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Introduction

The demonstration of a 20% reduction in lung cancer 
mortality in the USA National Lung Screening Trial 
(NLST) (1) and the subsequent decision by the U.S. 
Centers for Medicare and Medicaid Services to provide 
Medicare coverage for lung cancer screening has paved the 
way for nationwide lung cancer screening in the USA. 

This decision also underscored the pivotal role of low-
dose computed tomography (LDCT) in the detection of 
lung cancer. However, one of the acknowledged downsides 
of LDCT based screening is its relatively high false positive 
rate. For example, the rate of positive screening tests in 
the NLST was approximately 27% in the first two rounds 
of the LDCT arm and 17% in the third year of screening. 
A screening CT was considered positive if it contained a 
non-calcified nodule of at least 4 mm in its long axis or 
other suspicious abnormalities were present. Over the 
three rounds, over 96% of such positive screens were false 
positives and 72% had some form of diagnostic follow-up.

To address this issue, the American College of 

Radiologists (ACR) Lung Imaging Reporting and Data 
System (Lung Rads™) tool (2) for standardized reporting 
of CT based lung cancer screening adopted a threshold for 
solid nodules of <6 mm for its category 2 where no additional 
diagnostic work-up is recommend and the subject is 
imaged again at annual screening. However, new nodules of  
4 mm and greater are considered category 3 and a 6-month 
follow-up LDCT is recommended in recognition of their 
increased probability of malignancy.

The impact  of  Lung-RADS was  ana lysed in  a 
retrospective analysis of the NLST (3). Lung-RADS 
was shown to reduce the overall screening false positive 
rate to 12.8% and 5.3% at baseline and interval imaging 
respectively at the cost of a reduction of sensitivity from 
93.5% in the NLST to 84.9% using Lung-RADS at 
baseline and 93.8% in the NLST and 84.9% using Lung-
RADS after baseline. However, while Lung-RADS reduces 
the overall false positive rate, the false positive rate of 
positive screens, i.e., Lung-RADS 3 and above, remains 
very high at 93% at baseline and 89% after baseline; of 3,591 
Lung-RADS 3 and above screens, 3,343 were false positives 
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at baseline and of 2,858 Lung-RADS 3 and above screens 
after baseline 2,543 were false positives. Therefore, while 
the adoption of Lung-RADS can reduce the total number 
of benign nodules being worked-up within a screening 
programme, at a cost of just under 10% loss in sensitivity, 
there remain a very large number of benign nodules being 
investigated, and the nodule classification task remains a 
challenging one.

One approach to address this problem is to adopt 
computer aided diagnosis (CADx) technology as an aid to 
radiologists and pulmonary medicine physicians. Given an 
input CT and possible additional relevant patient meta-
data, such techniques aim to provide a quantitative output 
related to the lung cancer risk. 

One may consider the goal of such systems to be two-
fold. First, to reduce the variability in assessing and 
reporting the lung cancer risk between interpreting 
physicians. Indeed, computer assisted approaches have 
been shown to improve consistency between physicians 
in a variety of clinical contexts,  including nodule  
detection (4) and mammography screening (5) and one 
might expect such decision support tools could provide the 
same benefit in nodule classification. Second, CADx could 
improve classification performance by supporting the less 
experienced or non-specialised clinicians in assessing the 
risk of a particular nodule being malignant.

In this article, we review progress made towards the 
development and validation of lung cancer prediction 
models and nodule classification CADx software. While we 
do not intend this to be a comprehensive review, we do aim 
to provide an overview of the main approaches taken to date 
and outline some of the challenges that remain to bring this 
technology to routine clinical use.

Risk models

There have been a number of lung cancer risk models 
developed and validated that one may consider to be a form 
of CADx tool (6-9). Typically based on logistic regression, 
such tools aim to provide an overall risk of the patient 
having cancer based on patient meta-data such as age, sex 
and smoking history and nodule characteristics such as 
nodule size, morphology and growth, if a previous CT was 
available. 

Although such tools currently require manual entry by 
the user, they do produce an objective lung cancer risk 
score which may be used in the decision-making process. 

However, despite their attraction and good performance, 
their adoption and performance as part of decision making 
has not been studied. The British Thoracic Society (BTS) 
guidelines on the management of incidentally detected 
pulmonary nodules (10), recommends the use of the  
Brock model (6). Anecdotally, many physicians report using 
them for patient communication only and feel that such 
models do not add a great deal to their clinical expertise. 
More specifically, questions remain as to the utility of such 
models when the patient population is different to that 
of the training data. It is clear, that for such models to be 
clinically useful, knowledge of the training data used is 
critical, and this also will determine the clinical scenarios 
in which they may be used. There are clearly significant 
differences in the pre-test probabilities of a nodule being 
malignant in different patient groups. For instance, 
patients with a current or prior history of malignancy are at 
significantly different risk of nodule malignancy than non-
smokers with no significant prior history. 

From a technical perspective, such models have a 
number of limitations. Foremost is the reliance on human 
interpretation of input variables such as nodule size, 
morphology and even the reliance on the patient’s own 
estimate of factors such as smoking history. For example, 
under the Brock model, a 1mm increase in the reported 
size of a 5 mm spiculated solid nodule in a 50-year-old 
female almost doubles its risk, from 0.98% to 1.89%. 
However, inter-radiologist variability in reporting nodule 
size is typically greater than this (11). Moreover, inter-
reader variability in reporting morphology and nodule 
type is common even amongst experienced thoracic 
radiologists (12,13). 

Some recent work to address this has been proposed 
by Ciompi et al. (14) where an automated system for the 
classification on nodules into solid, non-solid, part-solid, 
calcified, perifissural and spiculated types was proposed. 
Overall classification accuracy is reported to be within 
the inter-radiologist variability at 79.5% but this varies 
between 86% for solid and calcified nodules down to 43% 
for spiculated nodule classification. Of course, since the 
ground-truth classifications were provided by radiologist 
opinion, the performance at validation cannot be expected 
to improve on that. As the authors point out, the nodule 
types are radiologist developed concepts that, while useful 
for clinical purposes, lack a precise definition. The impact 
of the system’s output as an input to the Brock model was 
not reported and ultimately this approach should be judged 
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on its ability to improve malignancy prediction.

Radiomics

The term Radiomics refers to the automatic extraction 
of quantitative features from medical images (15,16) and 
has been the subject of a great deal of investigation with 
applications including automated lesion classification, 
response assessment and therapy planning. Fundamentally, 
the Radiomic approach aims to turn image voxels into a set of 
numbers that characterize the biological property of interest 
such as lesion malignancy, tumour grade or therapy response.

Although research into, what are termed, Radiomics 
methods has seen an explosion in the last decade, the technical 
methods that it builds on have a very long history in the 
fields of computer vision and medical image understanding 
in the area of texture analysis. Indeed, many of the so-called 
Radiomic features are based on techniques that were first 
proposed in the 1970s (17) for the classification of textured 
images and have been largely superseded in the computer 
vision literature. Nevertheless, their application to medical 
image processing research has in some areas yielded some 
significant insights, in particular in how such quantitative 
features relate to tumour pheno- and genotypes. The idea 
that such advanced quantitative techniques may add to the 
qualitative clinical interpretation of radiologists is gaining 
momentum and is likely to move into mainstream clinical 
practice in the coming 5 to 10 years.

For a given application, the Radiomic approach proceeds 
in two phases—first a training or feature selection phase 
and then a second testing or application phase. The 
training phase typically proceeds as follows. First, a large 
set, typically some hundreds or thousands, of features are 
defined a-priori. Next, the features are extracted from a 
large corpus of training data where the object of interest, 
say a tumour, has been delineated such that a computer 
algorithm can extract the quantitative features automatically. 
Finally, a step known as feature selection is applied that aims 
to select a smaller subset, e.g., some tens of such features 
that efficiently captures the imaging characteristics of the 
biological phenomena of interest. For example, in the case 
of nodule classification into benign and malignant we may 
pick the features, either individually or in combination that 
perform the best at this task on the training data. 

In the testing phase, the Radiomics are applied to a 
particular patient’s image, with the process being similar 
to the training phase but now the selected features are 
identified by the algorithm, extracted and then used to 

classify the patient. 
Of course, both at training and testing steps, a classification 

algorithm will need to be defined to convert the Radiomics 
values into classifications. For small sets of individual features, 
we may simply use thresholds on the Radiomic features; 
however, for larger sets of features more sophisticated 
techniques from the field of machine learning, such as Support 
Vector Machines (SVMs) and Random Forests are typically 
used to yield better results. A very good review of Radiomics 
approaches applied to the classification of pulmonary nodules 
is provided in Wilson et al. (18). 

One criticism of some of the earlier Radiomics work is 
the lack of independent training and validation data (19). 
Indeed, it is not unusual to find very high classification 
rates being reported based on the training data whereas it 
is well established within the machine learning literature 
that such results may be subject to “overfitting”—the 
apparent excellent performance that cannot be replicated 
on unseen and independent datasets. In fact, one measure 
of the goodness of a well-trained classifier is the difference 
in performance between training sets and test sets. This 
phenomenon has led to a generally over-optimistic view of 
the performance with area under the curve (AUC) numbers 
reported in the high 80s and 90s range that cannot be 
replicated on independent data.

The 2015 SPIE-AAPM-NCI LungX Lung Nodule 
Classification Challenge (20) was a first attempt at a Grand 
Challenge style competition and provided a sobering view 
of the actual real-life performance one might expect to 
see in clinical practice. Ten groups, including our own, 
submitted computer methods to classify nodules as benign 
or malignant. No additional training data was provided but 
a limited “calibration” dataset of ten cases was provided. 
Therefore, all groups were required to utilize either 
publicly available or their own proprietary datasets. Many of 
the methods used the Radiomic/texture feature extraction 
technique followed by a classification step.

AUCs ranged from 0.5 to 0.68 with only three of the 
methods outperforming random chance with statistical 
significance. Despite our classifier achieving the highest 
AUC and winning the competition, the performance was 
significantly below what we had seen on other independent 
datasets. In the next section, we provide some details of 
the system that have not been published previously along 
with some insights gained during the competition and 
subsequent analysis.
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LungX winning entry

Figure 1 provides an overview of the main steps in the 
algorithm used in the winning entry. The software has four 
main steps at test time, i.e., when used to classify a nodule: 
(I) nodule segmentation, (II) texture feature extraction, (III) 
risk score regression and (IV) risk score thresholding. 

The nodule segmentation is required because the 
subsequent step of feature extraction is applied to a region 
of interest (ROI) around the nodule. Each nodule was 
segmented in a semi-automated thresholding approach 
using a commercial software package (Mirada RTx, Mirada 
Medical Ltd.). The user first defined a spherical ROI around 
each nodule and then applied a fixed threshold to the ROI. 
Next, the user could adjust the threshold to improve the 
segmentation and finally, manual editing tools could be used 
to edit the segmentation to remove any voxels that did not 
correspond to the nodule of interest that the segmentation 
had included. Typically, adjacent vessels would need to be 
excluded in this manner. In later work, we replaced the 
semi-automated method with a more automated technique 
that did not require any user interaction other than to 
identify the centre and diameter of the nodule (21).

We extracted 15 texture features from two regions, 
the first inside the nodule segmentation and the second 
in a surrounding region defined automatically. Based 
on earlier work using our internal databases, we found 
that better performance could be achieved if the region 
inside the nodule was treated separately to the immediate 
surrounding parenchyma. The insight here is that the 
texture of the nodule carries separate information to the 
region in the nearby parenchyma and the very different 
ranges of Hounsfield units in each region would make 

it difficult for one set of texture features to capture the 
patterns. We believe this was a significant contribution to 
the performance of the system. 

The 15 features were selected from a palette of over 1,300 
classical texture features including Haralick (17), Gabor (22),  
along with simple measures such as mean, standard 
deviation and volume. We utilized a fully automated feature 
selection strategy that aimed to select a small subset of 
features that optimised classification performance over 
an in-house training dataset. Since it is computationally 
infeasible to test all combinations of the full palette of 
features, we utilized a sequential “greedy” algorithm 
that, starting with the optimal pair of features found by 
exhaustive search over all pairs of features, selected features 
one-by-one so as to maximise the performance over the 
training dataset at each step. 

Finally, an SVM regression algorithm with a cubic kernel 
was trained using the libSVM library. The output of this 
step is a number between 0 and 1 that reflects the likelihood 
that a particular nodule is malignant.

The training dataset we utilized for the competition was 
mostly derived from the Lung Image Database Consortium 
and Image Database Resource Initiative (LIDC-IDRI 
dataset) (23). This publicly available dataset comprises 
a wide variety of nodules and comes with multiple 
segmentations and likelihood of malignancy score estimated 
by expert clinicians. Nodules were included in our training 
set if at least three sets of clinician-drawn contours and 
corresponding likelihood-of-malignancy scores were 
included in the XML metadata. The malignancy scores are 
integers from one to five inclusive and are recorded per 
clinician. Only nodules whose malignancy scores were all 
below 3 (the benign set) or all above 3 (the malignant set) 

Figure 1 A block diagram of the LungX winning system.  
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were included, yielding a labeled subset of 222 nodules 
overall for the LIDC-IDRI training set.

Figure 2 shows the Receiver Operating Characteristic 
(ROC) curves for the system as trained and tested on the 
LIDC-IDRI dataset using 20-way cross-validation. With 
such high AUCs, we were suspicious that the dataset was 
too easy to classify and so we trained and validated on a 
second dataset, PLAN, to examine the system’s performance 
further. The PLAN nodule database was built up from 
nodules collected from the Oxford University Hospitals 
NHS trust. This set consists of 709 nodules, 377 malignant 
and 328 benign, diagnosed either using histology or by 
2-year stable follow-up. Using 20-way cross-validation, the 
average AUC was 0.854; the ROC curves are shown on the 
right of Figure 2. In the end, the system we submitted used 
both LIDC-IDRI and PLAN for feature selection but the 
SVM was trained only on the LIDC-IDRI dataset.

Convolutional neural networks and deep learning

Convolutional Neural Networks (CNN) trained using 
deep learning techniques have come to dominate pattern 
detection, recognition, segmentation and classification 
applications in both medical and non-medical fields. Indeed, 
where sufficient training data is available, CNNs have 
largely superseded the previous generation of Radiomic/
texture analysis methods described above. In our own work, 

once we had collected and curated sufficiently large training 
sets by the end of 2016, our CNN based techniques started 
to outperform the previous state-of-the-art texture and 
SVM based method. While a detailed exposition of such 
techniques is beyond the scope of this article, it is worth 
understanding the main differences to previous methods 
and their advantages.

Feature learning vs. feature selection

Unlike Radiomic/texture analysis approaches, CNN 
techniques build features from scratch rather than selecting 
from a palette of engineered or pre-selected set that rely on 
the contextual knowledge of the algorithm developer. 

Hierarchical features

The first few layers of a CNN typically comprise several 
layers of features allowing the network to learn the 
relationships between features in a much more sophisticated 
way than can be achieved with a single feature extraction 
stage. Consider this illustrative example: a texture feature, 
such as local entropy of the joint histogram, can be used 
to detect spiculations extending into the parenchyma. 
But a CNN can learn this and also learn that spiculations 
encompass the whole perimeter of the nodule and that this 
is a sign of a malignant nodule.
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End-to-end learning

CNNs are typically trained “end-to-end” meaning that 
the entire network is trained to optimize the problem of 
interest, i.e., all the parameters of the network are adjusted 
until the peak classification rate is achieved. In contrast, 
each stage of the LungX texture-based approach that we 
developed had to be built and optimised individually and 
there was no guarantee that the entire pipeline would be 
optimal.

Segmentation-free

The CNN approach can operate without the nodule 
segmentation step because segmentation is handled in an 
implicit way within the algorithm. In subsequent analysis of 
our LungX algorithm, we found significant sensitivity of the 
prediction score to the segmentation step.

The Kaggle data science bowel 2017—lung 
cancer detection

The 2017 lung cancer detection data science bowel (DSB) 
competition hosted by Kaggle was a much larger two-stage 
competition than the earlier LungX competition with a 
total of 1,972 teams taking part. In stage 1, a large training 
dataset of 1,397 patients was provided comprising 362 
with lung cancer and 1,035 without, along with an initial 
validation set of 198 patients. This validation set was used 
to produce the public stage 1 leader-board, using which 
the competitors could judge their performance. In stage 
2, a further unseen dataset of 506 patients, on which the 
final competition results were judged, was made available 
for 7 days. This two-stage approach was used to avoid 
competitors inferring the test set labels using many entries. 
In contrast to the LungX competition, here the competitors 
needed to produce a completely automated pipeline, taking 
in a CT image and outputting a likelihood of cancer. 

The results were judged using the log-loss function, 
popular on Kaggle competitions. Unlike AUC, the log-loss 
function penalizes more confident, but incorrect outputs, 
greater than less confident ones. All top three entries 
utilized CNNs trained using Deep Learning and scored 
within a few decimal places of each other, scoring 0.39755, 
0.40117 and 0.40127, where a log-loss of zero corresponds 
to a perfect score. AUC-ROC results of 0.85 and 0.87 
were subsequently reported for the top-two teams (24,25) 
respectively.

The winning entry (24), utilized a 3D Convolutional 
Neural Network training on a combination of DSB training 
data and the publicly available the dataset used in the 
LUNA16 nodule detection competition (26) which itself 
was derived from the LIDC-IDRI dataset (23). Since no 
nodules are identified in the validation and test datasets, a 
reliable automated nodule detection step is critical for correct 
classification. In fact, based on the subsequent write-ups from 
the winning teams (24,25), much of the effort was put into 
this step rather than the subsequent classification step. 

Is size everything?

One interesting observation regarding the distribution of 
nodule sizes was made by the winning team. The LUNA16 
dataset contained many more small nodules, (mean = 
8 mm), whereas the DSB datasets comprised many larger 
lesions (mean =14 mm), therefore the team had to adjust 
the training algorithm to compensate for this. Moreover, 
the distribution of nodule sizes between cancer and benign 
patients was reported to be very different; the malignant 
nodules were large and the benign were small. Hence 
predicting the diagnosis based on size alone would be 
expected to produce good results. The issue of size bias in 
training and test sets is a critical issue and one which we 
have studied in some depth.

It is well known from the risk model literature that the 
strongest predictor of a nodule’s malignancy, imaged at one 
point in time, is its size, whether expressed as its long axis, 
an average of the long and short axes or as a volume. The 
reason is quite simple: benign nodules are typically caused 
by processes that are self-limiting in size, e.g., inflamed 
lymph nodes, whereas malignant tumours have no such 
limits, and are constrained by other factors such as the 
duration of growth, the cell replication time, the ability of 
the tumour to invade adjacent structures, and its vascular 
and oxygen supply. Therefore, one might expect that nodule 
size, either implicitly or explicitly, will be included as part of 
any nodule CADx system. 

However, additional differences in the size distribution 
of benign and malignant nodules may also occur due to 
selection bias in data collection. For example, a naive 
approach to collecting examples of malignant lesions might 
be to select all retrospective CTs for patients diagnosed 
with lung cancer and all retrospective CTs for patients 
with benign nodules. However, outside of a screening 
programme, most patients diagnosed with lung cancer 
present with symptoms prior to diagnostic imaging and 
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hence are typically at a late stage and their nodules are 
consequently larger than benign nodules. A machine 
learning algorithm trained on such data would perform very 
poorly when applied to, for example, a screening application 
where the distribution of malignant nodule sizes is more 
similar to benign ones.

We explored this issue further by comparing the 
performance of a CADx system trained on size-matched 
and size unmatched data (27). Figure 3 illustrates the 
experiment. Two datasets were created from the US NLST. 
The first (A), comprising 640 solid nodules, was built to 
remove size as a discriminatory factor between benign 
and malignant; all malignant solid nodules between 4 and 
20 mm diameter were selected, and for each, a benign 
solid nodule was selected that most closely matched it in 
diameter. Any malignant nodule for which an equivalently 
sized benign could not be found within 0.8 mm was 
rejected. Sizes were measured using automated volumetric 
segmentation. The second dataset (B), also comprising 640 
subjects, included all malignant nodules in A but benign 
nodules were randomly selected following the empirical size 
distribution of the whole NLST dataset. Therefore, nodule 
size cannot be a discriminative factor in A but would be in 
B. Two nodule classifiers were built using texture features 
combined with an SVM classifier; this was utilized here 
because the small datasets prevented the use of a CNN 
model.

The average AUC for the classifier trained on dataset 
A was 0.70 whereas using size alone on the same dataset 
gave an AUC of 0.50 as would be expected. The AUC was 
0.91 for the classifier trained on dataset B. This indicates 
that the classifier can learn morphological features that can 
discriminate between benign and malignant nodules and, 

moreover, that such features add approximately 0.2 AUC 
points to using size-alone.

Coincidentally, the performance on size matched data 
was very close to that we achieved on the LungX competition 
data (AUC: 0.70 and 0.68) which was subsequently revealed 
to have also used size-matched data in the test set (20).

Conclusions

We have provided an overview of the main approaches 
used for nodule classification and lung cancer prediction 
from CT imaging data. In our experience, given sufficient 
training data, the current state-of-the-art is achieved using 
CNNs trained with Deep Learning achieving a classification 
performance in the region of low 90s AUC points. When 
evaluating system performance, it is important to be aware 
of the limitations or otherwise of the training and validation 
data sets used, i.e., were the patients’ smokers or non-
smokers, or were patients with a current or prior history of 
malignancy included. 

Given an apparent acceptable level of performance, the 
next stage is to test such CADx systems in a clinical setting 
but before this can be done, we must first define the way in 
which the output of the CADx should be utilized in clinical 
decision making. Who should use such a system and how 
should it be integrated into their decisions? Should the 
algorithm produce an absolute risk of malignancy and how 
should this be expressed; should it be incorporated into 
clinical opinion and how much weight should clinicians or 
patients lend to it. Should the algorithms be incorporated 
into or designed to fit current guidelines such as Lung-
RADS or the BTS guidelines? If nodules are followed over 
time, should the algorithm incorporate changes in nodule 

Dataset A
640 size-matched nodules

Model A

SVM

SVM

Model B
Dataset B

640 NLST size distribution

Figure 3 Investigating the role of nodule size within a machine learning model of nodule malignancy. Model A was trained on size-matched 
data and model B was trained on unmatched data. SVM, support vector machine. 
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volume or should this be assessed separately? Is success 
defined by a reduction in the numbers of false positive scans 
defined as those needing further follow up or intervention, 
or by detecting all lung cancers and earlier than determined 
by following current guidelines? Who should be compared 
to the algorithm when determining its value? Should the 
comparison be experts or general radiologists, as it may be 
difficult to be significantly better than an expert but may be 
of substantial help to a generalist, and most scans are not 
interpreted by experts? Relatively little work has been done 
to address such questions.
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