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Introduction and importance

Although non-small cell lung cancer (NSCLC) is most 
commonly diagnosed by the time it has become locally 
advanced or metastatic (1), early-stage disease is expected 
to be diagnosed substantially more frequently with the 
increasing use of low-dose computed tomography (CT) 
screening (2-4). In the National Lung Screening Trial, 
roughly two-thirds of cancer diagnoses were early-stage (5). 

Management of early-stage NSCLC centers on surgical 
resection, with stereotactic body radiation therapy [SBRT, 
also known as stereotactic ablative radiation therapy (SABR)] 
as the primary treatment option for non-surgical candidates 

(6-8). Results from the Radiation Therapy Oncology 
Group (RTOG) 0236 trial (9) demonstrated SBRT to 
be a safe and efficacious option with which to treat these 
patients, and ablative dosing has also been shown to provide 
markedly superior outcomes to conventionally-fractionated 
radiotherapy (RT) (9,10). Owing to the success of SBRT 
as a powerful oncologic tool for many neoplasms (11-19), 
the utility of SBRT (as compared to surgery) for medically 
operable early-stage NSCLC is now a major area of 
ongoing investigation (20,21); the highest level of available 
evidence points to equipoise at minimum (22).

Although the “general” early-stage, node-negative 
NSCLC patient population most commonly has tumors 
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under 3 centimeters (9), larger node-negative tumors also 
occur, albeit less frequently. A threshold of 5 centimeters 
was considered an exclusion criterion for RTOG 0236 
and other phase II trials (23) owing to the uncommonality 
and concerns of increased toxicities (24) when delivering 
ablative doses to large volumes. As a result, there are 
considerably fewer retrospective, and no prospective, 
experiences of SBRT for these patients. Therefore, it is 
important to ascertain whether SBRT is an appropriately 
safe and effective option for these cases. This is especially 
important because it is likely that the incidence of screen-
detected, large, node-negative NSCLC lesions will increase 
as lung cancer screening increases in utilization.

Although for purposes of this review, the 5 cm cutoff is 
utilized to denote “larger” lesions, the findings herein may 
be considered when thinking through treatment approaches 
for somewhat smaller tumors as well. Not only does a 
single-dimension measurement not necessarily equate 
to the overall tumor volume, smaller tumors that display 
considerably higher respiratory-related excursion also result 
in larger treatment volumes. Nevertheless, this review aims 
to explore current evidence for SBRT in ≥5 cm NSCLC, 
and it additionally discusses strategies to reduce toxicities as 
well as the utility of systemic therapies for this unique and 
challenging patient population.

Clinical evidence

Although several retrospective studies have utilized other 
definitions of “larger” NSCLC cases (25-28), a dedicated 
discussion for ≥5 cm node-negative disease will be presented 
hereafter, and the pertinent literature for this population 
is summarized in Table 1. These results must be critically 

appraised in the context of their retrospective nature, 
pre-radiotherapy workup, disease extent, individualized 
treatment planning considerations, and follow-up details.

A series of 40 patients was reported by investigators 
from Cleveland Clinic, 27 of whom received 5-fraction 
SBRT (50 Gy), and the remainder of whom received 8 or 
10 fractions (29). Nearly half underwent endobronchial 
ultrasound (EBUS), and 27 patients had tumors located 
within 2 cm of the proximal bronchial tree. Median follow-
up was 11 months. The reported 18-month locoregional 
control was 64%; median disease-free survival (DFS) and 
overall survival (OS) were 14 and 20 months, respectively. 
Crude rates of grades ≥2 and ≥3 toxicities were 13% and 8%, 
respectively. 

The largest experience to date is a multi-institutional 
investigation of 92 patients treated at 12 academic 
institutions in the United States (30). Of these patients, 
28% had centrally located tumors, with mediastinal nodal 
staging performed in just 35%. All patients received ≤5 
fractions, with nearly three-quarters of patients receiving 
50 Gy in 5 fractions or 48 Gy in 4 fractions. At a median 
follow-up of 12 months, the 1- and 2-year actuarial local 
control were 96% and 73%, respectively; median OS was  
21 months. Crude instances of grades ≥2 and ≥3 toxicities 
were 25% and 7%, respectively. Grade 4–5 toxicities were 
limited to a single patient with a 180 pack-year smoking 
history and a 7.5 cm tumor who had grade 5 radiation 
pneumonitis possibly attributed to SBRT.

A report of 41 patients was published from Cooper 
University Hospital (31). Sixty-three percent of lesions were 
central, with the median RT dose and fractionation of 50 Gy 
in 5 fractions. At a median 15-month follow-up, the crude 
rate of local control was 95%; 1- and 2-year OS were 65% 

Table 1 Clinical studies of stereotactic body radiation therapy for large (≥5 cm) non-small cell lung tumors

Reference
Sample 

size
Dose (Gray)/
fractions (no.)

Median follow-up 
(months)

Local control
Crude grade ≥2 

toxicities (%)
Crude grade ≥3 

toxicities (%)
Instances of 

grade 5 events
Overall survival

Woody  
et al. (29)

40 50/5 (68%), 
60/8 (20%)

11 64% (locoregional) 
at 18 months

13 8 0 20 months

Verma et al. (30) 92 50/5 (47%), 
48/4 (23%)

12 96% at 1 year, 
73% at 2 years

25 7 1 21 months

Peterson  
et al. (31)

41 50/5 (median) 15 95% (crude) at  
15 months

17 10 0 65% at 1 year, 
34% at 2 years

Tekatli et al. (32) 63 50/5 or 60/8 55 96% at 2 years – 30 12 28 months

Verma et al. (33) 201 50/5 (30%), 
48/4 (23%)

41 – – – – 25 months
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and 34%, respectively. Altogether, 17% and 10% of patients 
experienced adverse events of grades c2 and ≥3, respectively.

The only report to date with long-term follow-
up (median 55 months) is a 63-patient series from the 
Netherlands (32). All patients were treated with 50 Gy in 
5 fractions or 60 Gy in 8 fractions. Although the two-year 
local control was 96% and median OS was 28 months, the 
grade ≥3 toxicity rate was 30%. Twelve patients experienced 
potential SBRT-related grade 5 toxicities, eight of whom 
had been previously diagnosed with interstitial lung disease.

These studies may be summatively analyzed. With the 
exception of the final investigation, which consisted of 
high-risk circumstances (for several reasons, not limited to 
the high proportion of patients with high-risk pre-existing 
lung disease), SBRT affords few higher-grade toxicities, 
estimated at 10% or less in the remaining series reported to 
date. However, a caveat to this statement is that the short 
follow-up in those series was insufficient to make definitive 
conclusions. Additionally, outcomes were certainly 
encouraging in all studies given that the vast majority of 
patients were medically inoperable, and not more than half 
received pathologic mediastinal assessment (34) (implying 
that a certain proportion were regionally and/or distantly 
metastatic at presentation). 

Additionally, clinicians must continue to weigh balances 
of tumor control and toxicities; the local control figures 
from available evidence were, for the most part, inferior 
to those of the “general” SBRT population (9,23). As a 
result, there is a theoretical merit to (safe) dose-escalation 
in these settings, especially since these patients suffering 
local/locoregional recurrences (most of whom remain 
medically inoperable) are difficult to salvage. Nevertheless, 
these decisions must be judiciously assessed based on tumor 
location and individual patient anatomy, together with risk 
factors for developing toxicities, which is further elaborated 
upon in the subsequent section.

Toxicity reduction strategies

The aforementioned studies, firstly, indicate that careful 
patient selection of SBRT for these circumstances is critical. 
Patients with interstitial lung disease and/or potentially 
even very poor pre-treatment lung function may not be 
optimal candidates for routine SBRT management, along 
with patients in the cited series with tumors 7–12 cm in size 
(recognizing that there is no established consensus “upper 
limit” regarding lesion size-based candidacy of SBRT). 
Nevertheless, strategies to deliver ablative dosing in these 

high-risk patients will be discussed subsequently. 
Although delivery of pre-SBRT chemotherapy and 

treating post-chemotherapy tumor volumes or performing 
re-simulation after initial RT delivery is possible for small 
cell lung cancer in efforts to decrease treatment volumes, 
such approaches are less likely to achieve meaningful 
treatment volume changes for large node-negative 
NSCLC lesions owing to the generally less rapid response 
of NSCLC to chemotherapy or RT. This may also risk 
delaying delivery of potentially curative SBRT, which may 
have detrimental impacts on survival.

Modifying dose/fractionation schemes is a logical step 
that is often employed when treating central NSCLC 
lesions. These include delivering 60 Gy in 8 fractions 
(biologically effective dose (BED) of 105 Gy, assuming an 
α/β of 10) based on data from VU Medical Center (35), and 
70 Gy in 10 fractions (BED of 119 Gy) per MD Anderson 
Cancer Center (36). Delivery of 60 Gy in 10 fractions (BED 
of 96 Gy) may also be quite safe but delivers a BED <100 Gy  
that may be associated with inferior local control (10,37). 

The only study to date comparing SBRT fractionation 
schemes specifically in ≥5 cm NSCLC lesions was a 
secondary analysis of a 92-patient multi-institutional  
study (38). Half of all patients received 3–5 SBRT fraction 
on consecutive days, and the other half received nondaily 
regimens [most commonly every other day (QOD)]. 
Baseline patient, tumor, and treatment characteristics were 
similar between both groups, and of note those receiving 
5 fractions were more likely to receive daily treatment 
and those receiving 3–4 fractions were more likely to 
receive QOD treatment. Crude rates of grade ≥2 adverse 
events were 43% in the daily cohort and just 7% in the 
QOD group (encompassing one case each of grades 2 and 
3 pneumonitis, and one instance of grade 3 dermatitis) 
(P<0.001); when plotted actuarially, freedom from grade ≥2 
toxicities favored the QOD patients (P=0.007).

Another strategy can be to utilize an element of inverse-
planned RT. Simultaneous integrated boosting is a 
technique that allows administration of different doses to 
separately defined volumes. This may carry utility in the 
lung SBRT setting by delivering a higher dose per fraction 
to gross disease, allowing the planning target volume (PTV) 
to receive a lower fractional dose (e.g., in 10 fractions, 
delivering 60–70 Gy to gross disease and 50–60 Gy to the 
PTV) (39).

Additionally, given that treatment volumes receiving 
prescription doses are reliant on respiratory excursion, 
creation of an integrated gross tumor volume (iGTV) 
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across all (generally 8–10) breathing phases may increase 
the overall volume treated. In efforts to decrease this, using 
breath-holding or gated techniques may be considered, in 
which the RT beam is not on continuously, but rather only 
when the tumor becomes “in-phase” with a predefined 
standard. Use of abdominal compression and/or voice 
coaching may also be used as adjunctive tools to limit 
excessive tumor movement with respiration (40). Although 
manipulation of margin length is uncommonly performed 
for lung SBRT (i.e., a 5 mm isotropic margin from the 
iGTV to PTV), it is also theoretically possible to decrease 
this (e.g., 3 mm) if precise image guidance is employed, 
especially with favorable tumor locations with little tumor 
excursion on respiration. However, when considering tumor 
volume expansion reductions, volumetric imaging (and not 
KV-KV imaging) is recommended (41), and consideration 
of an interplay effect with volumetric modulated arc therapy 
(VMAT) based treatments (42) as well as a potential for 
increased risk of microscopic tumor extension with larger 
tumors should be considered. 

Additionally, the risk of radiation pneumonitis based on 
dose-volume constraints should continue to be re-evaluated. 
Although specific dose constraints are dependent on the 
number of fractions (6), contemporary RTOG protocols 
(0618, 0813, and 0915) suggest that the V20 of the total 
lung should be kept below 10% (with <15% acceptable). 
However, this constraint remains the same for a wide 
variety of PTV sizes, which is not intuitive since lung dose-
volume parameters such as V20 are indirectly related to 
lesion size. Given the current lack of data, it is important to 
perform dosimetric analyses with novel methodologies such 
as machine learning algorithms (43) to better address these 
issues. Until further data are reported, however, stricter 
dose-volume constraints for patients with larger lesions 
should be considered in efforts to minimize the risk of 
radiation pneumonitis.

Lastly, there have been multiple reports of stereotactic 
body proton therapy (SBPT) for larger lung lesions, 
taking advantage of the characteristic Bragg peak of the 
heavy proton (44-47). These have encompassed a larger 
proportion of T2 tumors (including those 5 cm and greater), 
with 2-year local control 90% or higher and grade ≥3 
pneumonitis rates 10% or less. However, due to concerns 
of the interplay effect (48), most reports have delivered 
treatment with hypofractionated (non-ablative) doses, 
generally in 10 or more fractions. Although in a meta-
analysis proton therapy was associated with better survival 
and local control compared with photon-based SBRT in 

early stage NSCLC (49), it is likely that proton therapy may 
not have as large of a magnitude of benefit for early-stage 
NSCLC compared with locally advanced NSCLC (50-52). 
That being said, protons may provide proportionally greater 
benefits for larger early stage tumors that are at higher risk 
of toxicities, while maintaining administration of ablative 
or escalated doses, or even allowing for dose escalation for 
these larger tumors that have suboptimal local control with 
current photon dose-fractionation regimens.

Taken together, even in high-risk SBRT populations, 
there are many strategies to attempt to mitigate potential 
toxicities. Although these options are presented in parallel, 
performing multiple of the aforementioned maneuvers 
in the same patient may prove to be the safest approach 
while still allowing for ablative dosing, thus enhancing the 
therapeutic ratio.

Systemic therapy

From surgical series, node-negative NSCLC lesion size 
correlates with the rate of occult nodal positivity. Tumors 
<1, 1–2, 2–3, and >3 cm in size have pathologic node-
positive disease in 0–2%, 10–16%, 30–47%, and >57% 
of specimens, respectively (53,54). Although from the 
aforementioned studies of larger tumors, the rate of isolated 
nodal failure remains low (<10%), nodal involvement 
may provide a nidus for distant metastases, the dominant 
mode of relapse in these patients. Although prophylactic 
mediastinal RT in these circumstances is wholly unproven, 
systemic therapy represents an option to safeguard against 
the risk of nodal and metastatic disease.

Outcomes of larger NSCLC lesions in the postoperative 
setting will be briefly described, although caveats must 
be exercised when directly extrapolating these data to 
the SBRT setting. The LACE meta-analysis estimated 
the influence of postoperative chemotherapy by tumor 
stage; this revealed a statistically significant effect only for 
stages IIA and above (55). However, although IIA disease 
encompasses both node-negative and node-positive disease, 
the study did not separate outcomes by these factors 
(potentially related to the loss of statistical power by doing 
so). Furthermore, an unplanned subset analysis of the 
CALGB 9633 trial showed an OS benefit to postoperative 
chemotherapy in lesions ≥4 cm in size (56). Based on these 
two studies, national guidelines endorse considering post-
SBRT chemotherapy in tumors with high-risk features, 
including lymphovascular invasion, size ≥4 cm, visceral 
pleural invasion, and several other factors (6).
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However, direct evidence in the SBRT setting is lacking. 
There are two known reports evaluating this issue. An 
investigation from China showed an OS benefit with the 
addition of chemotherapy to T1–3 disease, but it did not 
show a difference in cancer-specific survival (57). Given 
the absence of a multivariable analysis in that retrospective 
study, both of those findings may be explained by “healthier” 
patients having received chemotherapy, especially 
recognizing that T1 disease is unlikely to reap significant 
benefits from chemotherapy.

A 201-patient analysis of the National Cancer Data Base 
partially rectified some of the aforementioned concerns, 
although that dataset records no information on cancer-
specific survival (33). That study specifically evaluated 
tumors ≥5 cm treated with SBRT; an increase in OS was 
demonstrated, along with an independent association on 
multivariable assessment. Although selection biases and 
availability of only OS are shortcomings to that publication, 
it may also be posited that patients receiving chemotherapy 
were likely of “higher-risk” to have justified the use of non-
standard treatment. These patients may have had higher-
risk surgery, lymphovascular invasion, or other factors that 
national recommendations deem as “high-risk” factors (6). 
Although these may predispose to worse outcomes with 
SBRT alone, the addition of chemotherapy did not equalize 
the survival curves but rather showed statistically significant 
improvement despite the potential presence of such poorer-
risk features.

A rapidly expanding form of systemic therapy that may 
be efficacious for these circumstances is immunotherapy. 
These compounds, which galvanize the de novo immune 
system to adopt more enhanced anti-tumoral phenotypes, 
have shown high efficacy in NSCLC and may allow for 
synergy with radiotherapy (58-60). Immunotherapy is 
attractive as an adjunct to SBRT because the primary mode 
of post-SBRT failure is distant, and since immunotherapy 
is often better tolerated compared with conventional 
cytotoxic chemotherapy for NSCLC (61). The specificity 
and increased tolerance of immunotherapy may thus benefit 
a highly comorbid, medically inoperable SBRT population. 
Clinical trials of immunotherapy with RT for NSCLC are 
expanding, and an ongoing trial from MD Anderson Cancer 
Center is evaluating combined nivolumab and SBRT for 
not only stage I NSCLC, but tumors ≥5 cm as well (62).

Concluding remarks

Amid the apprehension of delivering ablative RT doses 

to large volumes with SBRT, there are now multiple 
corroborative studies that demonstrate the safety and 
efficacy of doing so. Several strategies can be considered 
in an attempt to reduce the risk of high-grade toxicities 
following SBRT to these large tumor volumes. The role of 
post-SBRT systemic therapy is also continuing to evolve, 
with increasing interest in immunotherapy. Although 
surgery currently remains the standard of care for early-
stage NSCLC, and it is likely of proportionally greater 
benefit for ≥5 cm tumors (owing to the higher propensity 
for these tumors to have microscopic parenchymal spread 
that would be resected with surgery, the higher propensity 
for these tumors to have lymphatic spread that would be 
dissected with surgery, and the more limited long-term 
local control for these larger lesions following SBRT 
compared with smaller lesions), there is now a considerably 
higher evidence base for utilizing ablative RT in medically 
inoperable patients than existed even just a few years ago.
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