumulation 
of lipid peroxides. Ferroptosis enhances the antitumor 
immune efficacy mediated by multiple pathways (39,40). It 
has been shown that ferroptosis-associated lipid peroxides 
can be used as recognition signals to promote recognition, 
phagocytosis, the processing of tumor antigens by dendritic 
cells, and presentation of tumor-associated antigens to CD8+ 
T lymphocytes, which can activate cytotoxic T lymphocytes 
to enhance tumor immunotherapy. Effector T cells and 
radiotherapy interact via ferroptosis to promote tumor 
clearance. Immunotherapy-activated CD8+ T cells increase 
lipid peroxidation and ferroptosis via IFN-γ, with the latter 
directly sensitizing tumor cells to radiotherapy (41,42). In 
addition to this, ferroptosis can facilitate immunotherapy 
through various pathways, for instance by promoting the 
transformation of tumor-associated macrophages and 
targeting tumor metabolic addiction. Therefore, we are 
committed to exploring the critical role of ferroptosis-
related metabolic pathways in patients with BRCA through 
transcriptomics and genomic studies.

After preliminary investigation and exploration, we 
selected 22 important pathways related to ferroptosis 
metabolism. We sought to identify those pathways 
associated with OS in patients with BRCA. Quantifying 
ferroptosis metabolic pathway activity by ssGSEA through 
one-way Cox regression analysis, we found that CoQ10 
activity was not only associated with OS, but also with 
DFS, DSS, and PFS. High CoQ10 activity was associated 
with poorer patient prognosis. We defined different 
CoQ10 activities as different CoQ10 subtypes, each with 
unique clinical, survival, biological, and immunological 
characteristics. Our study indicated that CoQ10 hyperactive 
isoforms exhibited higher metabolic activity during the 
tumor cell cycle, including the specific activation of E2F, 
G2M, and nuclear division pathways. The cell cycle unfolds 
in a precisely functioning manner, ensuring that cells inherit 
precise copies of DNA to their daughter cells (43,44). If any 
errors occur during DNA replication prior to division or 
DNA migration into the newly formed cell, then the cell’s 
genetic program can go awry, leading to the development 
of cancer or other diseases. Furthermore, we found that 
multiple neuron-related pathways were enriched in the 
CoQ10 hyperactive subgroup of patients with BRCA. The 
complex interplay between the nervous system and cancer 
has profound effects on all aspects of tumorigenesis and 
progression. This complex crosstalk regulates key processes 
such as tumorigenesis, tumor growth, invasion, metastatic 
dissemination, development of therapeutic resistance, 
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Figure 8 High- and low-risk group patients differ in drug sensitivity. (A) Bubble plot showing the relationship between IC50 of drugs, risk 
score, and model genes. (B) Boxplot showing the comparison of IC50 of palbociclib between high/low-risk groups, and scatter plot showing 
the correlation between the IC50 of drug and risk score. (C) Boxplot showing the comparison of IC50 of ribociclib between high/low-risk 
groups, and scatter plot showing the correlation between the IC50 of drug and risk score. (D) Boxplot showing the comparison of IC50 of 
entinostat between high/low-risk groups, and scatter plot showing the correlation between the IC50 of drug and risk score. (E) Boxplot 
showing the comparison of IC50 of lapatinib between high/low-risk groups, and scatter plot showing the correlation between the IC50 of drug 
and risk score. ****, P<0.0001. IC50, half maximal inhibitory concentration.
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stimulation of protumoral inflammation, and impairment 
of anticancer immune responses. Inadequate IFN signaling 
activity in CoQ10-low patients may partly explain the poor 
prognosis of this group. Tumor cells are able to survive 
in their microenvironment where they evade immune 
surveillance and resist pharmacological intervention. 
Theoretically, high CoQ10 activity can predict decreased 
levels of immune checkpoint expression and reduced 
infiltration of antitumor immune cells. These results suggest 
that the overall suppression of immune function further 
fuels the growth of tumour cells. Our results showed that 
patients with CoQ10 hypoactivity exhibited higher immune 
scores and multiple immune-related modules, suggesting 
an immune “hot” phenotype. However, patients with low 
CoQ10 activity were less sensitive to immunotherapy than 
those with high activity, which we speculate may be related 
to their immune cell depletion.

To further clarify the prognostic value of CoQ10-
associated genes, we examined the DEGs between the high- 
and low-CoQ10 groups and developed a robust CoQ10-
associated prognostic model via univariate Cox regression 
and LASSO regression analyses. The lysosome-associated 
prognostic features included 13 DEGs between the two 
CoQ10 subgroups, including POU3F2, ABCC2, CEL, CD24, 
PXDNL, SPINK8, ACTL8, PAX7, CLEC3A, LRP1B, TNN, 
FABP7, and DTHD1. CoQ10-associated prognostic features 
were proved valuable in predicting the prognosis of patients 
with BRCA in the different datasets. Notably, patients in the 
high-risk group demonstrated significantly worse outcomes 
compared to the low-risk group. By combining this risk 
score with clinical parameters, a nomogram was formed 
which demonstrated the clinical predictive value for BRCA. 
Further analyses showed that the high-risk group was 
associated with an EMT process characterized by the loss 
of epithelial cell polarity, reduced intercellular adhesion, 
and acquisition of mesenchymal traits. In the comparison 
of TME between the high-risk and low-risk groups, the 
high-risk group as a whole showed reduced immune cell 
infiltration. Our findings suggested that the ratio of M2-
like to M1-like macrophages in patients with BRCA was 
significantly and positively correlated with CoQ10-related 
prognostic risk scores. Macrophages are in a quiescent 
state, called M0, and can differentiate into two distinct 
phenotypes: M1-like and M2-like (45). These polarized 
macrophages play a key role in mediating inflammatory 
processes. Specifically, M1-like macrophages are primarily 
involved in driving proinflammatory responses, whereas 
M2-like macrophages are primarily involved in modulating 

anti-inflammatory responses (46). In addition, the low-
risk group also had higher levels of T follicular helper 
cells, which support B-cell function and antibody-mediated 
immune responses and tend to correlate with a better 
prognosis in a variety of solid tumors (47). TIDE analyses 
suggested that high-risk patients were more likely to 
respond well to immunotherapy. These extensive analyses 
highlight the potential of CoQ10-associated prognostic 
traits as reliable predictors of the prognosis and response 
to immunotherapy among patients with BRCA. Finally, 
this study examined the correlation between risk scores and 
IC50 values for commonly used chemotherapeutic agents. 
This analysis provides valuable insights for combination 
therapy or selection of patients with BRCA who may be 
more sensitive to specific chemotherapeutic agents. Overall, 
this study highlights the potential clinical application of 
CoQ10-related prognostic features in guiding personalized 
treatment strategies for those with BRCA.

Although innovative molecular classifications based on 
CoQ10-related genes and the robust prognostic models 
that they provide are noteworthy, inherent limitations must 
be addressed. The practical application of these CoQ10-
centered approaches in the clinical setting is likely to 
encounter a number of challenges. It is critical to work 
closely with clinical experts to refine and standardize the 
process so as to improve clinical applicability and ease of 
use. In addition, the retrospective nature of the recruitment 
of patients with BRCA might have affected the results. In 
the future, more cost-effective genetic tests will bring more 
universal convenience to the research of this technology. 
This technology, combined with the judgement of 
clinicians, will provide patients with personalized guidance 
for diagnosis and treatment. It is important to validate 
the findings through rigorous, multicenter, randomized 
controlled trials. These trials should have reliable methods, 
broad patient samples, and thorough follow-up periods to 
ensure reliability and generalizability of the findings.

Conclusions

In this study, patients with BRCA were stratified into 
two distinct CoQ10 clusters, which exhibited significant 
disparities in survival outcomes, immune cell infiltration, 
and other critical variables. Furthermore, we have 
established the CoQ10-related prognostic signature as a 
novel and independent prognostic factor for predicting the 
clinical outcomes of BRCA patients. The CoQ10-based 
molecular subtyping and prognostic signature demonstrated 
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robust utility as indicators of tumor progression, offering 
potential as a valuable tool for informing personalized 
clinical decision-making, particularly in the context of 
immunotherapy for BRCA.
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