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Activation of apoptosis (programmed cell death) is a highly 
efficient means of tumour suppression frequently hijacked 
in lung cancer, and is a major goal of cancer drug therapy. 
When this can be achieved in the clinic, it is associated 
with durable disease control. Targeting the core apoptosis 
pathway has been a research goal since its initial discovery, 
and outstanding research endeavours have been translated 
into discovery of a new class of potent, targeted “apoptotic 
agents”. Despite this, early phase II clinical trials have not 
met with initial expectations. This review addresses the 
challenges and significant potential, in the light of recent 
discoveries, for personalising therapy with apoptotic agents 
as a basis for improving outcomes in lung cancer. 

Apoptosis: a primer

The core apoptosis pathway constitutes a genetically 
hardwired, and highly regulated mechanism for ensuring 
cellular demise. It plays a critical role in development, but 
is hijacked by cancer cells, as an essential transforming 
process during tumor evolution (1). Apoptotic cell death 
involves three key events; firstly, an initiation phase 
engaged by a stimulus such as cellular damage, stress, or 
inhibition of critical growth factor pathways. Secondly, 
a commitment phase in which an irreversible decision to 
initiate apoptosis is made. Mitochondria play a critical role 
in this phase. Thirdly, the execution phase involving cellular 
demise. Much is understood regarding the regulation of the 
apoptotic pathways, in particular, the interplay of the BCL2 
proteins which orchestrate the signalling of these first and 
second phases. 

The  BCL2 f ami ly  a re  composed  o f  p ro-  and 
antiapoptotic members which physically interact to govern 
the initiation of apoptosis (2-4). This event is regulated by 

the oligomerisation of multidomain proapoptotic BCL2 
proteins BAK and BAX, which constitutively reside in 
the outer mitochondrial membrane and/or cytoplasm 
respectively (2,5,6). The trigger for oligomerisation is the 
BH3-only domain protein sub-family (which comprises at 
least 8 proteins - BID, BIM, PUMA, BAD, NOXA, BFM, 
BNIP3, and HRK). BH3 proteins are activated either by 
transcriptional upregulation e.g., Death receptor triggered 
cleavage of BID, P53 driven upregulation of NOXA/
PUMA) or post-translational modification of BIM by 
phosphorylation). These proteins then cause apoptosis by 
either directly triggering oligomerisation of BAX/BAK 
(BID,BIM,PUMA) or releasing BAX/BAK from members of 
the prosurvival BCL2 family (BCLX, BCL2, BCLW, MCL1, 
A1) (7-12). The propensity of BAX/BAK to oligomerise is 
governed by the ratio of prosurvival to proapoptotic proteins. 
Cancer cells appear to constitutely activate BH3 proteins 
(13-15). In order to protect against apoptosis, selection for 
amplification of prosurvival BCL2 family proteins BCLX 
and MCL1 occurs as a common event (16). Amplification 
is associated with dependency which may be therapeutically 
tractable as discussed further on. 

BAX/BAK oligomerisation causes permeabilisation of 
the outer mitochondrial membrane, releasing multiple 
pro-apoptotic factors into the cytosol (17-20). This is 
the event which constitutes irreversible commitment 
to death - the beginning of the end for the cancer cell. 
Cellular demolition is executed by the caspases, a family of 
zymogens which are post-translationally modified leading 
to their activation (21,22). 

Apoptosis and therapeutic outcomes in lung cancer

In recent years, it has become clear, that to achieve 
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effective outcomes in cancer therapy, induction of apoptosis 
appears to be a critical requirement. This is borne out 
in the dramatic radiological regressions associated with 
inhibition of non-squamous non-small cell lung cancer, 
harbouring either somatic mutations of the epidermal 
growth factor receptor (23,24) or an anaplastic lymphoma 
kinase fusion protein (EML4-ALK) (25-27). These so-
called “driver oncogenes” constitutively activate, and 
lead to dependency on, growth factor signalling pathways 
involving phosphoinositide 3 kinase/AKT/mTOR and 
mitogen activated protein kinase (MAPK) axes (28). As a 
consequence, these pathways constitutively phosphorylate 
and suppress the BH3 only protein BIM. Following the 
inhibition of mutated receptor EGFR or ALK receptor 
tyrosine kinases, BIM is unleashed, leading to activation of 
BAX/BAK and apoptosis (29-33). Indeed, BIM expression 
is a prerequisite for clinical activity (34,35). This new 
paradigm involving targeting of driver oncogene addiction 
has shown that the mitochondrial apoptosis pathway is fully 
functional in NSCLC, and that provided a driver oncogene 
dependency can be identified, mitochondrial apoptosis can 
be efficiently activated leading to significant improvement 
in clinical outcome. With the most comprehensive genomic 
landscape studies to date having recently defined the extent 
of common somatic mutations in lung cancer (36-38), 
it is likely that many more clinically tractable oncogene 
addictions will be validated as effective targets for inducing 
apoptosis efficiently. 

Personalising anti-apoptotic BCL2 inhibition

Prosurvival BCL2 proteins suppress BAX/BAK activation 
by sequestering both of these multidomain proteins and/or 
BH3 only proteins (2). The first and most specific inhibitor 
of BCL2/X/W was ABT-263 (Abbott) (39). Phase II 
studies were conducted in small cell lung cancer, based on 
preclinical evidence of addiction to BCL2. However, limited 
efficacy was observed (40). Why was this? MCL1 is a widely 
overexpressed prosurvival protein; indeed it is one of the 
most commonly amplified genes in cancer (16). MCL1 
efficiently overcomes the proapoptotic effects of ABT263 
and may play a role in clinical drug resistance (41-45).  
Importantly, the prosurvival BCL2 family addiction 
observed in cell lines and xenografts was not borne out 
in heterotransplants nor patients, suggesting that SCLC 
may not be “predominantly BCL2/BCLX” addicted in 
the clinical setting. Furthermore, it is clear in SCLC that 
the tumour microenvironment could significantly impact 

cancer cell biology by significantly attenuating apoptotic 
susceptibility (46,47), something which has been modelled 
preclinically in NSCLC and mesothelioma (48,49). 
Nevertheless, patient subgroup analysis showed that in 
patients with high circulating Pro-GRP, encoded by a gene 
neighbouring BCL-2 and co-amplified in SCLCs with 
BCL2 amplification, there was a greater response rate (40).  
This suggests, that in the context of BCL2 amplified SCLC, 
AB263 may exhibit single agent activity consistent with 
a degree of sensitivity. This genetic event exists only in a 
proportion of patients with SCLC, implicating a need to 
select patients harbouring BCL-2 amplification. Indeed, in 
common with other modes of targeted therapy, treating the 
right target population is likely to be a critical requirement 
for achieving clinically relevant activity when considered as 
single agents.

Recent analysis of genome-wide somatic copy number 
variations in cancer has revealed BCLX encoded by 
BCL2L2 and MCL-1, as the most frequently amplified 
genes in the cancer genome, and are encoded at 1q21.2 
and 20q21 respectively (16). Where there is evidence of 
amplification, this appears to be associated with addiction, 
at least at the preclinical level. A proportion of NSCLCs 
harbour amplification at these loci, suggesting that addiction 
could be exploited. One novel approach has been recently 
reported. A search for transcriptional repressors of MCL1 
(which has an exceedingly short protein half-life of around 
30 minutes) identified anthracyclines as potent MCL-1 
inhibitors (50). These compounds owe their proapoptotic 
activity to the transcriptional repression of MCL1, leading 
to its rapid downregulation at protein level. In the context 
of 1q21.2 amplification, this is associated with induction 
of apoptosis. This raises the intriguing question as to 
whether or not anthracyclines may exhibit particularly high 
activity in the context of 1q21.2 amplification in NSCLC, 
and deserved to be addressed in a clinical trial. High dose 
epirubicin has an associated response rate of around 25%, 
and 1q21.2 amplification occurs in around 25% of patients 
(36,51). Whether the majority of responders to epirubicin 
were also 1q21.2 amplified, is as yet, unknown. 

Taken together, it appears that addiction to prosurvival 
BCL2 family proteins is restricted to subsets of lung 
cancers. These subsets may be identifiable through 
detection of somatic mutations involving amplification. 
Apoptotic agents targeting prosurvival BCL2 proteins are, 
when considered as monotherapy, are likely to be much 
like any other targeted agent, in that they may only exhibit 
useful efficacy in restricted subsets of cancers, perhaps 
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identifiable through individual copy number variations. 

Death receptors

The apoptosis pathway can be directly activated through 
the ligation of cell surface receptors related to the tumour 
necrosis factor superfamily which include tumour necrosis 
factor related apoptosis inducing ligand (TRAIL) receptors 
(52,53). A direct consequence of receptor oligomerisation 
is the assembly of a cell surface signalling module (the 
death inducing signalling complex or DISC), which 
comprises homotypic domain interactions between 
receptor (TRAIL receptor 1 or 2), an adaptor (FADD), 
and an apical caspase (8 or 10). The proapoptotic activity 
of TRAIL ligands is selective for cancer versus normal 
cells (54). Recently, it has been shown that in vivo, 
disruption of tumour endothelial vasculature by TRAIL 
causes tumour regression (55). Agonistic antibody based 
activation of receptors for TRAIL have been explored 
in a series of recent phase II clinical trials in non-small 
cell lung cancer (56,57). Preclinical studies demonstrated 
promising synergy when combined with chemotherapy 
and other targeted agents (58-61). Unfortunately, 
predicted improvement in efficacy was not confirmed in 
unselected patients (62) . Despite this, it has been found 
that TRAIL monotherapy is potentially very active in a 
small population of patients with NSCLC. For example, 
one patient with chemorefractory NSCLC exhibited 
a confirmed response lasting 96 weeks following the 
agonistic DR5 antibody (conotumumab, AMG-655) (63).  
This potentially reflects an underlying “hypersensitive” 
subgroup for which, there is at present, no validated 
predictive biomarker. TRAIL agonists are inhibited by 
the cellular FLICE like inhibitor protein (c-FLIP) which 
exhibits high expression in non-small cell lung cancer, 
and the ratio of FLIP to caspase 8 is a potential rheostat, 
regulating sensitivity to TRAIL receptor agonists. Similarly, 
O’glycosylation (64) and VDAC1 have been implicated as 
regulators of TRAIL sensitivity preclinically (65). What 
role these potential biomarkers have in vivo, if any, should 
be systematically investigated in future studies in order to 
maximize the likelihood of identifying a TRAIL receptor 
agonist sensitive population; something which clearly exists, 
albeit perhaps at low frequency. 

Smac’ing lung cancer

During permeabilization of the mitochondrial outer 

membrane, one of the apoptogenic factors released is 
the second mitochondria derived activator of apoptosis 
(SMAC) (20). Since its discovery, SMAC was shown to 
target inhibitor of apoptosis proteins, which constitutively 
suppress caspase activation and therefore the execution 
phase of apoptosis. The conserved tetrapeptide motif AVPI 
in SMAC interacts with the BIR domain of caspase 3,  
blocking its activation. Structure based analysis of this 
interaction led to a rational drug discovery effort to create 
so-called smac mimetics (66,67). This class of pharmacology 
however was shown to uncover a programmed necrosis 
pathway (68,69). In an inflammatory microenvironment, 
cytokine activation of TNF receptors leads to the assembly 
of a so called type 1 complex, which is prosurvival, and 
signals to caspase 8 through NF kappa beta. This signalling 
is dependent upon bound cIAP1 and cIAP2. SMAC or its 
mimetics interact with cIAP1/cIAP2 leading to their rapid 
ubiquitination and degradation. The consequence is the 
recruitment of TNF receptor with caspase 8 into complex 
II, comprising RIP kinase which leads to necrotic death of 
the cell. This death signalling is driven by TNF receptor 
activation; as such, the conversion of a survival pathway, 
to a death signalling pathway following IAP degradation, 
effectively exploits the tumour microenvironment and so 
constitute a “death switch”. 

SMAC mimetics are at the earliest stage of development 
with respect to “apoptotic agents” and are currently under 
phase 1 evaluation in the clinic (70). At present, there are, as 
yet no defined molecular biomarkers of clinical sensitivity, 
however it is clear from preclinical studies that autocrine 
TNF-alpha activation facilitates the synergistic interaction 
between SMAC mimetic  and chemotherapy (71) . 
Accordingly, there is an expectation that this class of agent 
might be most effective in highly inflammatory cancers. 

Systematic approaches for personalising 
apoptotic agents

An initiative entitled the genomics of drug sensitivity 
established as a collaboration between the Wellcome 
Sanger Institute in the UK and Massachusettes General 
Hospital/Harvard, in the USA, provides a potentially high 
throughput platform for identifying genetic biomarkers 
of sensitivity and/or resistance, that might aid clinical 
development of apoptotic agents (72,73). Using over 1,000 
genetically defined cell lines, a candidate drug is screened 
for sensitivity. The correlation between sensitivity measured 
by IC50 and genetic mutations are determined. As such, 
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this provides a remarkably powerful tool for hypothesis 
generation, particularly around hitherto unanticipated but 
statistically robust drug-gene associations. For example, 
for ABT-263, the CML driver oncogene bcr-abl is highly 
correlated with in vitro activity (72). 

Summary

Efficient induction of apoptosis is a prerequisite for 
effective disease control in the management of lung cancer, 
exemplified by receptor tyrosine kinase inhibitor efficacy in 
EGFR and EML4-ALK mutated NSCLC. Decades after 
the discovery of the core apoptosis signalling pathways, 
apoptotic agents have finally been developed with potent 
on-target activity. Population based genetic heterogeneity of 
lung cancer is now an accepted reality that has underpinned 
successful stratified therapy. Despite this, development 
of apoptotic agents has been predominantly conducted in 
unselected populations. The challenge moving forward 
will be understand how best to target these drugs using 
molecular biomarkers, so as to maximize patient benefit in 
selected subgroups. 
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