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Introduction

Gliomas are the most common and aggressive form of 
brain tumor, accounting for a significant proportion of 
deaths due to central nervous system malignancies (1). 
Despite extensive research efforts, gliomas remain difficult 
to manage, with high recurrence rates and poor survival 
outcomes (2). Gliomas can be classified into different 
types based on their molecular and genetic characteristics, 

including the presence or absence of mutations in the 
isocitrate dehydrogenase (IDH) gene, which is used to 
distinguish between IDH-mutant and IDH-wildtype 
gliomas (3-5). These tumors also differ in their cellular 
composition, histopathological features, and prognosis, 
leading to substantial heterogeneity within glioma subtypes. 
Understanding the mechanisms of tumor progression, 
immune infiltration, and resistance to therapies is essential 
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for improving treatment outcomes. However, much remains 
unknown about the molecular and cellular underpinnings 
of gliomas, particularly in the context of the tumor 
microenvironment and its interaction with immune cells (6). 
Further research is critical to identifying novel therapeutic 
targets and biomarkers that could improve the management 
of patients with glioma.

A promising area of glioma research involves the role 
of immune cells within the tumor microenvironment. 
In particular, CD31, also known as platelet endothelial 
cell adhesion molecule-1 (PECAM-1), has traditionally 
been considered a marker for endothelial cells and is well 
recognized for its role in angiogenesis and maintaining 
vascular integrity (7). However, recent studies have 
demonstrated that CD31 is also expressed by certain 
immune cells, including macrophages and T cells, within 
the tumor microenvironment (8,9). These CD31+ immune 
cells exhibit functional differences from their CD31− 
counterparts (10). For instance, CD31+ macrophages 
and T cells have been associated with altered immune 
responses, including the modulation of inflammation and 
immune tolerance, suggesting a distinct role for CD31 
in the immune landscape of gliomas. The presence of 

CD31 on these immune cells may influence their ability to 
infiltrate tumor tissues, engage in cell-cell communication, 
and contribute to the immunosuppressive environment 
often seen in aggressive gliomas (11). Despite the growing 
body of evidence supporting the role of CD31 in immune 
cell function, the specific characteristics and functional 
relevance of CD31+ immune cells in glioma remain poorly 
understood. Further investigation into the role of CD31-
expressing immune cells within gliomas could provide novel 
insights into novel immune-regulatory mechanisms and 
potential therapeutic avenues.

S ingle-ce l l  RNA sequencing ( scRNA-seq)  has 
emerged as a powerful tool for investigating the cellular 
heterogeneity of tumors at unprecedented resolution. This 
next-generation sequencing (NGS) technology allows for 
the transcriptional profiling of individual cells, enabling 
researchers to explore the gene expression patterns of 
distinct cell types within a tissue sample (12,13). In the 
context of glioma, scRNA-seq provides an opportunity 
to dissect the complex cellular architecture of the tumor 
microenvironment, identify key cell populations, and study 
their interactions at a molecular level (14,15). By isolating 
and analyzing individual cells, researchers can distinguish 
between cancerous and noncancerous cells and explore 
the diverse populations of immune and stromal cells that 
contribute to tumor progression. The ability to map out the 
cellular landscape of gliomas with such detail holds promise 
for discovering new biomarkers, therapeutic targets, and 
mechanisms of resistance to treatment. Moreover, scRNA-
seq facilitates the study of rare cell populations that may 
play critical roles in tumor evolution but are otherwise 
difficult to characterize using bulk RNA-sequencing 
approaches (16).

In this study, we used scRNA-seq technology to clarify 
the role of CD31+ immune cells, particularly macrophages 
and T cells, in gliomas. By analyzing a dataset of CD31+ 
cells from glioma samples, we sought to characterize their 
transcriptional profiles and distinct characteristics compared 
to CD31− immune cells. Using two complementary 
techniques—cell-cell communication analysis with the 
CellChat framework and pseudotime trajectory analysis 
with Monocle3—we investigated the functional relevance of 
these cells. The cell-cell communication analysis revealed 
key pathways involved in immune regulation and tumor 
progression through the mapping of signaling interactions 
within the tumor microenvironment, while pseudotime 
analysis traced the developmental trajectories of CD31+ 
immune cells, providing a dynamic view of their behavior. 

Highlight box

Key findings 
• CD31+ immune cells, including macrophages and T cells, play 

pivotal roles in glioma progression, with distinct functions revealed 
through single-cell RNA sequencing (scRNA-seq).

• Ferritin, an iron-binding protein, was identified as a key regulator 
of CD31+ cell activity, linking iron metabolism to immune 
modulation in gliomas.

• Mural cells, despite their low abundance, exhibited a high 
interaction rate with other cell types, underscoring their 
significance in the glioma microenvironment.  

What is known and what is new? 
• The involvement of immune cells, particularly macrophages and T 

cells, in the glioma microenvironment has been established.
• This study is the first to highlight the role of CD31+ immune 

cells and mural cells in glioma using scRNA-seq data. It identified 
ferritin as a potential therapeutic target for immune modulation.

What is the implication, and what should change now?
• Targeting ferritin and the identified ligand-receptor interactions, 

such as osteopontin-CD44 interaction, offers new therapeutic 
avenues to modulate the glioma microenvironment.

• Increased focus should be paid to the role of mural cells and their 
interactions, which could lead to novel strategies for disrupting 
tumor progression and enhancing immunotherapy outcomes.
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Our findings demonstrated that CD31+ macrophages 
and T cells exhibit unique communication patterns and 
functional profiles, with ferritin, a key iron-binding protein, 
emerging as a critical regulator of these cells’ activity and 
function. The enriched expression of ferritin in CD31+ 
cells suggests a link between iron metabolism and immune 
function within the tumor microenvironment. This study 
highlights the potential of ferritin as a therapeutic target, 
offering new avenues for research and immunotherapies 
aimed at modulating the immune landscape in gliomas to 
improve outcomes. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-2025-377/rc).

Methods

Data acquisition and preprocessing

We downloaded the scRNA-seq data of four brain 
glioblastoma samples from the Gene Expression Omnibus 
platform, with the tumor core selected as the region 
of interest. The data suppliers subjected single-cell 
suspensions, enriched for CD31+ cells using magnetic-
activated cell sorting (MACS), to scRNA-seq using a 
10× genomics-based single-cell protocol. The dataset 
downloaded was from the Gene Expression Omnibus 
(accession No. GSE162631) (17). The raw sequence reads 
were analyzed by Cell Ranger v.3.0.1 under the default 
parameters. This study was conducted in accordance with 
the Declaration of Helsinki and its subsequent amendments.

Single-cell analysis

The scRNA-seq data were analyzed using the Seurat package 
(version 4.3.0.1) to process and visualize the dataset (18).  
We first merged the four individual cell files to create a 
single Seurat object. This object was normalized using the 
NormalizeData function, followed by the identification 
of highly variable genes with the FindVariableFeatures 
function. Next, principal component analysis (PCA) 
was performed using the RunPCA function to reduce 
dimensionality. A Uniform Manifold Approximation and 
Projection (UMAP) was then applied for visualization via 
the RunUMAP function based on the first 15 principal 
components. Clustering of cells was performed with 
the FindNeighbors and FindClusters functions, with a 
resolution of 0.2. The clustering results were visualized 
using UMAP plots.

Pseudotime analysis with Monocle3

Pseudotime trajectory analysis was conducted using 
Monocle3 to infer the developmental progression of cells 
(19,20). The Seurat UMAP coordinates were transferred to 
Monocle3 using UMAPPlot. We constructed a cell dataset 
using the expression matrix and metadata from Seurat. After 
the data were normalized, dimensionality reduction was 
performed using Monocle3’s reduce_dimension function, 
and cells were clustered using the cluster_cells function with 
a resolution of 1×10−7. A cell trajectory graph was learned 
using the learn_graph function, and cells were ordered 
along the pseudotime trajectory. Genes of interest were 
plotted across the pseudotime to visualize their expression 
trends along the differentiation pathways.

Cell-cell communication analysis with CellChat

Cell-cell communication was examined using the CellChat 
package, which analyzed the ligand-receptor interactions 
between cell types (21). The createCellChat function 
was used to create the CellChat object from the Seurat 
data, after which identifyOverExpressedGenes and ident
ifyOverExpressedInteractions were applied to determine 
the overexpressed ligand-receptor pairs (L-R pairs). The 
probability of interactions between cell subtypes was 
computed using the computeCommunProb function. 
Network plots were generated to visualize the interaction 
strength and frequency between different cell populations. 
Pathway-specific analyses were conducted for key signaling 
pathways.

Statistical analysis

All statistical analyses conducted in this study were 
generated with R software version 4.3.1 (The R Foundation 
for Statistical Computing, Vienna, Austria). A P value <0.05 
was considered to be statistically significant.

Results

scRNA transcriptional profiling of CD31+ cells in 
glioblastoma brain samples

In order to explore the cell-cell communication pattern 
within glioblastoma, we used the scRNA data from the 
GSE162631 dataset. We selected four glioblastoma 
samples enriched for CD31+ cells through MACS. Table 1 
summarizes the patient information from the four samples.

https://tcr.amegroups.com/article/view/10.21037/tcr-2025-377/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-2025-377/rc
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Our single-cell analysis identified 18 distinct clusters 
(Figure 1A). Based on the cell markers provided by the 
data contributors, these clusters were classified into 10 cell 
types, including macrophages, dendritic cells, microglia, 
neutrophils, proliferating macrophages, endothelial 
cells, mural cells, T cells, B cells, and glia/neuronal cells  
(Figure 1B) .  Nineteen gene markers used for this 
classification were visualized through a dot plot (Figure 1C).

Pseudotime analysis of glioblastoma samples identified key 
genes

To explore the development of the dataset, we used 
Monocle3 to construct a pseudotime model of all cell 

clusters within the dataset, which was demonstrated in 
UMAP plots (Figure 2A,2B). In addition to visualizing the 
overall structure of the dataset, we identified specific genes 
of interest across the developmental trajectory (Figure 2C). 
Notably, CD2, CD3D, CD3E, and CD3G, key markers of 
T cells, were variably expressed along the pseudotime axis, 
reflecting the involvement of immune-related pathways in 
tumor progression. Furthermore, we observed interesting 
expression patterns of ferroptosis-related genes, such as 
FTH1 and FTL, being highly expressed in the neutrophil’s 
population and the macrophage cluster that sat in the 
middle, suggesting a potential link between ferroptosis 
and tumor biology, particularly within endothelial cell 
populations. The expression of these genes aligns with the 

Table 1 Clinical information of patients included in this study

Parameters
Patient

1 2 3 4

Histology GBM GBM GBM GBM

Gender Female Female Male Male

Age (years) 58 54 63 52

Recurrence Primary Primary Primary Primary

IDH status Wild-type Wild-type Wild-type Wild-type

1p/19q status Non-codel Non-codel Non-codel Non-codel

Location Right parietal lobe Left temporal lobe Right occipital lobe Right frontal lobe

GFAP + + + +

OLIG2 + + + +

NF + − + +

Ki67 20%+ 20%+ 25%+ 15%+

p53 + + − +

MMP9 + − − −

S100 + + + +

Vimentin + + + +

Syn + − − +

MBP NA − + −

ATRX + + − +

EMA + + + +

MGMT − + + −

NeuN − − − −

LCA NA − − −

EGFR + NA NA NA

+, present of the marker; −, absent of the marker. GBM, glioblastoma; IDH, isocitrate dehydrogenase; NA, not available.
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pseudotime trajectory, suggesting their role in glioblastoma 
progression. Additionally, markers such as SELE and TRBC2 
were also expressed along the trajectory, providing further 
insights into immune and endothelial interactions within 
the tumor microenvironment. This analysis highlights the 
dynamic changes in gene expression across the pseudotime 
trajectory, underscoring the potential roles of ferroptosis 
and immune modulation in glioblastoma development.

High intercellular communication among CD31+ cells 
revealed by CellChat

In order to explore the cellular interaction within 
the CD31+ cells of the dataset, we used CellChat, a 
bioinformatics tool designed especially for the exploration 
of cell-cell communication via a ligand-receptor method. 
By analyzing both number of interactions and interaction 
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Figure 3 Interaction dynamics and intercellular communication networks of CD31+ cells. (A) The plots of the number of interactions and 
interaction weight/strength for CD31+ cells. Thicker lines indicate a higher number of interactions and greater intensity of communication 
between cell types. (B) Intercellular plots for each cell type between all cell types. The thickness of the lines reflects the strength of 
interactions between the respective cell types.

weight/strength, we discovered a high interaction rate 
among all cell types (Figure 3A). Cell types such as 
microglia also displayed a high tendency of self-interaction. 
Although the relative cell number was not high, mural cells 
within the dataset appeared to interact heavily with myeloid 
cell types, including macrophages and dendritic cells. We 
then separated the interactions to show how each cell type 
interacted with other cell types, creating a clearer picture of 
the interactive status of each cell type (Figure 3B). We found 
that although the number of mural cells was negligible 
compared to the number of macrophages, the interaction 
number and strength of mural cells and other cell types was 
larger than that of macrophages. These results prompted 
us to reconsider the role that mural cells play in the tumor 
microenvironment of glioma.

Identifying the key single signaling pathway networks 
within CD31+ glioma

To characterize the ligand-receptor interaction in single 

signaling pathways, we programmed the circle plot to 
display the intercellular communication separated by single 
signaling pathways. The top four key signaling pathways 
were identified and displayed within the circle plots  
(Figure 4A). Apart from the osteopontin (SPP1) signaling 
pathway, for which the interactions were pervasive within 
the dataset, signaling pathways such as collagen and 
fibronectin 1 (FN1) appeared to be more dependent on 
mural cells. The major histocompatibility complex class II 
(MHC-II) pathway depended more on myeloid cells such 
as macrophages and dendritic cells. We then visualized the 
interaction status in heatmaps, which supported the key 
role of this pathway (Figure 4B). In order to clarify the role 
each cell type in a single signaling pathway, we generated a 
heatmap classifying cells into sender, receiver, mediator, and 
influencer of the given signaling pathway (Figure 4C). In line 
with our assumptions, macrophages were the sender of the 
SPP1 signaling pathway, and microglia assumed multiple 
roles as receiver, mediator, and influencer. The collagen 
pathway seemed to be important only in mural cells, while 
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within the FN1 signaling pathway, microglia assumed the 
receiver role, with mural cells assuming the other roles. 
Dendritic cells occupied all four roles within the MHC-II 
signaling pathway, while microglia played both the role of 
sender and influencer, while proliferating macrophages were 
influencers. Analysis of single signaling pathways revealed 
key pathways within the dataset, while emphasizing the key 
role of certain cells within a given pathway.

Crucial L-R pairs identified within the key signaling 
pathways

We then attempted to determine which L-R pairs function 
within the key signaling pathways. By comparing the relative 
contribution of each L-R pair, we were able to identify the 
key L-R pairs (Figure 5A). The SPP1 ligand interacted with 
integrin subunit alpha V (ITGAV) + integrin subunit beta 1 
(ITGB1) the most, followed by CD44. Within the MHC-II 
pathway, the HLA-DRA-CD4 L-R pair contributed to the 
intercellular interaction more than other L-R pairs. The 
collagen pathway contained two highly common L-R pairs, 
namely COL4A1-CD44 and COL4A2-CD44. The FN1 
ligand paired with both CD44 and ITGAV + ITGB1. The 
expression of each ligand or receptor gene within different 
cell types is displayed in Figure 5B. SPP1 was found to 
be expressed in every cell type within the CD31+ dataset. 
The genes of the collagen pathway, however, displayed a 
tendency to be expressed mainly in mural cells. Similar 
results were found for the FN1 gene, except that in addition 
to mural cells, endothelial cells were also found to expressed 
FN1. Taking the L-R pairs’ relative contribution into 
consideration, it is clear that these certain L-R pairs exerted 
considerable influence within the tumor microenvironment 
of glioma.

Reclassification of the T-cell populations revealed key L-R 
pairs of CD8+ T cells

To obtain a more in-depth understanding of the T-cell 
population within the CD31+ glioma dataset, we conducted 
reclassification of the T cell population, enabling us to 
obtain six subpopulations, namely CD8+ T cells, CD4+ T 
cells, cycling T cells, natural killer (NK) cells, monocytes, 
and macrophages (Figure 6A). The genes that were 
most differentially expressed, or the marker genes, were 
visualized within a heatmap (Figure 6B). We first explored 
the interaction number and weight/strength among every 
subpopulation of T cells (Figure 6C). We found that 

although the number of cells of each subpopulation varied, 
with CD8+ T cells constituting the highest proportion, the 
interaction among each cell type displayed similar intensity. 
This result was then confirmed by the separation each cell 
type to display the interaction between one cell type and 
all other cell types (Figure 6D). By comparing the strength 
and importance of each signaling pathway, we identified 
the centrality of the C-C motif chemokine ligand (CCL) 
signaling pathway within the subpopulations of T cells 
(Figure 6E). High interaction intensity was found between 
CD8+ T cells and macrophages. Through comparison, 
we identified the highest contributing L-R pair, the 
CCL5-CCR1 pair. The interaction of the CCL5-CCR1 
L-R pair among all T-cell subpopulations is presented 
in Figure 6F, and its relative contribution with other 
L-R pairs in the CCL signaling pathway is presented in  
Figure 6G. To increase the comprehensiveness of our L-R 
pair study, we explored all key L-R pairs within CellChat 
and generated a thorough dot plot consisting of every 
highly communicated L-R pair between CD8+ T cells and 
other T-cell subpopulations (Figure 6H). We discovered that 
the SPP1-CD44 L-R pair had the greatest communication 
probability between CD8+ T cells and macrophages. As 
the SPP1-CD44 pair is often implicated in promoting 
tumor progression by fostering an immunosuppressive 
environment and supporting macrophage polarization 
toward a tumor-promoting (M2-like) phenotype. This 
could reduce the effectiveness of CD8+ T cell-mediated 
anti-tumor immunity. The result suggested that the SPP1-
CD44 L-R pairs could play a key role in the intercellular 
communication between CD8+ T cells and macrophages 
within the CD31+ glioma dataset.

Key L-R pairs of M2 macrophages identified via myeloid-
cell reclassification

We then continued our exploration by conducting 
reclassification of the myeloid cell population, which 
enabled us to obtain 10 subpopulations, namely fibroblast, 
neutrophil-like (neu-like) myeloid cells, monocytes, M1 
macrophages, M2 macrophages, cycling macrophages, 
proliferating macrophages, microglia, dendritic cells, 
and neutrophils (Figure 7A). The marker genes of each 
subpopulation were demonstrated within a heatmap  
(Figure 7B). We clarified interaction number and weight/
strength among every subpopulation of myeloid cells  
(Figure 7C). We found differences in the interaction 
intensity between each of the cell types. This was confirmed 
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Figure 6 The landscape and cell-cell communication network of the T cell population in CD31+ cells of the glioma cohort. (A) UMAP 
plot demonstrating how the T-cell population was classified into 6 subpopulations. (B) Heatmap showing the differential gene expression 
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of 6 clusters based on the average log2 fold change. (C) Plots for the number of interactions and interaction weight/strength of the T-cell 
clusters. The thicker the line is, the higher the number of interactions and the stronger the interaction weight/strength between the two 
cell types. (D) Intercellular plots for each T-cell subtype between all T-cell subtypes. The thicker the line is, the stronger the interaction 
weight/strength between the two cell types. (E) Plot of the interaction weight/strength of the CCL signaling pathway network [similar to 
(C)]. (F) Plot of the interaction weight/strength of the CCL5-CCR1 L-R pair [similar to (C)]. (G) Relative contribution of each L-R pair to 
the overall communication network of the CCL signaling pathway, which is the ratio of the total communication probability of the inferred 
network of each L-R pair to that of the signaling pathways. (H) Dot plot depicting all significant L-R pairs between CD8+ T cells and other 
T-cell subpopulations. The color of the dots represents the communication probability, and the dot size reflects the computed P values 
computed from a one-sided permutation test. CCL, C-C motif chemokine ligand; Commun. Prob., communication probability; L-R pair, 
ligand-receptor pair; NK, natural killer; UMAP, Uniform Manifold Approximation and Projection.

by the separation of each cell type to display the interaction 
between one cell type and all other cell types (Figure 7D). 
The interaction between microglia and M2 macrophages 
was stronger than that between any two other cell types. 
We determined the viability of the CCL signaling pathway 
in myeloid cell subsets by comparing the strength and 
importance of each signaling pathway (Figure 7E). By 
comparison, we identified the L-R pair with the highest 
contribution, CCL5-CCR1. Figure 7F shows the interaction 
of the CCL5-CCR1 L-R pair in all myeloid cell subsets, and 
Figure 7G shows the comparison with the contribution of 
other L-R pairs of the CCL signaling pathway. To improve 
the comprehensiveness of L-R pair studies, we identified 
all the significant L-R pairs in CellChat and generated a 
complete dot plot containing each highly communicative 
L-R pair between M2 macrophages and other myeloid 
cell subsets (Figure 7H). We discovered that the SPP1-
CD44 L-R pair demonstrated the highest communication 
probability between M2 macrophages and neu-like myeloid 
cells, M2 and M1 macrophages, and M2 macrophages and 
dendritic cells. Considering that the SPP1-CD44 L-R pair 
was identified to be central within CD8+ T cells, this L-R 
pair has the potential to be a key regulating checkpoint, 
controlling the interaction of multiple intercellular 
communications within the glioma microenvironment.

Discussion

CD31 has been long regarded as a marker for endothelial 
cells, and its expression can be used to identify endothelial 
cells. However, previous studies have reported that 
CD31 can appear on the surface of many other cell types, 
especially immune cells (8,9). The expression of CD31 on 
T cells and macrophages has been proven to be an indicator 
of altered behavior as compared to that of non-expressing 
macrophages. Moreover, recent research identified that the 

increase in the abundance of circulating CD31+ T cells is a 
potential mechanism by which exercise reduces the risk of 
cardiovascular disease (22). In another study, the scRNA-seq 
data of CD31+ cells within glioma was acquired to create a 
molecular atlas of human brain endothelial cells, revealing 
the heterogeneity of the blood-brain barrier and its changes 
in glioma (17). Five distinct endothelial cell phenotypes 
were identified, each representing a different state of 
activation and impairment of the blood-brain barrier and 
linked to various tumor-related locations. However, this 
study focused mostly on the endothelial cell population, 
with no emphasis on other cell types that could be potential 
influencers of the microenvironment. Therefore, in our 
study, we used this set of data to examine the behavior 
of CD31+ immune cells, with special focus on the T-cell 
and macrophage population. We discovered that CD31 
expression is universal across multiple cell subpopulations, 
and the CD31+ populations appeared to display enhanced 
immune activity. Pseudotime analysis revealed the key role 
that ferritin plays within the CD31+ cell population. Cell-
cell communication analysis revealed the strong interaction 
strength between different CD31+ cell types and identified 
key ligand-receptor pathways directing the interaction. This 
study was based on the scRNA-seq data of CD31+ glioma 
cells, predicts the functional dynamics of these CD31+ 
immune cell types.

Gliomas are characterized by its unique microenvironment. 
Due to the hindering of the blood-brain barrier, the 
infiltration of peripheral immune cells, such as T cells, into 
the brain is restricted (23). This phenomenon has been 
observed in previous scRNA-seq analyses of glioma (17). In 
our study, the majority of the CD31+ cells were classified as 
myeloid cells. This can also be partly attributed to the fact 
that glioma involves the recruitment and reprogramming 
of myeloid cells, such as macrophages and microglia, 
to support tumor growth (24). These tumor-associated 
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Figure 7 The landscape and cell-cell communication network of the myeloid cell population in CD31+ cells of the glioma cohort. (A) 
UMAP plot demonstrating how the myeloid cell population was classified into 10 subpopulations. (B) Heatmap showing the differential 
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gene expression of 10 clusters based on the average log2 fold change. (C) Plots of the number of interactions and the interaction weight/
strength of the myeloid cell clusters. The thicker the line is, the higher the number of interactions and the stronger the interaction weight/
strength between the two cell types. (D) Intercellular plots for each myeloid cell subtype between all myeloid cell subtypes. The thicker 
the line is, the stronger the interaction weight/strength between the two cell types. (E) Plot of the interaction weight/strength of the CCL 
signaling pathway network [similar to (C)]. (F) Plot of the interaction weight/strength of the CCL5-CCR1 L-R pair [similar to (C)]. (G) 
Relative contribution of each L-R pair to the overall communication network of the CCL signaling pathway, which is the ratio of the total 
communication probability of the inferred network of each L-R pair to that of signaling pathways. (H) Dot plot depicting all significant L-R 
pairs between M2 macrophages and other myeloid cell subpopulations. The color of the dots represents the communication probability, and 
the dot size reflects the computed P values computed from a one-sided permutation test. CCL, C-C motif chemokine ligand; Commun. 
Prob., communication probability; L-R pair, ligand-receptor pair; neu-like, neutrophil-like; UMAP, Uniform Manifold Approximation and 
Projection.

macrophages (TAMs) and microglia form a significant 
portion of the glioma microenvironment and often display 
immunosuppressive phenotypes (25). This allows the tumor 
to evade immune surveillance and promotes a tumorigenic 
environment. In our study, macrophages constituted the 
largest cell population. The macrophages with marker of 
proliferation Ki-67 (MKI67) positivity were classified as 
proliferating macrophages and separate from the main 
macrophage cell population. The abundance of myeloid 
cells allows for further classification of this population.

Pseudotime analysis has been applied in single-
cell analysis to identify the more primitive and more 
advanced cell type (26). This is conducted by constructing 
a “fake” model from which the cell type is derived in an 
evolutionarily manner. In this study, we constructed a 
pseudotime model of all the CD31+ cells in the glioma 
dataset. The trajectory model of the 18 cell clusters was 
constructed, and the pseudotime origin of the clusters was 
tracked to the macrophage population. This result supports 
the fact that the proliferating macrophage population and 
other myeloid cells were more evolutionarily advanced. 
In addition, we identified genes that varied the most 
along the trajectory and plotted the top 10 genes. Cellular 
markers of T cells were identified within the top genes. 
Genes that reflect the immune status were also identified. 
Notably, FTH1 and FTL, two genes that encode ferritin, 
were identified as varying along the trajectory. Ferritin 
regulates iron storage and protects against oxidative stress 
by sequestering free iron (27). In tumors, ferritin is involved 
in iron metabolism, angiogenesis, and protecting cells from 
ferroptosis—a form of iron-dependent cell death (28).  
Ferritin is also overexpressed in glioma, with recent 
studies demonstrating that its elevated levels correlate with 
higher tumor grades, enhanced angiogenesis, resistance 
to ferroptosis, and poorer overall survival (28,29). Ferritin 

genes FTH1 and FTL has been identified as overexpressing 
in glioma by previous studies (30-32). In the context of 
gliomas, ferritin’s involvement in regulating ferroptosis may 
provide insights into how these tumors resist certain types 
of cell death, particularly in highly oxidative environments 
such as the brain (29). The upregulation of ferritin may 
act as a protective mechanism for immune cells within 
the tumor, allowing them to maintain function in iron-
rich, oxidative environments. These findings support 
the diagnostic efficacy of ferritin as a biomarker and its 
potential as a prognostic indicator. Additionally, the strong 
connection between iron metabolism and immune function 
points to ferritin as a potential therapeutic target. Moreover, 
ferritin appears to modulate the tumor microenvironment 
by influencing iron homeostasis, thereby impacting 
immune cell activity. Increased ferritin levels have been 
linked to a greater infiltration of TAMs—particularly M2-
like, immunosuppressive subtypes—and regulatory T cells, 
which further contributes to an immunosuppressive milieu 
that promotes tumor progression (33). Ferritin can also act 
as a nano vector for the delivery of drugs to glioma (33).  
By modulating ferritin levels, we may be able to influence 
immune cel l  activity and enhance the eff icacy of 
immunotherapy strategies.

Cell-cell communication analysis of scRNA data 
is built upon the expression of certain L-R pairs (21). 
The interaction weights, or strengths, among different 
cell types are constructed based on the total expression 
amount of ligand genes and receptor genes. In this study, 
we conducted a thorough intercellular ligand-receptor 
interaction analysis on the CD31+ cells in the glioma 
dataset. We first checked the interaction of each cell type 
with all other cell types. Unexpectedly, although they had a 
lower abundance, mural cells appeared to have the greatest 
degree of interaction with other cell types. However, this 
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cell type has not been extensively studied in relation to 
CD31+. Mural cells are contractile cells that surround blood 
vessels, including pericytes and smooth muscle cells (34). 
They support vascular stability, regulate blood flow, and 
maintain the blood-brain barrier. These cells play key roles 
in angiogenesis and vessel maturation and are involved in 
various diseases such as cancer and cardiovascular conditions 
(35,36). Blocking certain pathways of mural cells can 
impact the angiogenesis of glioma (37). Our study further 
discovered that mural cells may play a more active role in 
glioma progression than has been previously thought.

CellChat can identify the highly interactive signaling 
pathways within the dataset. We used this function within 
our study and discovered four signaling pathway networks 
of high intensity. The four pathways were SPP1, MHC-II, 
collagen, and FN1. SPP1 is involved in immune regulation, 
cell survival, and tissue remodeling via binding to integrins 
and CD44 to mediate cellular adhesion and migration 
(38,39). In this study, we identified its function within 
macrophages, including proliferating macrophages. MHC-
II molecules present extracellular antigen–derived peptides 
to CD4+ T cells, initiating adaptive immune responses 
and playing a critical role in immune system function (40). 
The dendritic cell population displayed high intensity on 
the MHC-II signaling pathway. Collagen is a structural 
protein that provides tensile strength and support to tissues, 
and its signaling pathways influence cellular adhesion, 
migration, and differentiation during tissue development 
and repair (41). It was only identified in the mural cell 
population within this study. FN1 is a glycoprotein involved 
in cell adhesion, migration, and wound healing, acting 
through integrins to mediate cellular interactions with the 
extracellular matrix and influence cell signaling pathways 
related to growth and survival (42). A high intensity of 
interaction was discovered between the mural cell and 
microglia population. We then further explored the 
individual L-R pairs within the selected signaling pathways 
and, to our knowledge, are the first to discover that 
CD44 interacts with SPP1, collagen, and FN1. CD44 is a 
transmembrane glycoprotein that functions as a cell surface 
receptor involved in a variety of cellular processes, including 
cell adhesion, migration, and signaling (43). It primarily 
binds to hyaluronic acid, a component of the extracellular 
matrix, but also interacts with other ligands such as SPP1, 
collagen, and FN1 (44). Moreover, CD44 was found to be 
expressed in all cell populations. Key ligands such as SPP1, 
collagen type I alpha 1 (COL1A1), and FN1 all bind to 
CD44. A previous study identified SPP1+ macrophages as 

prognostic indicators of glioma (45). Although SPP1 was 
also universally expressed on all cell types, the expression 
of COL1A1 and FN1 was limited, with mural cells 
expressing both ligands, and endothelial cells expressing 
only FN1. Our study suggests CD44 as a central mediator 
within the identified signaling networks, particularly in 
facilitating cellular interactions across diverse cell types. 
Considering that mural cells demonstrated significant 
involvement in the FN1 and collagen signaling pathways, 
which are critical for extracellular matrix remodeling and 
angiogenesis—given their extensive interactions with 
macrophages and microglia—mural cells may contribute 
to the immunosuppressive and tumorigenic environment 
in gliomas by facilitating communication between immune 
and vascular cells. These findings call for a reevaluation of 
the roles that mural cells play in glioma biology, particularly 
in their ability to influence immune cell function and tumor 
angiogenesis.

Among all cell types included in this study, T cells 
were the most extensively researched cell population. The 
subclustering for T cells includes well-known cell types such 
as CD8+ T cells, or cytotoxic T cells, in addition to CD4+ 
T cells, or helper T cells (46). Cycling T cells were another 
T cell subpopulation. Cycling T cells actively proliferate 
during immune responses when they encounter antigens, 
such as those from pathogens or cancer cells (47). Their 
rapid proliferation generates effector T cells to combat 
infections or tumors. Subclustering of T cells in our study 
identified six types: CD8+ T cells, CD4+ T cells, cycling T 
cells, NK cells, and two types with myeloid characteristics. 
The CD8+ population was predominant, but there was 
low CD8A expression, likely due to the nonactivated state 
of these cells. Previous research has suggested that CD31 
expression is absent in acutely activated CD8+ T cells, which 
may explain this observation (48). In contrast, markers 
for cycling T cells, such as MKI67, TOP2A, and HMGB2, 
were highly expressed, in line with the proliferative nature 
of these cells. Cell-cell communication analysis revealed 
strong interactions between CD8+ T cells and monocytes, 
particularly through CD8-HLA L-R pairs, highlighting 
the significance of antigen presentation in glioma immune 
responses.

According to previous research, CD31 expression is 
the most prevalent among the myeloid cell population. In 
this study, a considerable number of cells were classified 
into the myeloid population. A reclustering was conducted 
to the myeloid cells that were initially classified into 
macrophages, dendritic cells, microglia, and proliferating 
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macrophages. This reclustering attributed these myeloid 
cells into 10 clusters, with eight of them having a myeloid 
origin, including M1 and M2 macrophages, monocytes, 
microglia, dendritic cells, proliferating and cycling 
macrophages, and neu-like myeloid cells. Monocytes 
are circulating immune cells that migrate to tissues and 
differentiate into macrophages or dendritic cells, playing 
a key role in immune surveillance and inflammation (49). 
M1 macrophages are proinflammatory macrophages that 
eliminate pathogens and secrete cytokines to drive immune 
responses (50). M2 macrophages are anti-inflammatory 
macrophages involved in tissue repair and immune 
regulation. Proliferating macrophages expand locally during 
immune responses, and cycling macrophages contribute 
to tissue regeneration (51). Microglia are resident 
macrophages in the central nervous system that maintain 
brain homeostasis and respond to injury or infection (52). 
Dendritic cells are antigen-presenting cells that activate T 
cells by capturing and presenting antigens, linking innate 
and adaptive immunity (53). Neu-like myeloid cells mimic 
neutrophils in their rapid response to infection, primarily by 
engulfing pathogens and releasing antimicrobial factors (54). 
We also conducted cell-cell communication analysis of the 
myeloid population and found that the anti-inflammatory 
M2 macrophages were the most active. This might suggest 
an immunosuppressive environment within glioma. In 
the case of L-R pairs, we also observed a high intensity of 
interaction between SPP1 and CD44, with SPP1 mainly 
expressing on M2 macrophages. This could also suggest the 
key role of M2 macrophages within the immunosuppressive 
environment. This reclustering study identified the elevated 
activity of M2 macrophages within the glioma tumor 
microenvironment.

By elucidating the dual role of ferritin in regulating 
iron metabolism and immune modulation, our study opens 
promising avenues for novel therapeutic strategies and 
improved prognostic evaluation in glioma. Specifically, 
targeting ferritin or its related pathways (such as the 
SPP1-CD44 axis) could disrupt the immunosuppressive 
tumor microenvironment and sensitize glioma cells 
to existing therapies. Moreover, our application of 
scRNA-seq has been instrumental in uncovering the 
intricate cellular heterogeneity within glioma, revealing 
distinct immune subpopulations and dynamic cell-cell 
interactions that would be masked in bulk analyses. While 
this technology provides unprecedented resolution in 
characterizing tumor ecosystems, challenges such as data 
integration, interpretation of sparse datasets, and the 

underrepresentation of rare cell types remain. Addressing 
these challenges will be critical for translating our findings 
into effective, personalized treatment approaches for glioma 
patients.

However, there are several limitations to our dataset 
and analysis. Our results were based on a single dataset. 
In addition, in a study focusing on CD31+ cells, we did 
not have access to a matching CD31− cell population for 
comparison due to the limitations introduced by the data 
provider; moreover, no in vitro experiment was conducted 
to validate our results. Avenues of further research could 
include additional datasets, the analysis of cell populations 
without CD31 expression as a control group, and basic 
experiments to validate the results.

Conclusions

Our study analyzed the behavior and communication of 
CD31+ cells in glioma using scRNA-seq data. We identified 
18 distinct cell clusters, including immune cells such as T 
cells and macrophages, highlighting the complexity of the 
tumor microenvironment. Pseudotime analysis suggested a 
role for ferritin in iron regulation and angiogenesis within 
glioma. Furthermore, key ligand-receptor interactions, 
such as SPP1-CD44 interaction, were identified in the 
communication between T cells, macrophages, and mural 
cells, underscoring their significance in immune regulation 
and tissue remodeling. Notably, mural cells exhibited a 
higher interaction rate despite their lower abundance, 
indicating their crucial role in the tumor microenvironment. 
Our findings revealed the role of CD31+ cells in glioma, 
highlighting their impact on immune and vascular responses 
and providing a strong foundation for further research.
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