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Introduction

Lung cancer is the leading cause of cancer-related mortality 
among men and women worldwide, with more than 1.8 
million estimated new cases each year (1). Despite advances 
in biomedical research and improvements in both the 
diagnostic tools and therapeutic options that have become 
available over the past few decades, lung cancer still has a 
5-year overall survival (OS) rate of 18% for all stages (2). 
The main reason for this poor outcome for this cancer 
type is late diagnosis: a high percentage of the patients are 
diagnosed at advanced stages when curative surgery is no 
longer possible. The clinical management of lung cancer in 
advanced stages is also changing; better understanding and 
descriptions of the molecular abnormalities present in lung 

cancer have opened up new therapeutic options in specific 
disease subsets.

Lung cancer: driver alterations, predictive biomarkers, and 
intratumor heterogeneity 

The development of a new generation of molecular 
techniques has led to substantial advances in the knowledge 
of cancer genomes, and specifically in lung cancer, facilitating 
the discovery of oncogenic-driver mutations/alterations that 
cause aberrant signaling and proliferation in certain tumor 
subsets. These findings have allowed the development of 
new treatment strategies based on molecular targets and thus 
have reshaped tumor classification from classical histological 

Review Article

Circulating tumor cells versus circulating tumor DNA in lung 
cancer—which one will win? 

Silvia Calabuig-Fariñas1,2*, Eloísa Jantus-Lewintre1,3*, Alejandro Herreros-Pomares1,3, Carlos Camps1,4,5

1Molecular Oncology Laboratory, General University Hospital Research Foundation, University General Hospital of Valencia, Valencia, Spain; 
2Department of Pathology, Universitat de València, Valencia, Spain; 3Department of Biotechnology, Universitat Politècnica de València, Valencia, 

Spain; 4Department of Medicine, Universitat de València, Valencia, Spain; 5Department of Medical Oncology, University General Hospital of 

Valencia, Valencia, Spain 

Contributions: (I) Conception and design: S Calabuig-Fariñas, E Jantus-Lewintre, C Camps; (II) Administrative support: None; (III) Provision of 

study materials or patients: S Calabuig Fariñas, E Jantus-Lewintre, A Herreros-Pomares; (IV) Collection and assembly of data: S Calabuig-Fariñas, A 

Herreros-Pomares; (V) Data analysis and interpretation: S Calabuig Fariñas, E Jantus-Lewintre, A Herreros-Pomares; (VI) Manuscript writing: All 

authors; (VII) Final approval of manuscript: All authors. 

*These authors contributed equally to this work.

Correspondence to: Carlos Camps, MD, PhD. Associate Professor, Department of Medicine, Universitat de València, Av. de Blasco Ibáñez, 15, 46010 

València, Valencia, Spain. Email: camps_car@gva.es.

Abstract: Liquid biopsies appear to be a reliable alternative to conventional biopsies that can provide both 
precise molecular data useful for improving the clinical management of lung cancer patients as well as a less 
invasive way of monitoring tumor behavior. These advances are supported by important biotechnological 
developments in the fields of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Analysis 
of CTCs and ctDNA may be useful in treatment selection, for response monitoring, and in studying 
resistance mechanisms. This review focuses on the most recent technological achievements and the most 
relevant clinical applications for lung cancer patients in the CTC and ctDNA fields, highlighting those that 
are already (or are close to) being implemented in daily clinical practice.

Keywords: Lung cancer, circulating tumor cell (CTC); circulating tumor DNA (ctDNA); biomarker; liquid 

biopsy

Submitted Jul 06, 2016. Accepted for publication Sep 14, 2016.

doi: 10.21037/tlcr.2016.10.02

View this article at: http://dx.doi.org/10.21037/tlcr.2016.10.02



467Translational lung cancer research, Vol 5, No 5 October 2016

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2016;5(5):466-482tlcr.amegroups.com

methods towards molecular pathology approaches. Indeed, 
non-small cell lung cancer (NSCLC) is one of the most 
genomically diverse tumor types and there is a wide variety of 
molecularly-defined patient subsets characterized by specific 
driver-mutations, involving different genes such as epidermal 
growth factor receptor (EGFR), anaplastic lymphoma kinase 
(ALK), or V-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog (KRAS) (3-7) among others. 

The identification of driver mutations located in the 
tyrosine kinase domain of EGFR as the primary oncogenic 
event in a subset of lung adenocarcinomas (8-13) led to 
the development of specific tyrosine-kinase inhibitors 
(TKIs) for this receptor, resulting in a dramatic change 
in the treatment of advanced NSCLC patients harboring 
EGFR mutations. The use of EGFR-TKIs has produced a 
particularly large increase in progression-free survival (PFS) 
with a negligible toxicity profile as well as an increase in 
OS to more than 24 months (11,14-18). Unfortunately, the 
effect of TKIs is limited over time because of the emergence 
of drug resistance. A number of molecular mechanisms 
underlying acquired resistance to EGFR-TKIs have been 
reported, including the secondary EGFR Thr790Met 
(T790M) mutation found in around 50% of patients, loss 
of the EGFR mutant allele, MET amplification, hepatocyte 
growth factor (HGF) overexpression, phosphatase and 
tensin homolog (PTEN) downregulation, epithelial-
mesenchymal transition (EMT), BRAF mutations, and 
other mechanisms (19-22). Resistance is frequently related 
to the emergence of a clone thought to be initially present 
at a low percentage in the tumor, thus emphasizing the 
role of intratumour heterogeneity as one way of explaining 
resistance mechanisms to targeted agents (23,24).

Other driver mutations in lung cancer have also been 
targeted by these new drugs but, again, the emergence 
of resistance is a common event in patients treated with 
targeted-therapies (25,26). In addition, metastases are 
responsible for roughly 90% of cancer-associated patient 
mortality, through largely unknown mechanisms. Therefore, 
future studies must aim to directly analyze metastatic cells 
in order to better understand the mechanisms of cancer 
spread (27). However, metastasis biopsy is an invasive 
procedure limited to certain locations, and additionally, 
recent work has shown that different metastatic sites harbor 
different genomic aberrations and so biopsy of only one or 
two accessible metastases may not be enough to represent 
the whole tumor genome (24,28). Finally, solid tumors also 
exhibit temporal heterogeneity, evolving over time under 
selection-pressure with treatment (29-32). Even though, 

and considering the heterogeneity of the tumors, it becomes 
difficult to have a complete scenario of the whole tumor 
based on the information obtained from small biopsies, 
and in several cases from a restringed number of tumor 
cells which, in turn, could lead to erroneous therapeutic 
decisions. 

Since the beginning of the era of targeted therapies, 
there has been a clear need to understand the mechanisms 
of resistance and therefore rebiopsies at the time of clinical 
progression or the emergence of treatment resistance were 
gradually incorporated into clinical practice. Considering 
all the above-mentioned facts about lung cancer: presence 
of driver mutations, tumor heterogeneity, tumor dynamics, 
drug sensitivity, drug resistance, it is of remarkable 
importance the development of a non-invasive way to 
obtain this valuable biologic information, which includes 
the ability to diagnose, prognose and monitor lung cancer 
evolution. At this point, liquid biopsies seem to be the 
approach that covers all these requirements. In lung cancer, 
blood samples are the most explored type of liquid biopsy, 
and have been used to improve the diagnosis as well as 
for the searching prognostic and predictive biomarkers. 
Liquid biopsies have several advantages: (I) they allow 
rapid biomarker assessment in lung cancer patients for 
whom solid biopsies are impossible because of restricted or 
extremely risky access possibilities; (II) they can easily be 
repeated during cancer patient follow-up in order to control 
treatment efficiency; and/or (III) they can be used to detect 
genomic alterations occurring as result of resistance to 
therapy.

Liquid biopsies in lung cancer

In lung cancer liquid biopsies, blood samples are mainly 
used as a sample source for analyzing circulating tumor 
cells (CTCs) or circulating tumor DNA (ctDNA), in 
addition to other biomarkers of interest, such as circulating 
microRNAs, circulating RNA, platelets, plasma/serum 
metabolites, or exosomes (Figure 1). To explore the data 
available regarding the above in this review we used 
MEDLINE to perform a comprehensive literature 
search for original and review articles related to the terms 
“liquid biopsy” and “CTCs”, “ctDNA” and “NSCLC”, 
or “lung cancer”. Furthermore, to complete our search 
we also reviewed the bibliographies of these articles; only 
those published in English and in peer-reviewed journals 
were included. Our purpose was to describe the current 
contribution of CTC and ctDNA detection and analysis 
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in lung cancer patients and to compare the advantages and 
disadvantages of these two approaches.

CTCs versus ctDNA: which one will win? 

There are an increasing number of scientific reports 
pointing out the advantages of, and difficulties in, both 
detecting mutations and isolating CTCs and ctDNA in both 
metastatic and non-metastatic lung cancer (Table 1). The 
discrepancies in sensitivity, reproducibility, and concordance 
with tissue biopsies are likely due to the different approaches 
and methodologies used as well as their clinical settings.

CTCs

CTCs are tumor cells from solid tumors that spread via 
blood and/or lymphatic vessels. CTCs are shed into the 
vasculature from primary tumors and are postulated to 
contain subpopulations of cells with the potential to spread 
and initiate distant metastases (33). They were observed for 
the first time by Thomas Ashworth in 1869 in the blood of 
a man with metastatic cancer (34), but they only became 
relevant in modern cancer research a couple of decades 
ago with the demonstration of their presence early in the 
course of malignant disease (35). Several models have been 

suggested to describe the dissemination process whereby 
tumor cells leave the primary tumor to colonize distant 
organs, either when they become competent to metastasize 
or because of physical tumor extension (27,36).

CTCs can circulate in the bloodstream of lung 
cancer patients as single cells or as aggregates known as 
circulating tumor microemboli (CTM) (37-39). In this 
regard, the phenotype of single or aggregated CTCs can 
be different and so may present different levels of potential 
aggressiveness (37,38,40,41). Similar to single migratory 
mesenchymal-like CTCs, CTMs appear to be enriched in 
mesenchymal markers, an indicator of increased potential 
plasticity, which in turn seems to be related to more 
aggressive behavior, thus supporting their role in both 
tumor cell dissemination and the initiation of metastatic 
outgrowth (38,42-44). The presence of CTMs has been 
reported as a negative prognostic factor in lung cancer 
patients (38,40,45).

Isolation and detection of CTCs

Although many technologies have been developed over the 
past few years to detect and isolate CTCs in the peripheral 
blood of NSCLC patients (44,46-48), this task remains 
challenging (Figure 2). In advanced lung cancer patients, 

Figure 1 The potential clinical benefits of CTC and ctDNA analyses in cancer care. CTC, circulating tumor cell; cfDNA, circulating free 
DNA; CTM, circulating tumor microemboli.
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Table 1 Advantages and limitations of CTCs and ctDNA liquid biopsy assays

Advantages Limitations

CTCs Constitute a minimally-invasive procedure with high specificity Prospective collection is required for targeting pre-analytical  
differences

Address intra-tumor heterogeneity and supplies an adequate 
reflection of the tumor

Constitutes a small and fragile population

Allow structural evaluation of cancer phenotype Analytical methods with very high sensitivity and specificity are 
needed

Give information about tumor progression and metastasis False-negative and false-positive errors

Permit different in vitro and in vivo assays Low signal-to-noise ratio, mostly in early-stage disease

Make molecular characterization of the disease possible Heterogeneity of CTCs complicates identification

Offer the use of immunolabeling techniques Disparity of techniques used for CTC isolation

Provide complementary information to ctDNA —

Could facilitate therapeutic decision-making —

ctDNA Constitutes a minimally-invasive procedure with high  
specificity

Prospective collection is required for targeting pre-analytical  
differences

Addresses intra-tumor heterogeneity and supplies an  
adequate reflection of the tumor

False-negative and false-positive errors

Extremely high sensitivity for detection of cancer burden even 
after curative care

Low signal-to-noise ratio, mostly in early-stage disease

Might predict acquired treatment resistance Lack of standardization of pre-analytical conditions

Could facilitate therapeutic decision-making No protein or functional studies available

CTCs, circulating tumor cells; ctDNA, circulating tumor DNA.

Figure 2 Comparison of the analysis capability and the technologies available for CTCs and ctDNA. CTC, circulating tumor cell; cfDNA, 
circulating free DNA; NGS, next generation sequencing; RTqPCR, real-time quantitative PCR; FISH, fluorescence in situ hybridization.
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CTCs are rare cells present in very low concentrations in 
the bloodstream; approximately 1 mL of whole peripheral 
blood contains 1–10 CTCs against a background of 106–107 
nucleated blood cells and around 109 red blood cells (49). 
Therefore, to reach the extreme sensitivity required to detect 
CTCs, an enrichment step is often required to increase 
their concentration before trying to detect or capture them. 
In this context, different methods for cellular enrichment, 
characterization, and identification of lung CTCs have been 
developed, including CTC microchips, filtration devices, 
quantitative reverse-transcription PCR assays, automated 
microscopy systems, etc. (46,50,51). 

CTC detection or capture methods can be broadly 
categorized as: (I) label-dependent, based on positive 
enrichment involving cell surface markers such as 
epithelial cell adhesion molecule (EpCAM); or (II) label-
independent, based on negative selection, such as size, or 
other differential biophysical properties of CTCs. Besides 
these two main approaches, other strategies include direct 
CTC imaging and functional assays (46,47,52-54). The first 
label-dependent studies tried to detect lung CTCs based 
on the assumption that circulating tumoral cells maintain 
the same characteristics as their tissue of origin, therefore 
most lung CTC categorization was based on the expression 
of epithelial-specific markers such as cytokeratin (CK) or 
intermediate filaments (IF) (41,55-60). Therefore, positive 
enrichment methods define lung CTCs as nucleated cells 
present in the bloodstream that express epithelial CKs and 
EpCAM and do not express the white blood cell surface 
antigen CD45 (59,61,62). 

One of these methodologies is the CellSearch® system 
(Veridex, Raritan, NJ, USA) which has been approved by 
the Food and Drug Administration (FDA) for monitoring 
metastatic breast cancer (63), castration-resistant prostate 
cancer (64), and colon cancer patients (65). It has also been 
shown to be of prognostic significance for small cell lung 
cancer (SCLC) but the test has not yet been FDA-approved 
for this cancer type (40,66,67). The method is based on an 
initial enrichment of EpCAM positive cells followed by 
immunofluorescent staining using epithelial markers (CK 8, 
18, 19), a leucocyte marker (CD45), and 4’, 6-diamidino-2-
phenylindole (DAPI) for nuclear staining. The CellSearch® 
definition of CTCs is any intact EpCAM+/CK+/CD45− 
cell at least 4 μm in size and with a nucleus occupying at 
least 50% of the cytoplasm (41,55-61). Using EpCAM-
dependent assays, CTCs can be detected in approximately 
20–40% of NSCLC patients (41,55-58,60). Unfortunately, 
technologies relying on EpCAM positive selection cannot 

detect CTCs that have undergone EMT or any cancer stem 
cells that have not yet started epithelial differentiation. 
In lung cancer, CK-negative CTCs, which potentially 
represent tumor cells undergoing EMT, have also been 
identified. Consequently, the use of EpCAM as a positive 
selection marker should be carefully considered when trying 
to detect CTCs in NSCLC patients. Unfortunately, so far 
no reliable surface markers, which distinguish lung CTCs 
from normal epithelial cells and can be used for such label-
dependent approaches, have yet been identified. 

Label-independent approaches to CTC detection 
in lung cancer are an attractive alternative. One such 
method, Isolation by Size of Epithelial Tumor cell (ISET®, 
developed by Rarecells Company, France), used for 
cells isolated from lung cancer patients, involves a CTC 
enrichment step based on size by using a filtration device 
followed by cytological characterization. This system has 
been used to detect lung CTCs in both metastatic and 
non-metastatic NSCLC patients and has shown increased 
sensitivity in a wider range of patients compared to label-
dependent methods such as CellSearch® (41,55,68-75). 

Another direct technology, known as ScreenCell®, is 
also based on the size of CTCs but, in addition, allows 
their isolation so that they can be subjected to further 
morphological and molecular studies (76,77). Interestingly, 
it has been shown that lung CTCs isolated with different 
systems, can be cultured in vitro which is of particular 
interest for generating in vitro and in vivo models. As a first 
step towards this goal, data has already been generated for 
successful short-term cultures (up to 28 days) of CTCs 
isolated from patients with lung cancers (78-80). Such 
model systems could be used to study drug susceptibility 
or to generate sufficient numbers of cells for systematic 
deep analysis of their molecular profiles or biological 
behavior (52,81). Several recent studies have reported the 
development of mouse xenografts generated directly from 
CTCs or from breast, colorectal, prostate, hepatocellular, 
small cell lung, or gastric cancer CTC cultures (82-87). 
In particular, CTCs enriched from blood samples from 
SCLC patients were subcutaneously implanted into 
immunocompromised mice as CTC-derived explants 
(CDX); the CTCs were tumorigenic at densities of more 
than 53 CTCs/1 mL of blood, however, such large numbers 
of CTCs are not always obtained from advanced patients, 
thus highlighting one of the biggest challenges associated 
with these approaches (86). 

Current models generated either in vitro or in vivo are 
also potentially limited if the clones they are grown from 
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do not accurately reflect the true heterogeneity of the 
tumor (e.g., there may be a selective advantage for highly 
aggressive clones). Furthermore, in vivo xenograft models 
do not recapitulate tumor-host interactions that may play 
a role in drug resistance. Direct comparison between 
label-dependent and label-independent CTC isolation 
methods shows that both approaches have pros and cons. 
Label-dependent methods are more specific but they are 
rendered ineffective when antigen expression is lost in 
certain CTC subpopulations, and the cells become less 
viable after isolation. On the other hand, label-independent 
approaches are less specific but do not depend on CTC 
phenotype, and seem to better preserve CTC viability for 
downstream applications. There are currently many other 
technological developments focused on exhaustive lung 
CTC characterization in the pipeline at several diagnostic 
companies. 

CTCs: clinical applications

CTC analysis is considered an interesting approach for early 
diagnosis, prognosis assessment, prediction of treatment 
efficacy, and early detection of lung cancer relapse. The 
most relevant lung cancer CTC studies are summarized in 
Table 2. 

Larger numbers of CTCs are recovered from SCLC 
patients than from NSCLC patients (40,56). In addition, 
some researches have reported a positive association 
between the number of CTCs and clinical stage or the 
presence of distant metastases in primary lung cancer 
(56,57,73,88,93), whereas other studies failed to find any 
significant differences (50,92). Regarding other clinical 
applications, the majority of articles on CTCs in lung 
cancer focus on their prognostic role. In a large population 
of NSCLC patients, one group showed that isolation of 
more than 50 CTCs per 10 mL sample (using ISET®) 
is of prognostic value and is associated with shorter OS 
and disease-free survival (DFS) (89). Similar results were 
reported by Krebs et al. showing that PFS and OS was 
significantly better in advanced NSCLC patients with fewer 
CTCs (41). However, in another NSCLC patient cohort 
it was reported that although the median survival time 
tends to be shorter in CTC-positive than in CTC-negative 
patients, the difference was not significant (92).

In SCLC a significant association between higher 
numbers of CTCs and shorter survival has been described, 
and at least one study has reported that CTCs are a better 
predictor of survival than disease stage and tumor response 

(40,66,90). Moreover, a reduction in the number of CTCs 
after chemotherapy was also significantly associated with 
better outcomes in SCLC (66,94). Regarding the role 
of CTCs as biomarkers for therapeutic monitoring in 
NSCLC, comparisons between studies performed on 
samples collected before and after chemotherapy have 
consistently found that survival rates were significantly 
worse for patients with CTC counts that remained positive 
during treatment (95,96). In a group of patients treated 
with erlotinib and pertuzumab, the authors found that the 
decrease in CTC count upon treatment were significantly 
associated with disease response (91).

One of the main difficulties of working with CTCs in 
the field of lung cancer is their use as a theranostic tool 
for detecting somatic mutations (97). However, in 2008 
Maheswaran and Sequist identified the presence of EGFR-
activating mutations in 11 out of 12 (92%) of CTCs isolated 
from EGFR-mutated patients. During follow-up the 
authors detected the T790M mutation (which confers drug 
resistance) in CTCs collected from patients who progressed 
to TKI treatment (98). Moreover, EGFR mutations in 
CTCs from NSCLC patients were recently successfully 
specifically assessed using sensitive next generation 
sequencing (NGS) (59). Similarly, in 2012 Paul Hofman’s 
group published results from ALK-specific fluorescence in 
situ hybridization (FISH) analyses performed on archived 
lung cancer patient CTC samples. Their blind analysis of 
CTCs and corresponding tumor tissue showed a perfect 
match: 5 patients positive for ALK rearrangement in both 
CTC and tumor tissue were found while 82 were negative 
for this mutation in both CTC and tumor tissue (99).

In summary, there are currently 343 studies registered on 
“ClinicalTrials.gov” concerning CTCs and lung cancer, but 
despite the numerous scientific publications on this topic, 
these cells are still not used in routine clinical practice. This 
can be explained by the large number of methods available 
for CTC detection, and by the difficulty of selecting a 
reliable lung CTC marker. Despite the efforts made by the 
scientific community in the CTC field to try to improve 
lung cancer management, the analytical specificity and 
clinical utility of these methods must still be demonstrated 
in large prospective multicenter studies in order to obtain 
the evidence required for their introduction into the daily 
management of lung cancer patients. 

ctDNA

The field of ctDNA analysis originally started almost 70 years 
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ago (100); higher levels of circulating free DNA (cfDNA) 
were identified in cancer patients compared to healthy 
controls, suggesting that this correlated with malignancy 
and tumor stage (101-103). To date, two main mechanisms 
for releasing ctDNA have been postulated: “passive” and 
“active”. The passive mechanism involves the release of 
nucleic acids into the bloodstream, either directly from 
apoptotic and necrotic tumor cells or indirectly by necrotic 
tumor cells engulfed by macrophages (104). Data about the 
size distribution of cfDNA has revealed an enrichment in 
150–180 bp fragments which reflects the nucleosomal pattern 
of DNA fragmentation characteristic of apoptotic processes 
(105-107). In contrast, fragments of tumoral nucleic acid 
can also be actively released into the circulation by living 
cells. One potential explanation hypothesizes that cancer 
cells release nucleic acids to transform the targeted recipient 
cells at distant locations, although the mechanisms are not 
completely understood (108). It is important to consider 
that ctDNA may represent a small proportion of the total 
cfDNA, at levels corresponding to one genome equivalent 
in 5 mL of plasma (0.01% allele fraction), and thus it may be 
undetectable with routine sampling (103,109). Apart from 
this, ctDNA levels can vary according to tumor burden and 
stage, anatomical proximity to vasculature, and biological 
features like apoptotic rate and metastatic potential (110,111).

Detection and quantification of ctDNA

The most common sample source used for ctDNA isolation 
is plasma collected in standard EDTA tubes. However, 
considering the low percentage of ctDNA present within 
total isolated cfDNA, it is important to control both the 
analytical and pre-analytical steps that can significantly 
affect ctDNA detection in blood samples (112). Plasma 
samples should be processed and stored immediately 
after blood collection to avoid increases in genomic DNA 
released from white blood cell lysis that could modify 
the relative levels of ctDNA. Therefore, the uses of 
standardized protocols in conjunction with specialized 
preservative-containing tubes (e.g., Streck Cell-Free DNA 
BCT) are strongly recommended (113). 

The amounts of ctDNA present in in lung cancer 
patient samples give important diagnostic and prognostic 
information about the disease (114,115). However, the 
most important advantage of this technology is that it 
enables such analyses via easily obtained, minimally-
invasive samples which are likely to reflect any genomic 
abnormalities present in the original neoplasm, giving 

insights into the types of mutations, indels, chromosomal 
rearrangements, chromosomal region gains or losses, and 
epigenetic modifications present (54,116-118). Given the 
small proportion of ctDNA present in the total cfDNA 
samples obtained, it is important to select the correct 
methods for its isolation and analysis; several highly 
sensitive techniques have been developed for the latter, 
ranging from PCR-based to more complex methodologies 
using NGS (summarized in Figure 2). 

In lung cancer a variety of methods have been used for 
ctDNA analysis, many of them based on real-time PCR, 
although these approaches are more applicable when a 
limited number of loci are evaluated. Such systems include 
peptide nucleic acid (PNA) or locked nucleic acid (LNA) 
mutant-enriched PCR (ME-PCR) (119-121), amplification-
refractory mutation system (ARMS) (122), digital PCR 
(including droplet-based systems) (123), and the beads, 
emulsification, amplification, and magnetics (BEAMing) 
system (124,125). Moreover, recently developed NGS 
technologies have also shown that it is possible to detect 
many cancer-associated mutations in single lung cancer 
patient blood samples (126,127). There are also protocols 
specifically intended to improve the sensitivity of NGS 
ctDNA sample analysis; these include tagged-amplicon 
deep sequencing (TAm-Seq) (128), Safe-Sequencing System 
(Safe-SeqS) (129), and cancer personalized profiling by deep 
sequencing (CAPP-seq) (109,130,131), among others.

ctDNA: clinical applications in lung cancer

The clinical applications of ctDNA can be divided into two 
main categories: (I) quantification of circulating DNA for 
early diagnosis, prognosis, and response prediction; and 
(II) analysis of ctDNA in order to profile and characterize 
molecular tumor alterations (Table 3). 

Lung cancer patients have increased plasma cfDNA 
levels compared with control individuals (142,143) and the 
amount of cfDNA has been associated with tumor stage 
and burden in lung cancer (109). However, there are data 
demonstrating that this absolute cfDNA amount is limited 
as diagnostic tool in the absence of contextual knowledge 
of any associated tumor mutations (114). High levels of 
cfDNA have been reported as an indicator of poor outcome 
in lung cancer patients (115,138,142), but in other studies 
pretreatment levels of total cfDNA were not prognostic 
of survival (144,145). One possible restriction of these 
approaches is that cfDNA is also present at high levels in 
the blood of patients with benign diseases such as hepatic 
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disorders, diabetes, cardiovascular diseases, non-neoplastic 
lung diseases, or infections (75). 

Regarding the prognostic information provided by 
ctDNA, monitoring tumor-specific alterations present in 
ctDNA isolated from plasma from early stage NSCLC 
patients following surgical resection identified patients with 
residual disease and was able to detect disease recurrence 
(109,145). However, despite the reporting of some 
controversial results, when KRAS mutations in ctDNA 
were assessed as a prognostic marker in NSCLC patients 
(135,146,147) KRAS status in plasma ctDNA was associated 
with poor tumor response to EGFR-TKIs in NSCLC 
patients and so it could be used as a predictive marker for 
selecting appropriate NSCLC patients for such treatments 
(148-150). Is in this latest aspect, the presence of circulating 
DNA containing tumor-specific sequences, where we find 
the most widespread and important applications of ctDNA.

Several reports have analyzed the concordance between 
genomic alterations (such as EGFR mutations) present in 
lung cancer tissues and corresponding ctDNA samples 
(119,125,132-134,137): depending on the technology used, 
the agreement ranges between 60% to more than 90%  
(122,123,125,138,139,149,151,152). The EURTAC trial 
was one of the first to explore the feasibility of using ctDNA 
as a surrogate for tumor biopsy and to correlate mutations 
in plasma with PFS and OS (120). Since then, several other 
clinical trials in lung cancer have incorporated the analysis 
of plasma as a sample source for studying genomic tumor 
alterations (138). 

In the context of metastatic disease the use of ctDNA is 
particularly useful for patients with tumors that are difficult 
to biopsy, those with contraindications for biopsy procedures, 
or where tumor samples have been exhausted; in these cases 
the possibility of determining the presence of genomic tumor 
alterations in ctDNA have brought forward the prospect of 
implementing precision oncology. In addition, ctDNA can 
be used for real-time monitoring of therapeutic responses to 
targeted-agents (132,136,152-154) as a valid surrogate for the 
current use of invasive rebiopsies. In this respect, a number 
of research groups have recently shown that ctDNA analysis 
can sensitively and specifically detect T790M clones early, 
i.e., before therapy or their emergence during EGFR-TKI 
treatments, demonstrating that this approach represents also 
an elegant way to overcome the problems arising from tumor 
heterogeneity(19,29,140,141,155). 

For broader applicability, ctDNA analysis platforms 
focus on not only maximizing analytical sensitivity, but 
also on providing sufficient genomic coverage to be 

able to analyze multiple molecular markers in the same 
sample, thus providing the possibility of anticipating the 
molecular alterations expected as tumors evolve. Therefore, 
ongoing and future prospective studies should aim to test if 
treatment strategies informed by the unique data provided 
by ctDNA could yield superior clinical outcomes compared 
to tissue-based approaches.

The war: strengths, and limitations

There are many studies aiming to detect and/or characterize 
CTCs or ctDNA in lung cancer patients; the question is 
which of these two approaches will become the eventual 
gold standard for managing these patients in the era of 
precision oncology. In this “war” the usefulness of CTCs 
for ex vivo models, including in functional studies such as 
cultures, mouse xenografts, or real-time in vitro assays for 
drug sensitivity evaluation, is undisputed. CTC enumeration 
as a prognostic biomarker in lung cancer research has not 
been as successful as it was in breast, prostate, and colon 
cancers for which there is a FDA-approved CTC method; 
even so, the adoption of this approach in these cancers in 
daily oncological practice remains low.

Reports on comparative mutation analyses of CTCs 
and cfDNA have shown an interesting relationship 
between them in cancer patient blood samples (57,91). 
Maheswaran et al. analyzed EGFR mutations in CTCs 
and ctDNA obtained from the same NSCLC patients and 
determined that genotyping seemed to be more sensitive 
in CTCs than in cfDNA and that the associated CTC 
quantification provided an important context in which to 
interpret these genotyping results (98). Thus, with the 
emergence of extremely sensitive technologies, complete 
genomic and transcriptomic profiles, drug sensitivity 
testing in CTC-derived cell cultures or in single cells 
might soon become a reality. Until now, the use of ctDNA 
has remained limited to research scenarios. However, an 
EGFR plasma test (TheraScreen® EGFR plasma PCR 
kit) has recently been approved in Europe and China for 
screening advanced NSCLC patients where it is impossible 
to obtain a tumor biopsy, allowing subsequent treatment 
with gefitinib in appropriate cases. Hence, new perspectives 
for implementing ctDNA in clinical settings are starting to 
open up (122).

There is mounting scientific evidence supporting the 
use of ctDNA for profiling and characterizing lung tumor 
molecular alterations as well as for monitoring therapies 
and identifying mutations associated with acquired drug 
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resistance (91,118,119,122,126,144,149). In this context 
ctDNA, rather than CTC analysis, is more appealing 
because plasma samples can be collected and analyzed 
without requiring prior enrichment and there is no need 
to isolate a rare cell population. Although pre-analytical 
conditions for ctDNA analysis must be further standardized, 
it seems that ctDNA, therefore, is likely to be the preferred 
option for genotyping and treatment-response monitoring. 
However, one important limitation of working with these 
samples is that in situ and morphological analyses using 
FISH and ICC (of particular interest in lung cancer for 
assessing ALK or ROS1 status) cannot be performed with 
these samples (49,156). Another drawback of ctDNA 
is that, because of the high sensitivity of the different 
methodologies used, it also detects clinically irrelevant 
molecular changes. 

In order to fully incorporate liquid biopsies into clinical 
practice some critical points must still be addressed: (I) a 
consensus is required regarding the best matrix of detection 
(CTC or ctDNA) for each required application; (II) a 
consensus regarding the ideal technical approach for each 
application is mandatory; (III) the pre-analytical phase 
should be standardized to obtain robust and reproducible 
results; (IV) investment and uptake of the currently available 
techniques is required in order to bring down prices which 
presently limit accessibility to patients.

Conclusions

Liquid biopsy has great potential for the management of 
lung cancer patients. Despite the numerous techniques and 
experimental approaches that have been established in this 
field, the common objective of all of them is to develop 
a useful, sensitive, specific, and real-time prognostic, 
predictive, and monitoring system using minimally-invasive 
samples, which can be easily transferred into the clinical 
practice. From our point of view, ctDNA analysis should be 
chosen for analysis of mutations, copy number aberrations, 
and DNA methylation changes, whereas CTC analysis 
provides the unique opportunity to study whole cells, 
thus allowing DNA, RNA, and protein-based molecular 
profiling, as well as use in vivo studies. It is likely that 
both CTCs and ctDNA will have complementary roles as 
cancer biomarkers and might be used in parallel for earlier 
lung cancer diagnosis, prediction of treatment responses, 
or detection of disease progression. Taking all of these 
arguments into account, we consider the real victory in this 
“war” is the genuine possibility these technologies create for 

translating the concept of precision oncology into clinical 
practice. Liquid biopsies represent an important advance in 
the management of lung cancer in which CTCs and ctDNA 
are both expected to play complementary roles based on 
their relative strengths and limitations.
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