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The lung as an immune organ

Because the lungs are constantly exposed to foreign 
pathogens and particulates, well-established mechanisms 
are in place to quickly eliminate these and other types of 
invaders. First, the upper respiratory tract is coated with 
mucus that contains many antimicrobial compounds. This 
mucus is constantly secreted by goblet cells and expelled 
by ciliated epithelial cells (1). Epithelial cells that line the 
respiratory tract also express pattern recognition receptors 
(PRRs) that recognize molecular patterns associated with 
pathogens and other dangerous particles or cells; not only 

can these cells modulate the response to infection through 
various pathways, they also can recognize, take up, and kill 
pathogens (2,3). These epithelial cells also direct immune 
responses through cytokine recognition and secretion (2).

The next line of defense in the lung rests in immune 
cells. Tissue-resident alveolar macrophages are readily 
available for phagocytosis and for clearing debris. In fact, 
95% of the airspace leukocytes are alveolar macrophages; 
very few are lymphocytes or neutrophils (4). Various cells 
in the lung, including alveolar macrophages, dendritic 
cells (DCs), and granulocytes also express PRRs that 
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trigger immune responses to perturbation of homeostatic 
conditions. This allows quick recruitment of other immune 
cells to the lung that can mount an effective response and 
clear pathogens that may be present.

An important cell type residing in the lungs are 
lymphocytes. In a study of the prevalence of various 
lymphocyte populations in the lung, Wong et al. used 
cytometry by time-of-flight (CyTOF) to interrogate subsets 
of lymphocytes identified by surface and intracellular 
protein expression from healthy donors (5). CD8+ T cells 
and CD4+ T cells were the most prevalent subtypes in lung 
tissue, although natural-killer (NK) cells and NK T cells 
were also present. Very few B cells were found in the lungs. 
In vitro stimulation of lung cultures to detect intracellular 
cytokines revealed that the most prevalent CD4+ subset in 
the lung was T helper I [Th1; expresses interferon-gamma 
(IFN-γ)], although T helper II [Th2; interleukin (IL)-4 
expressing] and regulatory T cell (Treg, IL-10 expressing) 
were detected at low levels. Interestingly, granulocyte 
macrophage colony-stimulating factor (GM-CSF) 
expression by the CD4+ T cells in the lung was also very 

high and overlapped with IFN-γ expression; production 
of GM-CSF by T cells has been shown to influence DC 
maturation (6) and drive immune disorders, specifically 
multiple sclerosis (7).

Immunological changes during cancer 
development

The progression of cancer with regard to the immune 
system has been described in three stages: elimination, 
equilibrium, and escape (8,9). During the elimination 
phase, the immune system actively attacks cancerous cells 
(Figure 1). The tumor reaches equilibrium with the immune 
system before it eventually escapes immune surveillance. 
At that stage, the tumors begin to grow. The following 
sections describe changes in the immune system that result 
in clinically relevant NSCLC, specifically the current 
understanding of immune cell populations linked to cancer 
and cancer outcomes derived from preclinical models, in 
silico sequencing analysis, and clinical evidence.

Preclinical studies of immunologic changes in lung cancer 

Numerous preclinical studies have focused on the lung 
tumor microenvironment (TME) in efforts to reveal how 
tumors escape immune surveillance. In a study of the Lewis 
lung carcinoma (LLC) model of NSCLC, interactions of 
the death receptor Fas on tumor cells with its ligand did 
not promote apoptosis, but rather caused recruitment of 
myeloid-derived suppressor cells (MDSCs) to the tumor 
through secretion of prostaglandin E2 (PGE2) (10). PGE2 
has been well studied in the context of inflammation and 
cancer promotion (11). That study also showed that forced 
overexpression of Fas on the tumor cells caused enhanced 
MDSC and Treg infiltration into the tumors, and depletion 
of MDSCs through an anti-Gr1 antibody was found to 
delay tumor growth. Another group also found that Fas 
overexpression in the LLC model led to enhanced tumor 
growth (12), noting that MDSC-like cells accumulated 
in response to cigarette smoke but that those cells did 
not acquire suppressive functions until after a tumor had 
formed (13). Drugs targeting MDSCs like gemcitabine or 
arginase inhibitors may facilitate T cell infiltration in the 
lung TME. Suzuki et al., also working with the LLC model, 
found that gemcitabine led to reduced numbers of MDSCs 
in the spleen (14), and the loss of MDSCs was reported to 
increase tumor growth delay in mice bearing both small and 
large AB12 mesothelioma tumors.

Figure 1 The interplay between the immune system and the 
tumor. There is a battle between the tumor and immune system; 
certain immune cells are able to attack the tumor, while the tumor 
has developed various ways to evade the immune system. Typically, 
tumors are eliminated by immune surveillance (elimination). 
However, some tumors are capable of pushing back against the 
immune system (equilibrium), where they eventually develop 
various mechanisms to stop immune-mediated tumor killing 
(escape). In NSCLC, the myeloid cells appear to be playing a 
major role in this process. Radiation may be able to push the 
immune system back to elimination.NSCLC, non-small cell lung 
cancer.
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Other factors apart from PGE2 influence inflammation 
in preclinical lung cancer models. Kim et al. (15) found that 
tumor cells secreted an extracellular matrix protein called 
versican, which stimulated toll-like receptor (TLR) 2 on 
macrophages and drove the production of pro-inflammatory 
cytokines, specifically IL-6 and tumor necrosis factor-alpha 
(TNF-α). This effect was abrogated when TLR2 was knocked 
out in the mice; interestingly, those mice had fewer lung 
and liver tumors as well as prolonged. Additionally, blocking 
monocyte chemoattractant protein-1, also known as CCL2, 
can inhibit tumor growth and spontaneous metastases (16). 
Upon CCL2 blockade, macrophages were found to shift away 
from a pro-tumor phenotype, and this antitumor effect was 
dependent on CD8+ T cells; even though the percentages of 
CD8+ T cells did not increase, the expression of the activation 
markers CD25 and 41BB on those cells doubled.

The effect of neutrophils on the lung TME has 
been studied with a  lung cancer model  based on 
methylcholanthrene and hydroxytoluene exposure. In one 
study, depletion of Ly6G+ neutrophils led to considerable 
reductions in the number of tumor sites (17). However, 
once a tumor had formed, neutrophil depletion did not 
affect the growth of that tumor. These results suggest that 
neutrophils may be important for tumor initiation and 
metastasis but not tumor growth.

Overall, these studies suggest that tumors are fully 
capable of recruiting and polarizing myeloid cells to 
block adaptive immunity. They also imply that chronic 
inflammation may be an important factor driving the 
accumulation of such cells in the lung TME.

In silico methods of investigating immune-cell changes in 
lung cancer

Technical constraints have impeded in-depth investigations 
of the TME in humans over the past decade, including 
difficulties in identifying and studying specific types of 
cells in a tumor owing to intratumoral heterogeneity and 
identifying functional differences such as different patterns 
of gene expression in specific cell subsets, largely because 
of the inability to resolve gene expression differences at 
the level of individual cells or cell types (18-20). However, 
recent advances in single-cell genomics, transcriptomics 
and computational techniques have facilitated investigations 
of the nature of intratumoral heterogeneity in cell type and 
in the functional behavior of infiltrating cells (i.e., levels 
of PD-1 expression on the cell surface of CD4+ T cells). 
Much of the work in single-cell ‘omics’ has been limited 

to investigations of clonal diversity and tumor evolution at 
the level of the tumor genome, with relatively limited effort 
applied to evaluating non-tumor cells (19-21). 

One novel way of distinguishing the individual expression 
profile of cell types in tumor samples is by applying a linear 
support vector regression-based algorithm; this approach 
was recently proposed and tested on existing tumor 
data from more than 18,000 patients from The Cancer 
Genome Atlas (TCGA) and the Encyclopedia of DNA 
Elements (ENCODE) (22,23). This method quantifies the 
composition of cell types by using gene expression data 
from tumor samples by inferring cellular compositions 
based on levels of expression from sets of genes based on 
known transcriptome profile of purified cell types.

The investigators who pioneered this algorithm evaluated 
tumor-infiltrating immune cell subpopulations across a 
range of solid tumor cell types and found that that the 
predominance of specific subtypes of immune cells seem to 
be positive predictors of outcome (23). Specifically, in lung 
adenocarcinoma they found that an abundance of inactivated 
mast cells, inactivated CD4 memory T cells, and naïve and 
memory B cells and plasma cells was strongly associated 
with favorable prognosis. On the other hand, an abundance 
of polymorphonuclear cells and other cells of myeloid 
origin was strongly associated with unfavorable prognosis. 
Unexpectedly, the presence of activated CD4+ memory T 
cells was also strongly associated with poor prognosis. In 
lung squamous cell carcinoma, most myeloid populations 
seemed to confer an unfavorable prognosis, as did memory 
B cells and resting CD4 memory T cells. However, the 
presence of activated DCs was favorable, as were activated 
CD4 memory, CD8, and gamma delta T cells. In both 
subsets of lung cancer, the presence of inactivated mast cells 
was associated with favorable prognosis.

Other preclinical investigations are undergoing, such 
as deeper phenotyping—for instance, are there specific 
subsets of CD4 T helper cells whose presence in tumors 
improve cancer outcomes? How does the memory status 
of helper T cells affect the TME? Does the TME differ 
based on patient age? Some evidence exists to suggest that 
inflammation increases with advanced age and is mediated 
through MDSCs (24). Further studies of the lung TME will 
probably help to answer these questions. 

Clinical correlates of immune-cell subpopulations in lung 
cancer

Many groups have attempted to profile immune-cell 
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subpopulations in patients with lung cancer by using techniques 
such as tissue microarray and immunohistochemical staining. 
Most such studies were done with resected tumor samples that 
had later been stained to evaluate immune subpopulations and 
their correlation with survival after surgery. Studies involving 
blood-based biomarkers have included samples from patients 
treated with a variety of modalities. 

Myeloid cells
Given the prevalence of macrophages in the lung, many 
have investigated their role as either the tumor-suppressing 
(M1) or the tumor-promoting (M2) macrophage subtypes. 
An excellent review of tumor-associated macrophages 
(TAMs), their polarization, and their localization in 
lung cancer with regard to prognosis (25) suggested that 
infiltration of macrophages into tumor islets or nests (26-29)  
or M1 polarization (29,30) correlate with better survival in 
patients with lung cancer, whereas TAM density (31,32), 
their presence in the tumor stroma (26,27,33), and/or M2 
polarization (34,35) correlate with worse survival. Other 
groups have found that IL-10 expression (M2-related) in 
TAMs (but not in tumors) at the protein level was associated 
with worse overall survival (36) and high IL-10 mRNA 
levels in TAMs were associated with tumor invasion (37). 
Although some studies found no correlation between TAMs 
and tumor progression (38-40), most have implicated TAMs 
in lung cancer progression.

Tumor infiltration by TAMs may not be the only 
relevant macrophage-related factor in lung cancer 
prognosis. One group showed that alveolar macrophages 
(obtained through bronchoalveolar lavage from patients 
with lung cancer) had reduced phagocytic capability (41). 
Incubation of alveolar macrophages with PGE2 also led 
to decreased phagocytosis. Another group showed that 
similarly obtained alveolar macrophages had increased 
levels of inducible nitric oxide synthase (iNOS), a 
traditional marker of M1 macrophage polarization (42).  
In addition to PGE2, chronic inflammation is also thought 
affect macrophage function so as to reduce phagocytic 
capability, perhaps because of inflammatory cytokines 
produced by alveolar macrophages or other myeloid 
cells. One group found IL-6 and IL-1 to be elevated in 
patients with NSCLC relative to patients with benign 
lung disease (43) while another showed elevated levels 
of TNF-α and IL-6, but not IL-1, in patients with 
NSCLC (44), suggesting that tumors may influence 
both TAMs at the tumor site and alveolar macrophages 
throughout the lung. Notably, IL-1, IL-6, and TNF-α 

tend to be associated with M1 macrophages. Could these 
macrophages be contributing to tumor growth, as noted in 
the aforementioned LLC and TLR2 preclinical study (15)? 
The ability of tumors to influence macrophage function 
may be limited spatially, as suggested by one study showing 
that alveolar macrophages in a non-cancerous lobe did not 
secrete as much TNF-α as did macrophages from a lobe 
containing cancer (45). Another study of bronchoalveolar 
lavage samples obtained well away from the affected 
region still demonstrated impaired phagocytosis (41). An 
additional study showed that macrophages from the pleural 
cavity and peripheral blood monocytes in patients with 
stage I-III lung cancer retained their phagocytic ability 
while producing the aforementioned pro-inflammatory 
cytokines (46). These studies suggest that these M1-like 
macrophages may not have antitumor functions, because 
they have lost some ability for phagocytosis and tend to 
create a pro- inflammatory environment. Although these 
cytokines can be important for antitumor effects, evidence 
exists to suggest that TNF-α (47,48), IL-6 (49), and IL-1 
(50,51) may also participate in cancer progression.

Tumor-associated neutrophils have been less well studied 
with regard to lung cancer outcomes. Conflicting results 
have been published, with one study showing worse overall 
survival based on CD10 expression (52) and one showing 
no difference between CD10+ and CD10− tumors (53). 
However, in the former study, the authors compared high 
CD10-expressing tumors with low CD10-expressing 
tumors, whereas the latter study compared only CD10+ 
and CD10− tumors. Comparisons based on high, low, or 
no expression might show clearer correlations with overall 
survival, as suggested by studies that compared neutrophil-
to-lymphocyte ratios in the blood of NSCLC patients with 
outcome. A meta-analysis of 14 studies comparing this 
ratio with outcome confirmed that a higher neutrophil-to-
lymphocyte ratio correlated with worse survival in patients 
with lung cancer (54). Interestingly, one study found that 
elevated neutrophil counts alone was enough to predict 
poor survival (55), implying that systemic inflammation 
may be a risk factor in patients with cancer. Lastly, isolated 
neutrophils from early-stage lung tumors seem to exhibit 
immune-stimulatory properties; in one study, neutrophils 
from resected tumors that were cultured with T cells were 
able to drive T cell proliferation via the co-stimulatory 
molecules 4-1BBL, OX40L, and CD86 (56).

Elevated blood levels of MDSCs may correlate also 
with poorer survival. One group profiled MDSCs in blood 
samples of NSCLC patients and found that higher levels of 
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MDSCs, and lower levels of DCs and monocytes, correlated 
with worse survival (57). Another similar study found no 
correlation between MDSC levels and survival, but rather 
that patients with NSCLC generally had increased levels of 
MDSC in the blood, which correlated with fewer CD8+ T 
cells (58), implying that the MDSCs might have more of a 
systemic role as compared with M2 TAMs, which seemed to 
be changed only locally. 

The presence of tertiary lymphoid structures near  
tumors (59) has been investigated in patients with lung 
cancer. The first such study in 2008 reported the presence 
of these structures only in tumors and not in healthy areas 
of the lung among patients who had undergone surgical 
resection (60). These tertiary lymphoid structures were 
found to contain DCs, and the presence of high levels of 
DC-Lamp+ DCs (a maturation marker) was associated with 
improved disease-free survival. Notably, tumors with DC-
Lamp levels also had more T cell infiltration, more B cells, 
and more T-bet+ Th1 (helper) cells. Tertiary lymphoid 
structures seem to be capable of recruiting T cells through 
several mechanisms (61), and their presence correlates 
with higher T cell numbers within both the stroma and  
tumor (62). DC-Lamp-high tumors have also been linked 
with higher 5-year overall survival rates (60% vs. 40% for 
DC-lamp low tumors). Another study comparing levels of 
B cells and DC-Lamp+ DCs in tumors reported a similar 
trend: tumors that had higher levels of mature DCs tended 
to have higher numbers of B cells, which correlated with 
better survival rates (63). 

Lymphocytes
The importance of tumor-infiltrating lymphocytes (TILs) 
has been well-documented in several types of cancer. One 
large clinical study (956 patients) sought to correlate various 
immune markers with the probability of recurrence in 
patients with stage I adenocarcinoma (64). Higher levels 
of stromal Foxp3 (the transcription factor found in Tregs) 
and IL-7 receptor correlated with higher probability 
of recurrence. However, if the high Foxp3 levels were 
associated with high CD3 levels in the stroma, the outcomes 
were similar to those for low Foxp3 levels, hinting that T 
cell infiltration can trump Treg levels in lung cancer. The 
same study also showed that higher levels of IL-12 receptor 
beta-2 within the tumor correlated with lower probability 
of recurrence. A recent meta-analysis with the goal of 
evaluating subsets of TILs and prognosis in patients with 
lung cancer noted that high levels of CD3+ and CD8+ T 
cells correlated with improved survival, but higher stromal 

Foxp3 levels may have been detrimental (65).
The influence of B cells on survival is less clear. As noted 

previously, tertiary lymphoid structures seem to be capable 
of housing B cells near the tumor, and the presence of B cells 
has been correlated with improved survival (63), although 
this finding has not been consistent (66). Another study 
showed that infiltration of IgG4-expressing plasma cells in 
stromal areas correlated with high rates of survival (67), a 
finding that agrees with in silico results (23). 

Evidence also links NK cells with improved survival. 
One group using CD56 as a marker for NK cells found 
that 88% of their evaluated patients had lower CD56 in the 
stroma, but the 5-year survival rate was higher among the 
11% of patients with high CD56 levels (82% vs. 56%) after 
surgery (39). Another group found similar results with NK-
cell infiltration (68). 

Conclusions from the lung TME

TAMs,  neutrophi l s ,  MDSCs,  and Tregs  a l l  have 
immunosuppressive activity in the lung TME. Macrophage 
function seems to be altered locally, whereas MDSCs may 
be affected systemically. In line with other types of cancer, 
the presence of T cell infiltration in lung tumors, mature 
DCs, NK cells, and, surprisingly, B cells seems to correlate 
with favorable prognosis.

Radiation therapy and the immune cell response

Radiation therapy (XRT) modifies immune responses in 
the TME in contradictory ways. It enhances MHC class I 
expression, which enables the immune system to react to 
tumor neoantigens (69). XRT also activates immunogenic 
cell death via the expression of calreticulin on tumor cell 
surfaces and the release of ATP and HMGB1 (70,71). 
XRT can also promote abscopal responses with or without 
immunotherapy through several mechanisms, including 
upregulation of various trafficking receptors and CD8+ T 
cell recruitment (72-75), even though lymphocytes are quite 
sensitive to radiation and are killed shortly after XRT.

One well-studied effect of XRT is its ability to increase 
transforming growth factor-beta (TGF-β) levels (76). 
TGF-β is critical for Treg polarization and could contribute 
to increased Treg representation after XRT; however, 
Tregs are also inherently resistant to radiation (77-79). 
XRT also has several roles in recruiting myeloid cells to the 
TME (80); XRT recruits MDSCs and macrophages and, 
depending on the radiation dose, polarizes macrophages to 
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the M2 phenotype. In one study of the LLC model, CD18 
hypomorphic mice responded better to a single 20-Gy 
fraction of XRT because of reduced recruitment of myeloid 
cells (81). However, another group found that a higher dose 
(a single 30-Gy fraction) led to recruitment of mainly CD8+ 
T cells, and that fractionation (3 Gy ×10 fractions) led to 
recruitment of MDSCs (75). Indeed, these conflicting results 
after XRT may help to explain why some patients respond 
to therapy combining XRT and immunotherapies, especially 
immune checkpoint blockade, while others do not.

Immune checkpoint inhibitors

Our focus on the lung TME was chosen specifically to 
illustrate the effects of combined checkpoint inhibitors and 
XRT at the level of the TME. The first checkpoint inhibitor 
approved for NSCLC, an antibody to the programmed 
death 1 (PD1) receptor, inhibits a membrane protein 
expressed on T cells, B cells, NK cells, activated monocytes, 
and DCs (82). When bound by its ligand PDL1, which 
is expressed on the surfaces of tumor cells and myeloid 
cells, PD1 leads to downregulation of antigen receptor 
signaling, which inhibits effector cell activity (83). PD1 is 
also expressed by stimulated T cells, hinting that PD1+ T 
cells may be both tumor-specific and overstimulated (84).  
Both CD3+ and CD8+ T cell infiltration correlates 
with improved survival in NSCLC. PD1 blockade may 
reinvigorate these T cells, driving the immune response 
seen in the clinic. Tumors with high PDL1 expression are 
known to have decreased numbers of TILs (85) and to 
respond better to anti-PD1 monoclonal antibody than do 
tumors with low PDL1 levels, suggesting that even if T 
cells do express PD1, they may not be signaling through 
PD1 unless the tumor is actively expressing PDL1 (86).

The second common checkpoint inhibitor, anti-cytotoxic 
T-lymphocyte associated protein 4 (CTLA4), is targeted 
to a receptor expressed on T cells, extensively so on Tregs. 
When CTLA4 is bound by CD80 or CD86 on an antigen-
presenting cell, it transmits an inhibitory signal to T cells 
but promotes Treg immunosuppressive functions (87). 
Because CTLA4 binds to CD80 and CD86 with greater 
affinity than to the costimulatory receptor CD28, T cell 
activation leads to increased expression of CTLA4 as 
a means of negative feedback to prevent autoimmune 
reactions (88). Recent evidence suggests that the primary 
mode of action of anti-CTLA4 drugs in mice is not to 
promote stimulation of effector T cells but to deplete Tregs 
via antibody-dependent cell-mediated cytotoxicity (89).

Although PD1 targets T cells that have already been 
activated and CTLA4 may deplete Tregs, it is important 
to note that other immune cells are present in the lung 
TME; myeloid cells in particular seem to have large role in 
immunosuppression.

Preclinical studies of PD1 or CTLA4 + XRT

Few preclinical studies have been done that combine anti-
PD1 or anti-CTLA4 and XRT in models of lung cancer. 
In one such study, combining PD1 blockade with XRT 
in a mouse model of KRAS-mutant NSCLC yielded 
significantly improved survival and smaller tumor volumes 
in comparison with control and monotherapy groups (90). 
XRT + anti-PD1 was capable of causing regression in the 
344SQ (p53 and KRAS mutant) NSCLC line (91), and 
two of eight mice treated with this modality experienced 
complete tumor regression and were resistant to tumor 
rechallenge. The anti-CTLA4 antibody was first reported 
to increase the antitumor activity of XRT in 2014 (92); 
combining anti-CD25 with XRT in a lung cancer model led 
to significant decreases in Tregs both at the irradiated site 
and distally at nonirradiated sites relative to either therapy 
given alone (93). One could expect similar results with anti-
CTLA4 and XRT for the following reasons: (I) CTLA4 acts 
to reduce Tregs; (II) Tregs seem to have important roles in 
the lung TME; (III) and XRT may increase the numbers of 
Tregs in the lung TME. 

Future directions

Applying XRT to multiple sites of disease

Key questions remaining for the use of XRT with 
immunotherapy are the optimal radiation dose and schedule, 
tumor location, and extent of tumor to be irradiated. 
Several of the ongoing trials of XRT plus immunotherapy 
treat only one metastatic site; however, targeting multiple 
sites or even all areas of gross disease may be much more 
likely to improve systemic responses. One advantage of 
such an approach would be to prompt the release of greater 
numbers of neoantigens from different sites of metastasis, 
which would improve the probability of priming more T 
cells, perhaps translating into improved systemic control. 
Another challenge to the destruction of cancer via the 
immune system is low T cell penetration into the tumor; for 
example “cold” tumors without T cells are much less likely 
to respond to checkpoint inhibitors. Destroying all sites 
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of gross disease with XRT would abrogate this problem. 
Irradiation of all disease sites may not be feasible for some 
patients, and it could well increase toxicity, especially for 
colitis from treating abdominal disease. Recent trials have 
demonstrated improvements in outcome from aggressive 
ablative therapy for patients with up to 3 sites of metastatic 
NSCLC (94), and there could be further improvement with 
the addition of immunotherapy. 

Using XRT to increase response rates to adoptive T cell 
therapy 

Adoptive T cell therapy has recently gained attention for its 
potential as systemic antitumor therapy. Because TILs consist 
of CD4+ and CD8+ lymphocytes, some TILs directly destroy 
tumors and others promote stimulation of other immune 
cells (B cells, macrophages, CD8+ T cells) to promote tumor-
cell lysis (95). This may explain why the presence of TILs is 
a prognostic factor for overall and event-free survival as well 
as recurrence in melanoma, breast cancer, and ovarian cancer 
(96-98). Efforts have begun to investigate the infusion of 
expanded autologous T cells isolated from resected tumors.

Given the ability to isolate, extract, and expand TILs, 
XRT has taken on new promise for improving distant 
disease control. Metastatic disease is common in NSCLC, 
for which the mainstay treatment is chemotherapy. 
However, chemotherapy is lymphocyte-depleting and (99)  
cannot penetrate the blood-brain barrier. Replacing 
chemotherapy with tumor-specific T cells may be a way 
of resolving this difficult issue, as preclinical studies have 
shown that T cells can penetrate the blood-brain barrier 
(100,101). Infusing TILs that have been expanded ex vivo 
with the greater antigen receptor diversity generated from 
definitive XRT could enhance the penetration of those cells 
into metastases in the brain and at other sites. 

Conclusions

Immunotherapy has profoundly changed the care of lung 
cancer patients. Maximizing its utility requires a deep 
understanding of the TME. Although anti-PD1 agents 
have shown to be effective against NSCLC, additional 
immune cell populations will need to be targeted to increase 
response rates. Of all the immune cell populations that have 
been implicated in NSCLC, immunotherapies targeting 
TAMs and MDSCs are likely the most critical because XRT 
recruits these cells to the TME. XRT could also be used to 
recruit T cells to multiple sites and, with immunotherapy, 

could also be useful for enhancing the production of TILs, 
which could then be harvested for expansion as a more 
diverse population of tumor-specific T cells. These and 
other strategies will lead to improved clinical outcomes for 
patients with NSCLC.
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