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Introduction

Ground-glass nodules (GGNs) on computed tomography 
(CT) are hazy lesions that do not obscure underlying bronchial 
structures or pulmonary vessels. GGNs are manifestations of 
both malignant and benign lesions, such as focal interstitial 
fibrosis, inflammation, or hemorrhage (1). However, slowly 
growing or stable GGNs are early lung cancers or their 
preinvasive lesions, atypical adenomatous hyperplasia (AAH) 
or adenocarcinoma in situ (AIS). AAH, AIS, and lepidic 
predominant lung adenocarcinomas grow along preexisting 
alveolar structures (2), which maintain the air space. Therefore, 

these lesions appear as GGNs on CT. GGNs are classified into 
pure GGNs and part-solid GGNs that have both ground-glass 
and solid components (Figure 1A). 

We previously reviewed the pathological features and natural 
history of the GGN (3). The proportion of solid components 
of GGNs is closely related to pathological invasive lesions. 
The longest diameter of consolidation/longest diameter 
of tumor ratio (C/T ratio) is commonly used to evaluate 
the proportion of ground-glass components (Figure 1B).  
Empirically, C/T ratio ≤0.5 has been suggested as a benchmark 
for pathological invasiveness because the incidence of lymph 
node metastasis in ≤3 cm GGNs with C/T ratio >0.5 ranges 
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from 21% to 26% (4-6). Solid components of GGN on CT 
often contain pathologically invasive parts when analyzed 
under a microscope. Typically, AAH and AIS present as pure 
GGNs on CT, whereas minimally invasive adenocarcinoma 
(MIA) and lepidic invasive adenocarcinoma present as part-
solid GGNs. Some GGNs exhibit gradual growth, but others 
remain unchanged for years.

We collected recent reports analyzing more than 100 
GGNs with information on smoking history (7-15) (Table 1). 
In total, approximately 60% of GGNs are found in never-
smokers. Although there is some inconsistency regarding 
the incidence of smoking status, 8 of 9 articles reported that 
GGNs are detected more often in never-smokers. Thus, GGN 
can be regarded as one of the features of lung cancer in never-
smokers. In this review, we have updated recent data on GGNs 
in terms of smoking and genetic alterations to gain insights 
into the biological features of lung cancer progression and to 
suggest clinical management strategies for GGNs.

Follow-up period of GGN

Although GGNs often remain stable without growth for 
years, about 20% of pure GGNs and 40% of part-solid 
GGNs gradually grew or increased their solid components 

in our recent review summarizing four reports (3). We 
suggested that 3-year follow-up was a reasonable benchmark 
to distinguish these lesions based on the volume-doubling 
times of GGNs (9). In 2016, Kakinuma et al. reported 
more extensive results of a Japanese prospective multi-
institutional study (13). A total of 795 patients with 1,229 
GGNs were assessed, and the mean follow-up period was 
4.3 years. In addition to pure GGN and part-solid GGN, 
the authors defined heterogeneous GGN as a GGN with 
solid components only in the lung window but not in the 
mediastinal window setting. The 2-mm growth probabilities 
at 5 years were 14%, 24%, and 48% for pure, heterogeneous, 
and part-solid GGNs, respectively. These data are similar 
to the combined data in our review article (3). However, 
notably, some GGNs began to grow even after the 3-year 
follow-up. Based on these prospective data, the minimum 
follow-up period was extended from 3 to 5 years in the 
updated Fleischner Society guidelines in 2017 (16).

Predictors of GGN growth

Previously reported predictors and statistical concerns

It would be useful if we could predict which GGNs would 

Figure 1 Representative computed tomography images of pure and part-solid GGN and the definition of the consolidation/tumor (C/T) 
ratio. GGN, ground-glass nodule.
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grow and which GGNs would remain stable without any 
change. Lesion diameter and past history of lung cancer 
were reported as predictors for the growth of GGNs 
(7,8,11) (Figure 2). However, statistical analyses of the 
growth of GGNs are subject to two major concerns. First, 
some patients have synchronous multiple GGNs. When all 
GGNs are independently counted, patient characteristics, 
such as gender or smoking status, are overweighed because 
of double-counting. Second, the definition of “no-growth” 
as an outcome is difficult because GGNs without growth 
for a given period might begin to grow afterwards. 

Influence of smoking on GGN growth

We conducted two independent analyses considering the 
above concerns (17). First, the “time to 2-mm growth” was 
assessed for each lesion, and univariate and multivariate 
analyses using the Cox proportional hazards model were 
performed. To avoid possible biases in the case with 
multiple lesions, we performed a subsequent subanalysis 
dealing with only the largest lesion per patient. Next, the 
“incidence of 2-mm growth” was defined as an outcome, 
and univariate and multivariate analyses using the logistic 
regression model were performed. To strictly define “no-
growth”, we excluded lesions that had been observed for 
<3 years based on our previous report (9). Based on the 
consistent results of these statistical analyses, we found that 

smoking, in addition to larger diameter, is a novel predictor 
of growth (17) (Figure 2). 

Considering that GGNs are found more often in never-
smokers, smoking history as a predictor of growth seems 
to be paradoxical. We collected recent reports describing 
smoking status and GGN growth (7,8,10,12,15,17) (Figure 3).  
Combined data from six articles showed that frequency 
of GGN growth based on data about “growth” or “no-
growth” was significantly higher in smokers than that in 
never-smokers (26% versus 18%, P=0.0045). Among the six 
articles, 3 reported frequencies of GGN growth at 2, 3, or 5 
years based on data on “time to growth” (11,13,17) (Figure 3).  
All data consistently showed that GGNs in smokers were 
more likely to grow than those in never-smokers. Notably, a 
prospective multi-institutional study also reported that lesion 
size and smoking history were factors for growth toward the 
appearance of solid components by multivariate analysis, 
although lesion size and male gender were predictors for 
2-mm growth (13). Male gender and smoking were closely 
correlated in our previous analysis (17). Although it is not 
clear whether smoking cessation after diagnosis of GGN 
changes the clinical behavior of these GGNs, smoking 
cessation should be emphasized in this situation as well.

In addition to GGN growth, there is an interesting 
report about the influence of smoking on the new 
appearance of GGNs. Remy-Jardin et al. examined growth 
changes in 111 subjects who had undergone sequential CT 

Table 1 Smoking status and gender in patients with pulmonary ground-glass nodules

Author 
(reference)

Year GGNs Patients

Smoking status Gender

Non-smokers Smokers Unknown Female Male

Number % Number % Number % Number % Number %

Hiramatsu (7) 2008 125 125 58 46 41 33 26 21 74 59 51 41

Chang (8) 2013 122 89 30 34 59 66 – – 16 18 73 82

Kobayashi (9) 2013 108 61 40 66 19 31 2 3 39 64 22 36

Lee (10) 2013 175 114 63 55 51 45 – – 45 39 69 61

Matsuguma (11) 2013 174* 171 95 56 56 33 23 13 103 60 71 42

Cho (12) 2016 453 218 125 57 84 39 9 4 110 50 108 50

Kakinuma (13) 2016 1229 795 474 60 317 40 4 0 454 57 341 43

Lee (14) 2016 213 213 143 67 59 28 11 5 141 66 72 34

Sato (15) 2017 187 187 125 67 62 33 – – 118 63 69 37

Total – – 1,973 1,153 58 748 38 75 4 1,100 56 876 44

*, only numbers of nodules are linked to information about smoking and gender.
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Figure 2 Summary of predictors for the growth of GGNs (7,8,11,13,17,18). *1: pure GGNs and part-solid GGNs; *2: changes in the 
appearance of the solid component is defined as the outcome. NE, not evaluated; PH, past history; GGN, ground-glass nodule.

Figure 3 Frequencies of GGN growth in smokers and never-smokers (7,8,10-13,15,17). Previous studies evaluated frequencies of GGN 
growth via two independent analyses. First, “growth” or “no-growth” was used as an outcome. Combined data from six studies were 
compared using Chi-square test (A). Second, “time to growth” was used as an outcome and growth rates were estimated using the Kaplan-
Meier method. In reference 13, in addition to pure GGN and part-solid GGN, the authors defined heterogeneous GGN as a GGN with 
solid components only in the lung window but not in the mediastinal window setting (B). GGN, ground-glass nodule.
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examinations over a mean period of 5.5 years. GGNs were 
detected in 28% of current smokers by initial evaluations. 
Interestingly, final evaluations detected GGNs in 42% 
of persistent current smokers (P=0.02). In contrast, the 
frequencies of GGNs upon initial and final evaluations were 
not significantly different in never-smokers (19). These data 
indicate that a subset of GGNs may be newly developed 
due to chronic exposure to smoking. 

Smoking is thought to cause cancer by inducing DNA 
damage, which leads to somatic mutations in cancer-related 
genes. Alexandrov et al. collected data on somatic mutations 
in 5,243 cancers from the Cancer Genome Atlas (TCGA), 
the International Cancer Genome Consortium (ICGC), 
and 17 other articles to reveal the association between 
mutational signatures and tobacco smoking (20). In analyses 
of samples with information about cumulative exposure to 
smoking, the total numbers of base substitution mutations 

were positively correlated with pack-years smoked. For lung 
adenocarcinoma, the authors estimated that approximately 
150 mutations accumulated per genome per pack-year (20).  
Considering these data, cumulative mutations due to 
smoking may induce GGN growth.

The association between genetic alterations and GGN 
growth

EGFR mutation
Previous studies revealed that the lesion diameter and smoking 
(or male gender) were predictors for the growth of GGNs 
as described above (13,17). However, the genetic differences 
among GGNs with or without growth remain unclear.

Thus, we conducted genetic analyses of surgically 
resected GGNs (18). Genetic alterations in the EGFR, 
KRAS, ALK, and HER2 genes were evaluated in 104 
GGNs, and all lesions were categorized as EGFR-, KRAS-,  
ALK-, or HER2-positive or quadruple-negative because 
of mutually exclusive relationships among driver gene 
mutations. The frequencies of EGFR, KRAS, ALK, and 
HER2 mutations were 64%, 4%, 3%, and 4%, respectively. 
To the best of our knowledge, this study is the only study 
to analyze the association between genetic alterations of 
GGNs and their growth. Our study demonstrated that 
EGFR mutation positivity (EGFR+) was significantly 
associated with growth, whereas a quadruple-negative status 
was associated with no-growth (Figure 4). This finding is 
also supported by the result that a quadruple-negative status 
is associated with pathological noninvasiveness.

Clinical characteristics of patients with EGFR mutation 
and those with GGNs seem to be similar because EGFR+ 
GGNs account for the majority of all GGNs. As we 
summarized in Table 1, GGNs are found more in non-
smokers and female. Considering that pathological features 
of GGNs are adenocarcinoma or its preinvasive lesions, 
GGNs and EGFR mutation share the same features: non-
smoker, female, and adenocarcinoma. Regarding ethical 
differences, it could be suspected that GGNs, especially 
EGFR-mutant GGNs, may be found more in East Asian 
than in others although there are no data.

KRAS mutation
Although the general incidence of KRAS mutations of 
lung adenocarcinomas in Caucasians is approximately 26% 
(670/2,529), KRAS mutations tend to occur more frequently 
in smokers (34%) than in never-smokers (6%) (21).  
In Asians KRAS mutations were detected in only 8% 

Figure 4 Hypotheses for the progression of preinvasive 
adenocarcinoma showing as a GGN. Hypothesis 1 suggests that 
smoking exposure induces a mutation burden, which contributes 
to the growth of the GGN. According to hypothesis 2, EGFR 
mutation-positive AAHs gradually grow, whereas driver mutation-
negative AAHs do not progress. Among KRAS-mutant AAH, only 
those derived from surfactant protein C+ alveolar type II cells may 
progress to invasive adenocarcinoma. Hypothesis 3 suggests that 
progression to invasive adenocarcinoma is induced by an initial 
stimulation by BRAF or KRAS mutations and the subsequent 
secondary mutations. GGN, ground-glass nodule; AAH, atypical 
adenomatous hyperplasia.
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(429/5,125) in all cases (22).
When Sakamoto et al. examined KRAS mutations 

in various stages of preinvasive lesions and invasive 
adenocarcinoma, most KRAS-mutated tumors were 
categorized into AAH: the incidences of KRAS mutations 
were 33%, 12%, and 8% in AAH, AIS, and MIA, respectively 
(23). A similar trend was observed in another study, with 
KRAS detection rates of 27%, 17%, and 10% in each of the 
above stages of adenocarcinoma (24). Considering that the 
overall frequency of KRAS mutations in lung adenocarcinoma 
is limited to 13% (25), these findings cannot be explained 
without assuming that some tumors and preneoplastic lesions 
with KRAS mutations undergo spontaneous regression. This 
hypothesis was originally suggested by Yatabe et al. (26). One 
possible mechanism may be associated with the dual role of 
KRAS. Oncogenic Ras has been shown to cause senescence 
through the activation of the p53-p21 WAF and p16INK4A-
Retinoblastoma tumor-suppressor pathways (27,28). Another 
potential explanation is that not all KRAS mutant AAHs are 
same and the differences are derived from the cells of origin. 
In analyses using genetically engineered mouse models, 
not all KRAS-mutant lung cells are equally permissive 
to transformation: only surfactant protein C+ alveolar 
type II cells are able to sustain KRAS-driven formation of 
AAH, whereas some of which progress to adenomas and 
malignant adenocarcinomas regardless of surrounding 
microenvironment or inflammatory stimulation (29,30). 
Additionally, the transcriptional analysis of KRAS-expressing 
AAH in vivo reveals that only a fraction retains the signature 
of advanced lung adenocarcinoma, whereas the others show 
a transcriptional profiling comparable to normal alveolar 
cells (31). In clinical and radiological aspects, KRAS-mutant 
GGNs on CT image seem to be very similar or identical. 
However, the origins of these nodules may not be identical, 
and this difference could cause different biological behavior: 
some gradually grow and others remain unchanged or 
disappear.

This seemingly paradoxical observation that KRAS 
mutation is more common in AAH than in invasive 
adenocarcinoma is in accordance with recent reports 
by Sivakumar et al. and Sato et al. (32). Sivakumar et al. 
analyzed normal tissue, AAH, and invasive adenocarcinoma 
from the same patients to assess progression of lung 
adenocarcinoma. Undeniably, these comparisons did not 
directly reflect the progression of lung cancer because 
the discordance rate of driver mutations between invasive 
adenocarcinoma and paired synchronous GGNs in the same 
patient was 80% (24/30) (33). Yet, KRAS mutations were 

detected in as many as 24% (4/17) of AAHs. Sato et al. also 
reported a relatively high frequency of KRAS mutations in 
Japanese patients with GGNs. KRAS mutations in codon 12 
were detected in 17% (5/30) of resected GGNs (15). These 
data suggest that not all KRAS mutation-positive AAHs 
progress to more advanced adenocarcinomas (Figure 4).

BRAF mutation
BRAF mutations are detected in approximately 3% (18/687) of 
lung adenocarcinomas in Caucasians, and the V600E mutation 
accounts for approximately 50% of these tumors (34). BRAF 
mutations are categorized into 3 classes (35). Class 1 BRAF 
mutants (BRAF V600 mutations) are RAS-independent and 
activated as monomers. Class 2 mutants are RAS-independent 
and activated as dimers. Class 3 mutants are RAS-dependent 
and have impaired kinase activity, in other words, they are 
kinase-dead. Similar to the low frequency of KRAS mutations 
in Asians, BRAF mutations were detected in only 0.5% 
(26/5,125) of Asians (22).

In the above-mentioned study by Sivakumar et al., 
the frequencies of EGFR, KRAS, and BRAF mutations in 
invasive adenocarcinoma were 47% (8/17), 6% (1/17), and 
0%, respectively. However, the BRAF+ rate in AAHs was as 
high as 29% (5/17) (32). Four of the five AAHs exhibited 
BRAF K601E mutation, and the other AAH harbored 
BRAF N581S mutation. These mutations belong to class 
2 and class 3, respectively. These non-V600E mutations 
have been previously noted in lung cancer (36,37) and 
demonstrated to be oncogenic drivers (38). Sivakumar et al. 
hypothesized that progression to invasive adenocarcinoma 
is induced by an initial stimulation by the BRAF or KRAS 
mutations and the subsequent secondary mutations (32). 
Although this hypothesis is interesting, there must be an 
advantage to lose the mutated allele during progression in 
these cases. In other words, KRAS or BRAF are not acting as 
driver oncogenes. Confirmation of this hypothesis through 
analyses of sequential biopsied samples is essential.

Similar to AAHs with KRAS mutations, not all BRAF-
mutated AAHs develop into invasive adenocarcinomas. The 
similar roles of KRAS and BRAF in the mitogen-activated 
protein kinase (MAPK) pathway might be associated with 
this phenomenon. 

Timing of surgery for GGN

The criteria of surgery for GGNs vary depending on the 
guideline. According to the guidelines of the American 
College of Chest Physicians, surgical resection is 
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Figure 5 Computed tomography images and pathological features of representative pure GGN. (A) Pure GGN was detected in a 49-year-
old male with previous smoking history of 4 pack years; This GGN slowly increased in diameter without appearance of solid components; (B) 
tumor-doubling time was 1,140 days; (C) segmentectomy was performed in 2015 after 12-years of follow-up. This tumor was diagnosed as 
adenocarcinoma in situ (hematoxylin-eosin staining, ×40). GGN, ground-glass nodule.

recommended for GGNs that meet any of the following 
conditions: any GGN with growth or the development of 
solid components, pure GGNs >10 mm with confirmed 
persistence, part-solid GGNs >8 mm with confirmed 
persistence, or part-solid GGNs >15 mm without follow-
up (39). The Fleischner Society recommends that pure 
GGNs with the development of solid components or grow 
and persistent part-solid nodules with solid components ≥6 
mm should be resected (16). 

However, it is doubtful whether immediate surgery is 
necessary for all GGNs showing growth. In our case with 
pure GGN, segmentectomy was performed after 12 years’ 
follow-up. Although the GGN had continued to grow for 
12 years, tumor-doubling time was as long as 1,140 days and 
pathological diagnosis revealed that it was still AIS without 
invasive lesions (Figure 5). It is unclear when this type of tumor 
begins to invade surrounding structures and threaten patient’s 

life and whether surgery is really necessary. Therefore, the 
balance between the benefits of surgery and life expectancy 
should be considered particularly in elderly patients.

Extent of surgery for GGN

A Clinical trial on radiological criteria

A prospective multi-institutional study was conducted 
by the Japan Clinical Oncology Group (JCOG) to 
identify radiological criteria that predict the pathologic 
noninvasiveness of clinical IA lung cancer arising in the 
periphery of the lung (JCOG 0201) (40). The consolidation/
tumor ratio (C/T ratio) was used to evaluate the proportion 
of the ground-glass component. This study revealed that 
the specificities for the diagnosis of pathological non-
invasiveness were 96.4% and 98.7% for lesions ≤3 cm with 
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a C/T ratio ≤0.5 (>50% ground-glass component) and 
lesions ≤2 cm with a C/T ratio ≤0.25 (>75% ground-glass 
component), respectively (40).

The long-term survival rate of patients in the JCOG 0201 
trial who underwent lobectomy and lymph node dissection 
was reported. The overall and relapse-free 5-year survival 
rates of all the patients were 90.6% and 84.7%, respectively. 
When a lesion size ≤3 cm with a C/T ratio ≤0.5 was used 
as a cutoff, the 5-year overall survival rates of radiological 
noninvasive and invasive adenocarcinomas were 96.7% and 
88.9%, respectively (P<0.001). With the use of lesions ≤2 
cm with C/T ratios ≤0.25, the 5-year overall survival rates of 
radiological noninvasive and invasive adenocarcinomas were 
97.1% and 92.4%, respectively (P=0.259) (41).

Clinical trials on limited surgery for GGNs

Although the standard treatment for operable non-small 
cell lung cancer is lobectomy with dissection of ipsilateral 
hilar and mediastinal lymph nodes (42), retrospective data 
support the efficacy and less invasive nature of limited 
surgery such as segmentectomy or wedge resection for 
GGNs. Based on the results of the JCOG 0201 study, three 
clinical trials evaluating the efficacy of limited surgery 

were conducted (Figure 6). JCOG 0802 is a phase III trial 
comparing lobectomy and segmentectomy for lung cancer 
≤2 cm with C/T ratio >0.5 (43), which is similar to the 
Cancer and Leukemia Group B (CALGB) 140503 trial 
in the United States (44). JCOG 0804 is a phase III non-
randomized confirmatory study of wedge resection for lung 
cancer ≤2 cm with a C/T ratio ≤0.25 (45). JCOG 1211 is 
a confirmatory Phase III trial of segmentectomy for lung 
cancer ≤3 cm with a C/T ratio ≤0.5 (46).

The results of JCOG 0804 were presented in ASCO 
2017 (47). The surgical procedure is basically set as wedge 
resection, but segmentectomy is allowed when the surgical 
margin is insufficient (<5 mm) or when the tumor is 
histologically invasive. The 5-year recurrence-free survival 
was 99.7%, which met the primary endpoint, and no local 
relapse was noted.

The TNM classification was revised in 2017. Regarding 
the measurement of a GGN, the diameter of the solid 
component within the part-solid nodule on CT instead of 
the whole tumor size should be measured for staging (48). 
The application of the results of the JCOG trials to the 
8th TNM classification is somewhat complicated because 
the JCOG trials measure the C/T ratio while the TNM 
classification addresses the direct measurement of the solid 
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component (Figure 6).

Conclusions

Recent clinical and genetic data mark the beginning of 
elucidating biological aspects of GGNs. GGNs are often 
found in never-smokers, but smoking is a predictor of 
growth. In terms of genetic alterations, EGFR mutation, 
which is associated with never-smokers, is also a predictor 
of growth, whereas a subset of GGNs with smoke-related 
KRAS or BRAF mutations may undergo spontaneous 
regression. Additionally, driver mutation-negative 
GGNs tend to remain unchanged. Although these data 
superficially appear paradoxical, further genetic analyses 
and clinical trials could contribute to deeper understanding 
of preinvasive adenocarcinoma and the development of less 
invasive management strategies for GGNs.
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