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Introduction

Molecular targeted therapy against mutated driver 
oncogenes such as epidermal growth factor receptor 
(EGFR) or anaplastic lymphoma kinase (ALK) dramatically 
improved the outcome of patients with non-small cell lung 
cancer (NSCLC) (1,2). However, the prognosis is not yet 
satisfactory. One of the most significant causes for poor 
prognosis and quality of life (QOL) in advanced NSCLC 
is brain metastases (3). According to the literature, the 
major prognostic factors affecting the treatment outcome 

in patients with metastatic NSCLC include age, time from 
diagnosis, and the location and extension of the intracranial 
disease (4-7).

About 40–50% of the brain metastases originate from 
systemic lung cancers. Conversely, approximately 10–20% 
of NSCLC patients present with brain metastases at 
diagnosis (8,9). NSCLC with brain metastases has a poor 
overall survival (OS) (10). Two-thirds of brain metastases 
present with multiple lesions while remaining one-third 
present with solitary lesions. Major sites of NSCLC brain 
metastases are the cerebrum (80%), cerebellum (15%), and 
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the brain stem (5%) (11). NSCLC patients with EGFR/
ALK mutations appear to have a higher incidence (50–60%) 
of brain metastasis (12-15). In contrast, NSCLC with ROS1 
translocations is reported to have a lower incidence (33%) 
of brain metastasis compared to that with EGFR/ALK (16).

The efficacy of platinum doublet chemotherapy 
(carboplatin and paclitaxel) which is the conventional 
treatment option is generally low (20%) (17). However, 
newer agents such as cisplatin + pemetrexed or carboplatin, 
paclitaxel plus bevacizumab showed better intracranial 
response rate [42% (18) and 61% (19), respectively] in the 
phase 2 trials. The standard of care for the treatment of 
NSCLC patients with a limited number of brain metastases 
has been local therapy either by surgical resection, whole-
brain irradiation, and stereotactic radiosurgery (SRS). 
However, the newly developed tyrosine kinase inhibitors 
(TKIs) such as osimertinib or alectinib that can efficiently 
penetrate the blood-brain barrier (BBB) have demonstrated 
remarkable intracranial activity. Furthermore, the overall 
improvement of survival outcome for NSCLC patients 
increases the chances of developing cognitive dysfunctions 
induced by radiation. This further emphasizes the advantage 
of systemic treatment with targeted therapies over radiation 
therapies (12,13).

While developing new strategies to improve patient care 
in NSCLC, it is important to understand why oncogene-
driven NSCLC have a high incidence of brain metastases. 
Further, the molecular mechanisms that lead to the 
development of brain metastases need to be identified. In 
addition, it is important to develop a treatment strategy 
that utilizes an ideal balance of targeted therapeutics that 
cannot penetrate the BBB and those that can cross the BBB 
for providing the best possible management of the disease 
without the risk of developing new brain lesions.

In this review, we describe the epidemiology and 
molecular background of brain metastases in driver-
oncogene positive NSCLC. We also discuss what we 
have learned from the first-generation TKIs and how this 
has helped us develop the second and third-generation 
TKIs with improved BBB penetration capabilities for the 
management of brain metastases.

Mechanisms underlying brain metastasis

Development of clinical cancer metastases is a multistep 
process starting from an asymptomatic micrometastases 
initiating from single cancer cell colonization followed 
by invasion or extravasation leading to the development 

of symptomatic macro-metastases through proliferation, 
angiogenesis, and interaction with the microenvironment (20).  
Metastasis to the brain, unlike metastasis to other distal 
organ sites, involves the breach of the BBB, which is a 
physical, metabolic, and chemical separation of the blood 
and the cerebrospinal fluid in the central nervous system 
(CNS). The BBB is made up of endothelial cells connected 
via tight junctions, the basement membrane, pericytes, 
astrocytic foot process, and the transporter systems. The 
transporter systems consist of proteins, such as the ATP-
binding cassette efflux-transporters (ABC-transporter), 
including the breast cancer resistance protein (BRCP) 
and the multidrug-resistant proteins [MDR; MDR-1 also 
known as P glycoprotein (P-gp)] (21-29). The BBB restricts 
the diffusion of microorganisms, pathogens, and toxins, as it 
obstructs the entry of particles which are over 500 Daltons. 
Interestingly, some cancer cells can cross the BBB through 
specific mediators.

In most brain metastases, the BBB is disrupted and 
appears to be different from the normal healthy BBB (30-33).  
The extent of BBB disruption is a key factor that affects 
the entry of anti-cancer agents into the CNS. Efficient 
treatment requires attaining targetable drug concentrations 
in the CNS. Therefore, effective control of brain lesions 
requires efficient drug delivery across the BBB.

Two main strategies used for efficient drug delivery 
across the BBB are chemical modifications of drugs to 
inhibit efflux-transporters and allow BBB penetration. It 
was reported that an mTOR/PI3K inhibitor (GNE-317) 
modified to bypass P-gp and BRCP activation improved 
treatment outcome in brain metastasis. In addition, it was 
also shown that agents that can penetrate the BBB controlled 
brain dormant cancer cells, other distal metastases, and brain 
lesions, while agents that cannot penetrate the BBB were not 
able to control brain lesions (34-37).

EGFR-driven NSCLCs

EGFR is a receptor tyrosine kinase receptor that normally 
activates several downstream pathways upon binding to the 
ligands such as EGF, or TGF-α. In NSCLC with mutated 
EGFR, the pathway is activated without ligand binding, 
and this activation facilitates survival and proliferation of 
cancer cells (38). Based on the results from the IPASS trial 
and several other clinical trials that selected patients based 
on the presence of EGFR mutations such as NEJ002 or 
WJTOG3405 (39-41), EGFR-TKI monotherapy has been 
established as the standard first-line treatment for these 
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patients. However, life-time incidence of brain metastases 
in NSCLC patients with EGFR mutation is reported to 
be higher compared to those with wild-type EGFR (70% 
in EGFR+, 38% in EGFR−) (42). It is also noteworthy 
that 1 out of 3 EGFR+ NSCLC patients develops brain 
metastasis during their clinical course (43). The secondary 
mutation of the EGFR gene resulting in the substitution 
of threonine 790 to methionine (T790M) that has lower 
affinity to gefitinib/erlotinib and higher affinity to ATP (44)  
is responsible for acquired resistance in about 50% of the 
cases. However, brain metastases usually do nor harbor 
T790M, and the emergence of the cancer cells in the CNS 
is due to an insufficient concentration of EGFR-TKI, often 
referred to as pharmacokinetic resistance.

Among the 1st generation EGFR-TKIs, erlotinib has 
relatively better BBB penetration capabilities compared to 
gefitinib (Table 1) (14,43-51). In some patients who develop 
brain metastases/leptomeningeal disease after gefitinib 
treatment, switching to erlotinib results in intracranial 
tumor shrinkage or symptom alleviation. However, the 
effect is usually transient (52-60). Pulsatile high-dosing and 
dose-escalation of erlotinib were also shown to achieve more 
effective control of brain metastases (59), with limited efficacy.

In contrast ,  the third-generat ion EGFR-TKI, 
osimertinib much more efficiently penetrated the BBB (58) 
(Table 1). A subset analysis of the results from the FLAURA 
trials that compared osimertinib with gefitinib or erlotinib 
as the first-line treatment of EGFR+ patients showed 
that CNS progression-free survival with osimertinib was 
significantly better [hazard ratio (HR) 0.48; 95% CI: 0.26–
0.86] with manageable adverse effects (59,60).

ALK fusion-positive NSCLC

Patients with gene rearrangement in the ALK gene are also 
known to have a higher risk of brain metastases—23.8% at 
initial evaluation. The cumulative incidence of brain metastasis 
after diagnosis will sum up to 58.4% 3 years later (61).

Currently, there are five ALK-TKIs that are approved by 
the FDA for ALK-positive NSCLC, namely crizotinib (1st 
generation), alectinib, ceritinib, brigatinib (2nd generation), 
and lorlatinib (3rd generation). It is noteworthy that up to 
74% of those who were treated with crizotinib develop 
brain metastases (62). The 2nd generation TKIs have a 
better ability to penetrate the BBB and control brain 
metastases compared to crizotinib (Table 1). The ALEX trial 
revealed alectinib had 81% of intracranial response toward 
previously untreated brain metastases, while the response 
rate of crizotinib was 50%. High intracranial responses were 
also obtained either with ceritinib (45%) (63) and brigatinib 
(42–67%) (61,64), in patients with recurrence after first-
line treatment with crizotinib. Among the TKIs, the 2nd 
generation ALK-TKIs showed better survival at the front-
line compared to crizotinib (65-67). The 2nd generation 
ALK-TKI intracranial ORR was also reported to be almost 
2 to 3 times higher than that of the 1st generation TKI, 
crizotinib (68) and are now positioned as front-line drugs 
in NSCLC with brain metastases. Similar to that with the 
erlotinib, alectinib dose-escalation therapy achieved ALK 
inhibition and is awaiting clinical approval (69). The 3rd 
generation ALK-TKI, lorlatinib also demonstrated 42–48% 
intracranial response in patients with recurrence after first-
line crizotinib (51). The sequence in which ALK-TKIs 
are to be used for effective disease control needs further 
evaluation. Further studies on the effectiveness of the ALK-
TKIs in controlling oligo-recurrence or oligo-progression 
(one or a few lesions) in the brain should be conducted.

ROS1 and beyond

For NSCLC patients with ROS1-rearrangement (1–2% of 

Table 1 Blood-brain barrier (BBB) penetration capabilities of 
EGFR- and ALK-TKIs in human

TKIs Penetration (CSF/blood)

EGFR-TKIs

Gefitinib 1.1% (43)

Erlotinib 2.8% (43)

Afatinib 1.7% (44)

Osimertinib

160 mg 16% (45)

80 mg 2.0% (46)

ALK-TKIs

Crizotinib 0.26% (47)

Ceritinib No human data [animal model: 15% (48)]

Alectinib No human data [animal model: 63–94% 
(49)]

Brigatinib No human nor animal data

Lorlatinib 75% (50)

EGFR, epidermal growth factor receptor; ALK, anaplastic 
lymphoma kinase; TKI, tyrosine kinase inhibitor; CSF, 
cerebrospinal fluid.
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all NSCLC), the standard first-line treatment is crizotinib  
(70-72). As the pivotal trial did not capture CNS metastasis 
in the database, there is no separate analysis of intracranial-
overall response rate. Several early phase studies have 
suggested the potentially improved intracranial activity of 
next-generation ROS1-targeted therapies, including ceritinib, 
entrectinib, and lorlatinib, although only a small number of 
patients were included because of the rarity of this type of 
NSCLC. Among these TKIs, lorlatinib appears to have the 
most promising treatment effects in both crizotinib-naïve and 
-resistant ROS1-positive patients (73,74).

BRAF  mutation and NTRK  fusion are emerging 
molecular targets in NSCLC. The combination of 
dabrafenib, BRAF inhibitor, and trametinib, a MEK 
inhibitor, was approved for the treatment of NSCLC with 
BRAF mutations and larotrectinib, a TRK inhibitor, was 
approved for use in NSCLC with NTRK fusion. However, 
information about brain metastases in these tumors is 
lacking because of the rarity of these tumors (75-77).

Radiotherapy

Irradiation to tumor cell triggers mitotic cell death, 
apoptosis, autophagy, and senescence (78,79). Brain 
metastases are traditionally treated by whole-brain radiation 
therapy (WBRT) (a total dose of 30 Gy in 10 daily fractions 
of 3 Gy). WBRT may improve neurological symptoms 
from brain metastasis (with approximately 70–90%), and its 
intracranial control rate is known to be approximately 40–
60%. There is a continuing discussion on whether WBRT 
improves QOL, and survival (80-83). On the other hand, 
SRS or stereotactic radiotherapy (SRT) use scattered γ rays 
or high-energy X-ray, respectively, converging on the target 
to effectively kill tumor cells, induce apoptosis of endothelial 
cells and lead to tumor radio-sensitization, maximizing 
the protection of tumor peripheral tissues to increase 
local control and microscopic tumor infiltration, while 
reducing the risks of neurocognitive side effects compared 
to WBRT. Radionecrosis is still a challenging complication 
to manage (19,84,85). SRS/SRT is now considered as 
a standard treatment for patients with brain metastasis 
when the total volume is low enough, and the number 
is limited (86). Combination of WBRT and SRS/SRT is 
not recommended because it does not improve survival 
benefits but increases neurocognitive deficits (87-89).  
In order to prevent and reduce neurocognitive decline, 
the use of memantine (90,91) and Hippocampal-sparing 

radiation (92) is under investigation.
A meta-analysis on 12 observational studies that 

evaluated CNS response rate and 2-year OS in patients with 
EGFR mutation-positive NSCLC with brain metastases 
revealed that radiotherapy (SRS and WBRT) improved 
the OS by 2 years. Furthermore, it showed similar CNS 
response rate as that of the 1st generation EGFR-TKIs 
for the initial intervention but also resulted in more 
frequent adverse effects (93). On the other hand, a couple 
of retrospective studies have suggested that postponing 
radiotherapy for brain metastasis in EGFR mutation-
positive NSCLC results in a poor outcome (94,95). In 
cases with disease progression in CNS after treatment with 
1st or 2nd generation EGFR-TKIs, consider switching to 
osimertinib if T790M mutation is detected in any other site 
or lesion. If there are no extracranial progressive lesions 
for re-biopsy to prove T790M mutation, and if there is no 
need for neurosurgical intervention, local radiation therapy 
by SRS/SRT or WBRT for oligo or multiple metastases, 
respectively, to control brain metastases (holding TKI 
until radiation is completed) with continued treatment 
with EGFR-TKIs is recommended (Figure 1). Moreover, 
EGFR-TKIs and concurrent WBRT seems to have good 
tumor control ability (96) but increase the risk of potential 
cognitive complications (97).

Neurosurgical resection of NSCLC brain 
metastases

Surgical resection of the metastatic brain tumors has been 
another effective local treatment. Surgery is especially 
indicated when the brain lesion is large, and a patient is 
symptomatic due to elevated intracranial hypertension, and 
the tumor is preferably located in a non-functional region. 
Postoperative WBRT has shown to prolong OS from 16 to 
19 months and is usually recommended (98,99).

Conclusions: general principles of current 
management of brain metastases

For those NSCLC patients with driver-oncogene 
mutations, including EGFR and ALK mutations, systemic 
therapy with the newest targeted therapy is preferred as the 
initial intervention rather than old generation TKIs. This is 
because the new-generation TKIs, such as osimertinib and 
alectinib, are designed to penetrate the BBB, and possess 
significantly higher intracranial activities compared to other 
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chemotherapies. Local radiotherapy followed by TKI is 
generally preferred, except when brain metastases have the 
risk of herniation or possess severe mass effect that needs 
neurosurgical intervention.
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