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Introduction

Lung cancer is the leading cause of cancer mortality in the 
world (1). Lung cancer radiation therapy is often efficacious 
for patients with disease limited to the thorax, but carries 
the risk of significant morbidities, particularly radiation 
induced pneumonitis (2,3). About 50% of patients with 
locally advanced lung cancer (1) receive radiotherapy.

The major technical challenges in lung radiation therapy 
are threefold: target motion due to respiration, the presence 
of low dose tolerance normal lung tissue surrounding the 
target, and large tissue heterogeneities (4). With each 
incremental technological advancement, the impact of 
these challenges has gradually diminished over the years. 
One major advancement is the development of four 
dimensional computed tomography (4DCT) which enabled 
the visualization and capture of the motion envelope of 
the gross tumor volume (GTV) (5). The information 
would then be used to manage the effect of motion 
in beam delivery, e.g., use of diaphragm compression 
boards, delineation of the internal target volume (ITV) 

for treatment, or design of a gated beam delivery system 
to irradiate only when the target is within a certain beam 
aperture window. Various other imaging technologies along 
with 4DCT have been developed and applied in the field of 
radiation therapy. 

The second major challenge of dose conformity and normal 
tissue sparing was addressed by the advancement of beam 
delivery technologies such as intensity modulated radiation 
therapy (IMRT) (6,7), Tomotherapy (8), volumetric modulated 
arc therapy (VMAT) (9), and proton therapy (10). These 
improvement enable better 3D dose distribution that conforms 
to the target while maximizing the sparing of surrounding 
normal tissue. The superior dose distribution delivered by 
treatment modalities utilizing those new technologies are also 
confirmed by clinical observations (4,11).

The last major challenge of accurate dose computation 
was addressed by the introduction of advanced dose 
calculation algorithms with better heterogeneity correction 
methods (12-14). For proton therapy, the dose calculation 
accuracy is limited by two factors: the CT Hounsfield unit 
(HU) to proton stopping-power-ratio (SPR) conversion 

Review Article

Image guidance in proton therapy for lung cancer

Miao Zhang1, Wei Zou2, Boon-Keng Kevin Teo2

1Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 2Department of Radiation Oncology, University of 

Pennsylvania, Philadelphia, PA, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: Teo BK; (III) Provision of study materials or patients: All authors; 

(IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: Boon-Keng Kevin Teo. Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.  

Email: kevin.teo@uphs.upenn.edu.

Abstract: Proton therapy is a promising but challenging treatment modality for the management of lung 
cancer. The technical challenges are due to respiratory motion, low dose tolerance of adjacent normal tissue 
and tissue density heterogeneity. Different imaging modalities are applied at various steps of lung proton 
therapy to provide information on target definition, target motion, proton range, patient setup and treatment 
outcome assessment. Imaging data is used to guide treatment design, treatment delivery, and treatment 
adaptation to ensure the treatment goal is achieved. This review article will summarize and compare various 
imaging techniques that can be used in every step of lung proton therapy to address these challenges.

Keywords: Proton therapy; lung cancer; imaging guidance

Submitted Dec 12, 2017. Accepted for publication Mar 21, 2018.

doi: 10.21037/tlcr.2018.03.26 

View this article at: http://dx.doi.org/10.21037/tlcr.2018.03.26 

160-170



161Translational Lung Cancer Research, Vol 7, No 2 April 2018

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2018;7(2):160-170tlcr.amegroups.com

accuracy (15) and the lack of lateral heterogeneity correction 
in the analytical dose models (16). Those uncertainties are 
usually addressed by the addition of distal and proximal 
margins during planning. Advanced imaging technology 
such as dual energy CT (DECT) and proton CT (pCT) 
may be useful to improve the accuracy of treatment delivery.

With the advancement in imaging technology, imaging has 
become an indispensable part of radiation therapy. Various 
imaging techniques are used in every step of radiation therapy 
from patient simulation, target definition, patient setup, 
motion monitoring, treatment adaptation, and treatment 
outcome prediction. It provides assurance as to the quality of 
treatment we deliver to the patient. In the following sections 
we will review the different types of imaging modalities that 
are currently used or are in development for use in various 
stages of lung cancer proton therapy.

Review

Imaging in lung cancer detection and staging

Due to its high imaging resolution, fast acquisition time, 
and availability, CT is the main imaging technique for 
detecting lung nodules (17-20). With the introduction of 
low dose CT (LDCT) (21,22), lung cancer screening using 
LDCT can significantly reduce mortality from lung cancer 
in the appropriate high-risk population (18,23-25).

The role of magnetic resonance imaging (MRI) in 
detecting and staging of lung cancer remains limited. 
Lung MRI is subject to motion artifacts due to the longer 
acquisition time (26,27). In addition, the low proton density 
in the lung parenchyma produces low signal for imaging. 
Traditionally, MRI is limited to assessing mediastinum and 
chest wall invasion due to a lower degree of motion extent 
in the region of interest and the superior soft tissue contrast 
compared to CT. However, with fast imaging sequences 
and high field magnets, MRI is able to provide similar 
detectability compared to CT (28-30).

Positron emission tomography (PET) or PET/CT is a 
functional imaging modality. Fluorine 18 fluorodeoxyglucose 
(FDG) PET provides semi-quantitative information on cell 
metabolic activity which can highlight the primary target and 
the involved lymph nodes. It has been routinely used along 
with CT for lung cancer staging (31).

Imaging in simulation and treatment planning

Simulation is the process of designing treatment setup 

and acquiring patient anatomic information for treatment 
planning. The CT simulator is the primary choice due 
to its fast acquisition time, high spatial resolution, and 
quantitative body composition representation (32). Free 
breathing CT imaging is a snapshot of the patient body 
in which any target motion would be blurred during the 
acquisition. For lung cancer, it is important to quantify 
target motion during the simulation. 4DCT provides a 
series of 3D images representing different phases of the 
breathing cycle and is routinely used in lung proton therapy 
(5,33-41). The time-resolved images are generated by 
oversampling the region of interest at multiple time points 
followed by retrospective data resorting using the acquired 
breathing motion signal (5,33). The breathing motion 
signal is usually acquired by looking at patient body surface 
surrogates, e.g., the infrared reflection cube placed on the 
patient abdomen, or laser displacement sensor (37,38). 
Usually 20 images will be oversampled to generate up to 
ten 3D volumes representing the phases of the breathing 
cycle. In addition, the maximum intensity projection (MIP) 
and average (CT-AVE) images, in which each pixel value is 
either the maximum or the average HU of that pixel across 
all phases respectively, would be generated as well. Based on 
these time-resolved images, several techniques have been 
adopted by different proton centers for treatment planning 
and beam delivery.

The choice of motion management strategy dictates 
the planning approach. With respiratory gating, a specific 
tumor location within the respiratory motion range will 
trigger the beam. Therefore, only the image set from a 
specific breathing phase is selected for treatment planning. 
It has been suggested that the exhalation phase image should 
be used for planning since the target has the longest dwell 
time at exhalation (37-39). The GTV, clinical target volume 
(CTV), and planning target volume (PTV) are defined 
following the International Committee on Radiation Units 
and Measurements (ICRU) recommendations. The setup 
uncertainty and respiration stability of the gating system are 
incorporated in the PTV margin. In lung stereotactic body 
radiation therapy (SBRT), a selected motion phase could 
also be used for planning. The mid-ventilation phase images 
defined as the 30% of the breathing cycle was proposed for 
contouring and dose calculation for the treatment of proton 
lung SBRT patients (41). The argument is based on the 
study showing that mid-ventilation images represented the 
time averaged position of the tumor location and enables 
a reduction of the irradiated volume as well as the least 
proton range degradation (42). However, gated delivery 
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has a lower duty cycle to deliver proton beam therapy 
compared to non-gated delivery and may make respiratory 
gating infeasible for a significant percentage of lung cancer 
patients (43).

Without respiratory gating, the full range of tumor 
motion extent should be considered during planning. A 
popular approach is to define the internal gross tumor 
volume (IGTV) as the envelope of the GTV on all 
breathing phases. The CTV is then generated by adding 
a margin that considers the microscopic extension of 
the disease as the target of the proton beam (34-36). 
There are several images that can be used for proton 
range determination: the CT-AVE, MIP, and individual 
phase images of the 4DCT. Proton ranges determined 
by MIP is the largest when compared to the other image 
sets. This conservative approach has been adopted by  
Loma Linda (34). At the University of Florida, the CT-
AVE was used for treatment planning (36). A study from 
MD Anderson compared the use of free breathing CT, CT-
AVE, MIP, and CT-AVE with density overwritten IGTV 
of 100 HU (AVE-RIGTV) for planning. Judging by the 
overall target coverage and normal tissue sparing, the use 
of AVE-RIGTV was determined to be the best choice for 
planning (44). A 4D treatment planning approach similar 
to the MIP based planning has been developed at the 
Massachusetts General Hospital (40). A group of plans 
was first generated for individual breathing phase CT 
images. The final 4D plan is the composite of those plans 
with the maximum proton range, modulation, and beam 
aperture to ensure the target coverage. These studies were 
performed using scattered proton beam delivery. In pencil 
beam scanning (PBS) beam delivery, there is potential dose 
distribution degradation (interplay effect) arising from the 
relative motion between the tumor and the beam delivery 
parameters that must be considered. In a 4D Monte Carlo 
(MC) study of PBS lung treatments (45), it was found that 
the interplay effect is highly patient specific, dependent 
on the motion amplitude, beam spot size, tumor location 
and beam delivery parameters. Large degradations of dose 
distribution were observed in a single fraction but improved 
significantly using conventional fractionation. In a study of 
the interplay effect for stage III lung cancer treatment with 
intensity modulated proton therapy (IMPT), dynamic dose 
distributions were estimated by assuming realistic breathing 
patterns in a dynamic dose delivery (46) and calculating a 
4D composite dose derived from forward calculating the 
dose in each phase of the 4DCT. The authors concluded 
that delivered dose may be reliably estimated using 4D 

composite dose despite of the interplay effect. There are 
several disadvantages to using 4DCT for capturing motion. 
In addition to potential irregular breathing resulting in 
4D image artifacts, the captured motion is only a snapshot 
of several breathing cycles and may therefore under- or 
over-estimate motion during treatment. One solution is to 
map motion information extracted from a 4D MRI onto a 
static 3D CT to create a virtual 4D-CT (MRI) (47) that is 
potentially free from 4DCT artifacts and is therefore more 
robust for 4D dose calculations. 

CT imaging is used to determine the proton range and 
dose distribution. The HU represents the linear attenuation 
coefficient of the imaged object for kV X-rays. It is strongly 
related to the electron density of the object which is used 
for megavoltage photon dose computation. For proton 
therapy, the proton stopping power ratio (SPR) used for 
range determination and dose computation is determined by 
the electron density and the mean excitation energy of the 
material. Using traditional single energy CT (SECT), the 
calibration process is a single dimensional map of electron 
density projection to a 2-dimension map of electron 
density and mean excitation energy. Comprehensive 
analysis by Yang et al. (15) showed that the commonly used 
stoichiometric calibration method (48) has a combined 
uncertainty of 3–3.4% in proton SPR determination. The 
dominant contributor of SPR uncertainties was the fact that 
the calibration process cannot differentiate soft tissues with 
composition variations that have different SPR but the same 
HU in SECT.

In order to acquire more accurate material information 
for proton SPR determination, the use of DECT has 
been proposed (49) to remove the HU degeneracy of soft 
tissues in SECT. Various methods have been proposed to 
correlate the DECT HUs to the proton SPR (50-54). A 
recent theoretical study by Han et al. (50) utilized a basis 
vector model (BVM) to calculate proton SPR from 90 and 
140 kVp DECT images. The BVM assumes that X-ray 
attenuation derived from CT are linear combinations of the 
corresponding quantities from several basis materials. Their 
calculated root-mean-square error of proton SPR was 0.2% 
for 175 MeV protons. The experimental study conducted by 
Hansen et al. (55) showed that the proton SPR determination 
by DECT has 0.5% (maximum of 1%) uncertainty when 
performed in calibration conditions. For phantoms outside 
of the calibration range, the estimated uncertainty was less 
than 2%. The optimum energy pair to acquire DECT 
for proton SPR calculation was also investigated by Yang  
et al. (56). Based on their report, the kV-MV DECT pair 
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of 100 kVp and 1 MV improved the accuracy of SPR 
estimation substantially over the kV-kV or MV-MV 
DECT methods due to less susceptibility to CT number 
uncertainties and artifacts such as imaging noise and beam 
hardening effects. DECT is already commercially available 
through several vendors. However, it has not been routinely 
used in proton clinics at the time of writing. DECT has 
been implemented commercially using various technologies 
including, dual source, and fast kV switching or sequential 
scans. One potential problem with the use of DECT for 
lung proton therapy is respiratory motion when the image 
pair is not acquired simultaneously. Photon counting CT 
(PCCT) is a potential solution that acquires simultaneous 
multi-energy CT using a single source and photon counting 
detector (57). PCCT is an emerging technology that uses 
photon counting detectors that measure individual photon 
energies rather than integrated charges from all photons on 
a conventional CT.

Another approach to improve the proton SPR 
determination is using pCT (58-61). pCT uses high energy 
protons as the imaging beam. It measures the residual 
range of protons exiting the imaged object. Since the only 
factor governing the residual range is the proton SPR of the 
imaged object, the reconstructed image is a direct map of 
the proton SPR. A simulation study performed by Hansen 
et al. (55) reported that pCT has a maximum proton SPR 
uncertainty of 0.5% which is superior to any other clinically 
available methods. Despite its advantage for proton therapy 
simulation over X-ray CT, pCT requires a much higher 
proton energy for imaging than treatment since the proton 
beam is used in transmission mode. pCT has inferior 
imaging resolution compared to CT due to proton scatter. 
Currently, there are no commercially available pCT systems 
other than several prototypes for small phantom studies.

MR-only simulation has been shown to be a feasible 
solution in radiation therapy. MR images are robust, have 
high fidelity and contrast that are suitable for treatment 
planning (62). The newly introduced Philips Ingenia 
MR-RT system (Philips Medical Systems, Best, The 
Netherlands) uses a fast imaging sequence to reduce the 
acquisition time to about 12 min (63). The MR image is 
then converted to a synthetic CT image using the Magnetic 
Resonance for Calculating Attenuation (MRCAT) algorithm 
developed by Philips (Philips, Vantaa, Finland). MRCAT 
generates pseudo-HUs by categorizing patient body into 
air, fat, soft tissue, spongy bone, and compact bone based 
on MR signals (64,65). A predetermined HU value will be 
assigned to each material for dose computation. A recent 

study investigated the feasibility of using the synthetic 
CT image for prostate cancer proton therapy (66). The 
range difference calculated based on MRCAT and CT 
images has a median value of 0.1 and 3 mm for the 96th 
percentile. For lung proton therapy, MR-only simulation 
faces challenges because of the low signal from lung and 
higher range determination accuracy requirement. More 
investigations are needed to determine its feasibility for 
clinical applications. 

Image guidance during treatment delivery

Image guidance tools for proton therapy systems
In-room imaging tools are an indispensable part of the 
image guided radiation therapy workflow. All proton 
delivery systems have at least some type of orthogonal X-ray 
radiograph system for patient setup (67,68). Some systems 
have onboard imagers mounted on the gantry or nozzle and 
can be used for cone beam CT (CBCT) acquisition. One 
of the X-ray tube may be mounted on the nozzle to acquire 
the beams-eye-view (BEV) (68,69). Since the virtual proton 
and X-ray sources are not coincident, the BEV acquired 
by the X-ray tube is only an approximation of the proton 
BEV. Patient alignment for lung proton therapy is primarily 
accomplished using orthogonal X-ray imaging matched to 
bony anatomy. 

Compared to orthogonal radiographs, CT provides a 
3D volumetric image with superior soft tissue contrast. 
CT based image guidance has long been introduced to 
proton therapy (70). Early solutions implemented at the 
Paul Scherrer Institute featured a CT situated next to the 
treatment room. Patients would be setup on a moveable 
couch and imaged in the CT room. The patient would then 
be transported on the couch and docked in the treatment 
room. X-ray radiographs would then be acquired to verify 
patient location prior to treatment. With the development 
of portable CT scanners and 6 degree robotic couch (71), 
in-room CT is now clinically available. Due to the size of 
the CT scanner, these systems have separate CT imaging 
and treatment isocenter positions.

Kilovoltage CBCT has been an indispensable tool (72) 
for lung photon therapy. For proton therapy, CBCT has 
been implemented by utilizing a gantry or nozzle mounted 
X-ray imaging system for image acquisition (73). X-ray 
projection images are acquired through gantry rotation in a 
similar way CBCT is acquired on linacs. Since some proton 
systems have either a fixed beam or a compact but limited 
angle gantry. An alternative implementation that does not 
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require a gantry is the use of customized robotic C-arm 
CBCT system that can be deployed to image off treatment 
isocenter (74) or at treatment isocenter (75).

MRI has also been proposed as an image guidance 
tool for proton therapy (76,77). It has superior soft tissue 
contrast and no moving parts for 3D imaging. Those 
properties allow MRI for real-time motion monitoring 
(78,79) and on-line adaptive proton therapy workflow. 
The main difference from photon therapy, however is that 
the magnetic field would have less impact on the proton 
dose distribution, although the magnetic field causes the 
proton beam to be laterally displaced. Raaymakers et al. (76) 
demonstrated no effect of the magnetic field on the dose 
distribution can be detected at tissue-air interfaces, which is 
due to the low-energy of the secondary electrons released 
by the heavy protons but there is a lateral displacement of 
1 mm for a 0.5 T field. Due to technical challenges such 
as magnetic perturbation on beam monitoring systems, 
shielding design of the magnetic and radio-frequency fields 
between the accelerator and MRI, this technology remains 
at the conceptual development and testing phase (80).

Image guidance for patient setup and intra-fractional 
motion management
Lung cancer radiation therapy is challenging because 
of respiratory motion. In clinical practice, the motion 
management strategy dictates the simulation, treatment 
planning, and imaging modalities used during treatment. 
Motion management can be categorized into two 
approaches: non-gated delivery, or gated delivery with 
tumor or respiratory phase tracking. Non-gated delivery 
is the least technically challenging and the most popular 
method for the passive scattering (PS) proton therapy 
system. Combining 4D-CT derived IGTV and proper 
margins; the beam aperture design encompasses all 
potential tumor positions. Motion reduction devices such as 
breath hold or abdominal compression may be used. Image 
guidance in this setup only requires aligning the patient 
to bony anatomy with orthogonal X-rays. If in-room CT 
or CBCT is available, matching can be performed to soft 
tissue while verifying the reproducibility of the patient 
setup with the breath hold or compression device. Fiducial 
markers may be considered when CT or CBCT images 
are not available during the setup to improve accuracy. 
However, the presence of traditional solid fiducial markers 
or electronic transponders could significantly perturb the 
proton dose distribution (81,82) by casting a dose shadow 
due to its high density. Novel gel based fiducial markers 

with high radiograph visibility, but similar proton stopping 
power to soft tissue creates less dose perturbation, has been 
introduced for proton therapy (83) and may be potentially 
useful for image guidance or tracking motion in lung proton 
therapy (84).

In gated delivery, the proton beam turns on only 
when the target has moved to a predetermined window. 
Compared to non-gated delivery, a smaller motion margin 
may be used, thereby sparing more normal tissue. However, 
the target location throughout the treatment needs to 
be monitored and communicated to the beam triggering 
system. Multiple modalities have been developed for use 
as gating signal. Those modalities can be classified into 
internal tumor monitoring with implanted markers or 
external surrogate monitoring. The implanted markers, e.g., 
fiducial markers (85), radio frequency (RF) transponders 
(86,87), and electromagnetic coils (88), which represent 
the true tumor location are required to be monitored by 
externally placed detectors. Currently no proton therapy 
system has integrated X-ray imagers or RF antennas for 
real time tumor motion monitoring due to concerns of 
significant dose perturbation introduced by the markers 
and limited space in the treatment room. On the other 
hand, external surrogate monitoring is easier to realize. 
Laser distance sensors (88,89) and surface imaging (90-92) 
are two examples of this category. Laser distance sensors 
use triangulation to calculate the subject’s movement by 
measuring the reflected laser beam change in space. It has 
sub-millimeter accuracy and has been used routinely in 
Japanese centers to monitor respiratory motion (37,38). 
Surface imaging uses cameras to capture pseudo-random 
light pattern projected on the patient surface. The patient 
surface change would be calculated from the pattern 
change of the projected lights. Compared to other imaging 
modalities, it uses non-ionization radiation, and is able 
to monitor a large surface constantly from a distance. 
Currently there are several commercially available products 
including VisionRT (AlignRT, London, UK), Catalyst 
(C-RAD, Uppsala, Sweden), and humediQ (humediQ, 
Munich, Germany). Those systems usually require several 
cameras/projectors to be mounted in the treatment room 
ceiling to work. Sub-millimeter accuracy can be achieved 
in well controlled experiment setups (92,93). However, 
in clinical setup, the accuracy would also be affected by 
patient skin tone, ambient light level, temperature of 
the camera, and selection of the monitoring region of 
interest. Technological assessment between optical and 
electromagnetic tracking technologies showed that optical 
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tracking has better potential than electromagnetic tracking 
for use in PBS proton therapy (88). Nevertheless, caution 
should be taken when using beam gating because latency 
time between the generation of the triggering signal and 
beam turn on/off have to be considered along with potential 
poor correlation between internal tumor motion and 
external monitoring surrogates.

In vivo imaging for proton range verification
There are several sources of uncertainty in lung proton 
therapy: the conversion of the CT HU to proton stopping 
power, setup uncertainties, motion, and patient anatomical 
change during treatment. As the proton beams can pass 
through very inhomogeneous tissues including lung, soft 
tissue and bone, the delivery uncertainties can create 
large effect in the proton dose distribution (35). Online 
monitoring tools of the proton range is therefore desirable 
for treatment plan dose verification. 

Nuclear interactions of protons with tissue nuclei can 
lead to the production of β+ emitters (primarily 15O and 11C 
with 122 and 1,218 s half-lives) along the proton beam path. 
Imaging these β+ emitters using PET techniques has been 
proposed as a way to perform range monitoring in proton 
radiotherapy (94,95). Since energy deposition by protons is 
through electromagnetic interactions while the generation 
of β+ emitters is through nuclear interactions, the PET 
image is spatially correlated but not directly proportional to 
the deposited dose distribution (96). Hence, the accuracy of 
proton range verification is defined as the difference in range 
as measured in the acquired PET image to that calculated 
in a MC simulation of the β+ emitters (MC map) generated 
within the patient. Another challenge is to transfer patient 
from the treatment position to the PET acquisition 
position, where time delay occurs and more short-lived 
isotopes decay away, while the longer-lived isotopes 
encounter biological washout especially if the PET scanner 
was situated in a different room. Dedicated in-room PET 
was used to monitor proton range in brain patients (97).  
In-line PET was proposed to image the decay signal 
during or right after treatment (96-98) and performed on 
various disease sites. Such technology has yet to be verified 
and applied to lung proton treatment where motion is 
a challenge. Laube et al. (99) developed a 4D PT-PET 
algorithm that considers intra-fractional target motion and 
motion compensated dose delivery with scanned ion beams. 
The technology of PET for proton beam range verification 
is evolving but is not routinely integrated into a prospective 
quality assurance system. 

During proton irradiation, high energy gamma rays are 
also emitted by the decay of excited nuclei resulting from 
interactions between the proton beam and patient tissue. 
Imaging of these prompt gammas (PG) emitted during 
the short timescale of the nuclear byproducts is a potential 
proton range verification tool during beam delivery 
(100,101). Compared to PET imaging PG imaging does 
not suffer from the complication of biological washout has 
a shorter imaging time and is ideally suited for imaging 
discrete pencil beam spots. In addition to localizing 
the spatial location of the PG source, the spectroscopic 
properties of the PG emission lends itself  to the 
determination of carbon and oxygen concentration (102).  
The clinical application of PG imaging for range verification 
has been demonstrated in double scattering (103)  
and PBS modes (104) for brain treatment using a PG 
camera with a slit collimator design. The feasibility of PG 
imaging for lung treatment range verification has not been 
demonstrated yet because several technical hurdles limit 
the applicability of this modality. These limitations include 
respiratory motion, which complicates the analysis of the 
PG emission profile and the low density of lung tissue that 
decreases PG emission signal from within lung tissue.

Imaging for adaptive planning

Proton dose distribution is particularly sensitive to anatomic 
changes and motion effects. The typical dose fractionation 
for locally advanced NSCLC is about 7 weeks (11). During 
the course of treatment, tumor regression or shrinkage, 
lung density change due to atelectasis, pleural effusion, and 
motion pattern change can occur. It is necessary to monitor 
the tumor response throughout the course of treatment and 
modify the original plan as needed. MD Anderson Cancer 
Center was an early adopter of adaptive lung proton therapy 
(35,105,106). Usually an evaluation 4DCT is acquired 
during week 3 or 4 of treatment or as clinically indicated 
and assessed by the physician. The original plan will be 
forward calculated on the newly acquired 4DCT to evaluate 
the target coverage and normal tissue dose. If the target 
received <95% of the prescription dose or the normal tissue 
exceeded the dose constraints, a re-plan will be performed 
based on the new 4DCT. Koay et al. (106) reported about 
20% patients required a re-plan, particularly for patients 
with large thoracic tumor which recessed significantly 
during the course of treatment.

Other than 4DCT, CBCT has also been investigated for 
use in adaptive planning purposes. With more commercial 
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proton systems equipped with onboard imager that has 
volumetric imaging capability, CBCT acquired during 
treatment would be a handy tool to monitor the target 
change or use for re-planning. The image quality of CBCTs 
is inferior to multi-detector CT images due to photon 
scatter and the HUs are generally not accurate for proton 
dose calculations. Veiga et al. (107) used deformable image 
registration to register the CBCT and the planning CT 
images to generate a virtual CT for dose estimation. This 
technique mapped the HUs from the planning CT onto the 
CBCT. They found the current method is limited by the 
uncertainty associated with deformable registration as well 
as the image quality of CBCT. Their adaptive procedure 
was adequate when gross errors occurred but could not 
recover subtle anatomic or density changes in tumors 
with complex topology. For identification of anatomic 
change and estimation of dose to target and other organs 
at risk such as the spinal cord and heart, CBCT will play 
an important role as a trigger for adaptive lung proton 
therapy as it can be acquired prior to each treatment and 
complements the use of evaluation 4DCT when re-planning 
is required.

Conclusions

After more than a century of growth, the radiation therapy 
field has developed advanced therapeutic machines that 
generate well-selected types of ionization radiation 
for cancer therapy. Treatment can be realized through 
various types of advanced beam deliver mechanisms. The 
challenge of radiation therapy has shifted from how to 
deliver treatment to how to assure that the right treatment 
is delivered to the right place with the right response. 
Imaging can provide assurance to the simple human logic 
of “to see is to believe”. With more and more imaging 
modalities developed or under development for integration 
to the radiation therapy workflow, firm control of individual 
steps of cancer treatment can be gained. Lung proton 
therapy is the utilization of the most advanced therapy 
modality for this traditionally challenging disease. Looking 
forward, there will be more use of imaging in the treatment 
workflow to answer questions from target definition, target 
localization, treatment delivery, to treatment response.
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