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Metabolic profiles of serum samples from ground glass opacity 
represent potential diagnostic biomarkers for lung cancer
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Background: Lung cancer is a leading cause of cancer deaths worldwide. Low-dose computed tomography 
(LDCT) screening trials indicated that LDCT is effective for the early detection of lung cancer, but the 
findings were accompanied by high false positive rates. Therefore, the detection of lung cancer needs 
complementary blood biomarker tests to reduce false positive rates. 
Methods: In order to evaluate the potential of metabolite biomarkers for diagnosing lung cancer and 
increasing the effectiveness of clinical interventions, serum samples from subjects participating in a low-dose 
CT-scan screening were analyzed by using untargeted liquid chromatography-hybrid quadrupole time-of-
flight mass spectrometry (LC-Q-TOF-MS). Samples were acquired from 34 lung patients with ground glass 
opacity diagnosed lung cancer and 39 healthy controls. 
Results: In total, we identified 9 metabolites in electron spray ionization (ESI)(+) mode and 7 metabolites 
in ESI(−) mode. L-(+)-gulose, phosphatidylethanolamine (PE)(22:2(13Z,16Z)/15:0), cysteinyl-glutamine, 
S-japonin, threoninyl-glutamine, chlorate, 3-oxoadipic acid, dukunolide A, and malonic semialdehyde levels 
were observed to be elevated in serum samples of lung cancer cases when compared to those of healthy 
controls. By contrast, 1-(2-furanylmethyl)-1H-pyrrole, 2,4-dihydroxybenzoic acid, monoethyl carbonate, 
guanidinosuccinic acid, pseudouridine, DIMBOA-Glc, and 4-feruloyl-1,5-quinolactone levels were lower in 
serum samples of lung cancer cases compared with those of healthy controls. 
Conclusions: This study demonstrates evidence of early metabolic alterations that can possibly distinguish 
malignant ground glass opacity from benign ground glass opacity. Further studies in larger pools of samples 
are warranted.
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Introduction

Lung cancer is the most prevalent cause of cancer death, 
being responsible for 1.3 million deaths and about one-
fifth of cancer-related deaths annually all over the world. 
Since the initial diagnoses of the majority of lung cancer 
cases are at advanced stages and have a grim prognosis, 
the relative 5-year survival rate is a mere 10–15% (1,2). 
Early diagnosis is extremely important to the success of 
clinical interventions because the relative 5-year survival 
rate of lung cancer patients diagnosed in the early stages 
is remarkably better when compared with the advanced 
lung cancer patients (3). Recently, data from the National 
Lung Screening Trial (NLST), which assessed the diagnosis 
of lung cancer through low-dose computed tomography 
(LDCT), demonstrated that LDCT could reduce lung 
cancer mortality by 20% and total mortality by 7% (4-6). 
Therefore, LDCT of lung cancer is the most efficacious 
noninvasive medical test to reduce worldwide cancer 
mortality of lung cancer. However, a major concern was the 
high prevalence (96%) of false positives that might have led 
to “over-diagnosis” (4,7), especially of ground glass opacity 
(GGO). GGO, defined as “hazy increased opacity of lung, 
with preservation of bronchial and vascular margins”, 
can be observed in preinvasive lung cancer and in benign 
conditions such as hemorrhage, inflammation, and focal 
interstitial fibrosis (8,9). GGO shows a slight increase in 
density, a cloud-like shape and a limitation of less than 3 cm.  
Studies on radiological pathological correlation have 
shown that GGO represents pathological lepidic growth 
and consolidation on CT represents pathological invasive 
components. It is problematic to use GGO in discriminating 
between benign and cancerous conditions, and this issue 
has led to excessive use of invasive procedures, over-
treatment, and an overall increase in anxiety. Additional 
tests, preferably of the non-invasive type, and exhibiting 
high sensitivity and specificity, are crucially needed to 
complement LDCT. 

There are more available biomarkers found in the 
blood capable of enhancing the power of early lung cancer 
detection than in any other source. Blood analysis by the use 
of analytical methods has yielded several clinically valuable 
biomarkers of lung cancer (10) that can complement LDCT 
and represent a major advance in implementing lung cancer 
screening. Several discovery platforms that can identify 
markers to provide complementary assessment need to 
be explored, as single biomarkers are unlikely to perform 
sufficiently for implementation in screening. 

The metabolomic analysis is able to profile small 
molecules in a variety of human biofluids and tissue 
activities in the body and thus has been established as 
a platform for gaining new insights into the pathology 
of cancer on the cellular, tissue, and organ level (11,12). 
Currently, no analytical method provides a comprehensive 
analysis of numerous endogenous metabolites required 
for metabonomics. The main advantages of liquid 
chromatography-mass spectrometry (LC-MS) which include 
its wide dynamic range, the possibility of small sample 
volumes, and ease of automation for a large sample series, 
make LC-MS an ideal analytical method or metabolite 
profiling (13,14). Metabonomics by liquid chromatography–
hybrid quadrupole time-of-flight mass spectrometry (LC-
Q-TOF-MS) has also been recently shown to be reliable 
(15,16). By coupling with several multivariate statistical 
methods, including principal component analysis (PCA) and 
partial least squares discriminant analysis (PLS-DA), the 
latest information from spectroscopic data can recognize 
potential biomarkers for cancers and ailments. 

Using a metabolomics approach, the early detection 
of lung cancer may be implemented by revealing new 
biomarkers associated with diagnosis and prognosis 
(12,17,18). In the present study, LC-Q-TOF-MS profiling 
of serum from subjects’ GGOs was explored as a means 
to establish a lung cancer-related metabolic signature, 
which could provide novel insights about differentiating 
between benign and malignant GGO. We hypothesize that 
the candidate metabolomics biomarkers identified will be 
helpful for early detection of lung cancer.

Methods 

Patient population and collection of patient samples

This prospective study was approved by the Ethics 
Committee of The 211th Hospital of Chinese People’s 
Liberation Army. The 211th Hospital of Chinese People’s 
Liberation Army performs low-dose CT-scan screening for 
high-risk smoking cases with a family history of lung cancer. 
Lung cancer (n=34) cases for this study were confirmed by 
histopathological examination (Table 1) from March 2014 
to January 2017. Controls (n=39) were healthy persons with 
normal low-dose CT-scan screening who were included at 
The 211th Hospital of Chinese People’s Liberation Army 
between March 2014 and December 2017. No participants 
in this study were taking any medications, and none were 
suffering from metabolic diseases such as liver diseases, 



491Translational Lung Cancer Research, Vol 8, No 4 August 2019

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2019;8(4):489-499 | http://dx.doi.org/10.21037/tlcr.2019.07.02

kidney diseases, or any other types of cancer. We have 
collected the blood samples of the patients from fasting 
venous at the next morning after admission of the patient. 
The blood samples were obtained by routine venipuncture, 
transported, and then centrifuged less than 4 hours after 
collection at room temperature. After that, the isolated 
serum samples were stored at −80 ℃ for further analysis.

Sample preparation 

All the serum samples were thawed at 4 ℃ for 50 min and 
centrifuged at 4,000 ×g for 10 min at 4 ℃ after vortexing for 
10 s. The upper aliquot solution (200 µL) of serum samples 
was transferred to a clean 2-mL centrifuge tube, and then 
acetonitrile (1,000 µL) was added. After that, the samples were 
vortexed for 2 min and centrifuged at 12,000 ×g for 15 min  
at 4 ℃. The upper solution (1,000 µL) was transferred to a 

clean 2-mL centrifuge tube and then evaporated to dryness 
over a heat block at 35 ℃ under nitrogen gas. Two-hundred 
µL acetonitrile/water (1:3, v/v) was added into the residue 
of the upper solution (1,000 µL), vortexed for 1 min,  
and centrifuged at 12,000 ×g for 15 min at 4 ℃. The 
supernatant (200 µL) was transferred to an autosampler vial 
and injected into the LC-Q-TOF-MS (6530 series; Agilent 
Technologies, Santa Clara, CA, USA) apparatus for analysis. 
Equal amounts of supernatant samples from all samples 
were mixed for quality control (QC).

Chromatography

Each 10-µL aliquot of sample was injected into a 2.1×100 mm 
(1.8 mm) ZORBAX SB-C18 column (Agilent Technologies, 
Santa Clara, CA, USA) and then was rapidly resolved by 
liquid chromatography (6530 series; Agilent Technologies, 

Table 1 Characteristics of the donor groups

Group Lung cancer cases (n=34) Controls (n=39)

Gender, n (%)

Male 21 (61.8) 22 (56.4)

Female 13 (38.2) 17 (43.6)

Age, median [range], years 68 [42–84] 69 [45–81]

Age, mean ± SD, years 67.6±13.2 68.9±14.5

Smoking habits, n (%)

Smoker 24 (70.6) 13 (33.3)

Ex-smoker 8 (23.5) 19 (48.7)

Non-smoker 2 (5.9) 7 (17.9)

Packs per year, mean ± SD 54.7±20.8 32.0±17.9

Histological subtype, n (%) –

Adenomatous hyperplasia 14 (41.2)

Adenocarcinoma in situ 11 (32.4)

Minimally invasive adenocarcinoma 9 (26.5)

Laterality, n (%) –

Left 17 (50.0)

Right 15 (44.1)

Bilateral 2 (5.9)

TNM 34 (100.0)

Median lesion sizes, cm 1.84±0.54 –

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.
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Santa Clara, CA, USA). Electron spray ionization in positive 
mode (ESI+) of the mobile phase was constituted by 0.1% 
formic acid (phase A) and water containing 0.1% formic 
acid (phase B), while electron spray ionization in negative 
mode (ESI−) was formed with acetonitrile (phase A) and 
water (phase B). The protocols for the linear mobile phase 
gradient were as follows: 95% A held for 1 min, decreased 
to 2% A by 10 min, held at 2% A until 13 min, increased to 
95% A by 13.1 min, and held at 95% A until 20 min. The 
flow rate of the mobile phase was 0.3 mL/min at 40 ℃.

MS

The Agilent 6530-Q-TOF MS apparatus (6530 series; 
Agilent Technologies, Santa Clara, CA, USA) operating in 
ESI+ or ESI− mode was used to perform MS. The capillary 
voltage was set at 4.0 kV for ESI+ and 3.5 kV for ESI−. 
Nitrogen was applied as the desolvation gas at a flow rate 
of 10 L/min. The desolvation temperature was 350 ℃. The 
centroid data were obtained with the full scan mode [mass-
to-charge ratio (m/z) =50–1,000].

Data preprocessing and annotation

By using MassHunter Qualitative Analysis Software (Agilent 
Technologies B.04.00), the raw data were converted into 
mzdata-format files and further imported to the XCMS 
package in R (3.0.2) for preprocessing. The analyses were 
performed by the default XCMS parameter settings, with 
the following exceptions: xcms Set (fwhm, 10), group 
(minfrac, 0.5; bw, 30), and rector (method, “obiwarp”). 
After that, a data matrix was generated that included results 
of retention time, m/z values, and peak intensity. By using 
the CAMERA in R (3.0.2), isotope peaks were annotated. 
Meanwhile, adducts and fragments in the peak lists were 
generated in the same way (19).

Statistical analysis 

The grouping trends and outliers were at first detected by 
using PCA, and the significance (P<0.05) of each metabolite 
was then determined by applying the Wilcoxon rank-sum 
test (20). A PLS-DA was applied to identify the differences 
in metabolites between lung cancer cases and controls (20). 
The supervised model and avoid overfitting were validated 
by permutation tests with 100 iterations (21). Parameters 
describing the variable importance in the projection (VIP) 
for each metabolite were calculated based on the PLS-

DA model. The metabolic biomarkers were detected 
with thresholds of P values and VIP values of 0.05 and 1, 
respectively. The Wilcoxon rank-sum test was applied to the 
R platform (3.0.2). The PCA and PLS-DA were performed 
via SIMCA-P (version 11.5; Umetrics, Malmö, Sweden).

Results

Detailed characteristics of the participants for the respective 
cohorts are provided in Table 1. There were no significant 
differences in the baseline characteristics. The metabolic 
analysis revealed numerous metabolic differences between 
lung cancer and healthy controls. We have found 1,409 kinds  
of metabolites in ESI+ mode and 891 in ESI− mode in this 
study. The PCA performed on all the samples revealed that 
the QC samples were tightly clustered in the PCA score 
plots (Figure 1), which showed stability and repeatability 
of the sample analysis sequence. All of the statistically 
significant ions were analyzed (P<0.05 and VIP >1; Figure 2)  
by the application of the ESI+ and ESI− modes. The 
differences between lung cancer and healthy controls were 
identified by using a supervised PLS-DA model. There 
was an obvious separation between lung cancer cases and 
healthy controls present in the ESI+ mode (Figure 2A) 
and ESI− mode (Figure 2B), which were present in the 
PLS-DA score plot. The PLS-DA models contained two 
predictive components in the ESI+ mode (R2X =0.426; 
R2Ycum =0.634; Q2cum =0.428) and two components in 
the ESI− mode (R2X =0.488; R2Ycum =0.572; Q2cum = 
0.468). Permutation tests consisting of 100 iterations and 
containing two predictive components were also used (22). 
As shown in Figure 2C,D, the validity of the supervised 
models, were further confirmed. The results showed that 
the permuted Q2cum values were lower than the original 
values in almost all cases.

The discriminatory metabolites contributing to the 
differences between lung cancer cases and healthy controls 
were revealed by analyzing the VIP values. Then, on 
the basis of false discovery rate and VIP thresholds of 
0.05 and 1, respectively, biomarker candidates were 
selected from differential ions for subsequent metabolite 
identification (23,24). In total, we identified 8 metabolites 
in the ESI+ mode and 7 metabolites in the ESI− mode 
(Table 2). L-(+)-gulose, phosphatidylethanolamine (PE)
(22:2(13Z,16Z)/15:0), cysteinyl-glutamine, S-japonin, 
threoninyl-glutamine, chlorate,  3-oxoadipic acid, 
dukunolide A, and malonic semialdehyde levels were 
observed to be elevated in the serum samples of lung 
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cancer cases compared with those of healthy controls 
(Figures 3,4). By contrast, 1-(2-furanylmethyl)-1H-
pyrrole, 2,4-dihydroxybenzoic acid, monoethyl carbonate, 
guanidinosuccinic acid, pseudouridine, DIMBOA-Glc, and 
4-feruloyl-1,5-quinolactone levels were lower in serum 
samples of lung cancer cases when compared with those of 
healthy controls (Figures 3,4).

L-(+)-gulose and PE(22:2(13Z,16Z)/15:0) were identified 
based on accurate mass data, retention time, experimental 
MS/MS spectra, and library MS/MS spectra. Figures 5,6 are 
representative identification procedures based on MS/MS 
spectral matching.

The involved biochemical pathways mapped in the 
Human Metabolome Database (HMDB) (25) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (26)  
included the glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis ,  beta-alanine metabolism ,  propanoate 
metabol ism ,  inosi tol  phosphate metabol ism ,  and 

glycerophospholipid metabolism.

Discussion

Lung cancer has the highest incidence rate of cancer-related 
death worldwide each year. Histological examination plays 
a prominent part in cancer diagnosis through invasive 
procedures that include surgical resection, biopsy, and 
mediastinoscopy. However, these invasive procedures are 
often unsuitable for early diagnosis. LDCT screening is 
particularly effective in the early detection of lung cancer 
but is marred by high false positive rates. Therefore, 
determining whether a GGO is malignant or benign upon 
presentation and choosing the appropriate optimal course 
of management is still challenging. In this regard, less 
invasive and more cost-effective diagnostic tests with the 
same reliability as histology are needed.

In the current study, metabolic perturbations in serum 

Table 2 The detailed information about 16 metabolites

Num Metabolite m/z RT (min) FC P VIP AUC

Positive mode (ESI+)

P1 L-(+)-gulose 203.0508 46.69 1.19 0.010074 0.7132 1

P2 PE(22:2(13Z,16Z)/15:0) 758.5572 65.77 0.66 1.07E−08 1.2001 0.6184

P3 1-(2-Furanylmethyl)-1H-pyrrole 170.0534 56.27 0.58 8.64E−05 0.9471 0.7685

P4 2,4-dihydroxybenzoic acid 177.0175 48.78 0.62 0.000179 0.9442 0.7624

P5 Cysteinyl-glutamine 250.0814 53.34 1.27 7.27E−19 1.699 0.7587

P6 Monoethyl carbonate 113.0203 367.38 1.86 0.000171 0.8232 0.8635

P7 S-Japonin 337.1895 422.74 1.16 0.000319 0.8246 0.727

P8 Threoninyl-glutamine 270.1116 524.49 1.14 0.001423 0.7536 0.7624

P9 Chlorate 106.9519 921.3 1.43 0.023407 0.6713 0.678

Negative mode (ESI−)

N1 3-oxoadipic acid 159.0288 60.84 1.32 0.000354679 0.7535 0.7768

N2 Dukunolide A 481.161 65.65 2.33 4.48E−06 0.9928 0.8808

N3 Guanidinosuccinic acid 174.0565 470.87 0.88 0.000140659 0.7767 0.7632

N4 Malonic semialdehyde 87.0077 68.86 0.45 8.26E−09 1.1298 0.8409

N5 Pseudouridine 243.0666 64.34 0.67 9.34E−07 1.0286 0.8929

N6 DIMBOA-Glc 372.0996 68.31 0.51 3.82E−05 0.9238 0.7655

N7 4-feruloyl-1,5-quinolactone 349.1018 68.85 0.46 1.64E−09 1.2867 0.7994

FC was calculated based on means of lung cancers and controls. FC >1 means that the biomarker increase in lung cancers compared to 
controls. FC, fold change; m/z, measured mass to charge ratio; RT, retention time; VIP, variable importance in the projection; AUC, area 
under the curve.

http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/Secure/pathway/ResultView.xhtml
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Figure 3 Metabolite profiles of potential biomarkers differing between epithelial lung cancers and with controls in ESI+ mode. The profiles 
are displayed in a column bar graph (mean and SEM). ESI+, electron spray ionisation in positive mode; SEM, standard error of mean; PE, 
phosphatidylethanolamine.

that could distinguish healthy participants from those with 
malignant GGOs were investigated by using a metabolomics 
approach. Metabolomics features that could be mirrored in 
blood metabolome of lung cancer patients were in the blood 
(27,28). In this study, metabolite abundance adjusted for the 
mentioned above covariates to minimize potential biases 
were evaluated because physical characteristics, including 
gender and age, could affect metabonomics results (29). 
We detected significant metabolic differences between 
malignant GGO by LDCT and healthy participants and 
identified 16 metabolites as potential biomarkers for 
lung cancer. Of note, the metabolites accounting for the 
differences between the serum of malignant GGO patients 
and healthy participants were matched with known human 
metabolites in the HMDB or KEGG, and these results 
were further confirmed by a manual search for similarities 
between the annotated and the library spectra.

Compared to subjects with healthy participants, 
participants that presented malignant GGOs showed 
elevated levels of serum metabolites, particularly, L-(+)-
gulose, PE(22:2(13Z,16Z)/15:0), cysteinyl-glutamine, and 
threoninyl-glutamine. Moreover, elevation in these specific 

PEs is consistent with past research (30). This shows 
that tumorigenesis is accompanied by lipid metabolism. 
PE binding proteins (PEBPs) have already been proven 
to increase secretion and work on modulating the 
development, invasion, and metastatic potential of tumors 
in lung cancer (31-33). Fahrmann et al. also found that 
levels of PEs decreased after surgical removal of malignant 
nodules (30). In addition, elevation in PEs of lung cancer 
patients exhibited drastic changes in lipid profiles (34,35). 

Amino acids constitute one of the most significant 
metabolite changes, and there are a few studies that have 
reported amino acid differences in the serum of non-
small cell lung cancer (NSCLC) patients (36,37). The 
metabolite changes in our study were consistent with 
reports and Cascino et al., who identified the increase of 
amino acids glutamine and arginine in the blood of lung 
cancers patients (38). L-(+)-gulose is an L-hexose sugar 
and an intermediate in the biosynthesis of L-ascorbate 
(vitamin C). It can be oxidized to L-guluno-1-4-lactone and 
produced by the hydrolysis of L-gulose-1-P. Many animals, 
including fish, amphibians, reptiles, and bird species can 
synthesize ascorbic acid by several biosynthesis pathways. 
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We have grounds to believe that lung cancer cells acquire 
the capability to synthesize vitamin C. Given this, L-(+)-
gulose might be seen as an alternative to tumor markers for 
malignant GGO.

In conclusion, our study was able to identify putative 
markers of malignant GGO in serum, although the 
interpretation of the metabolic information retrieved is 
somewhat speculative. Indeed, while we have assessed the 
important factors such as gender, age, and smoking habits, 
other unmeasured or uncontrolled factors, including 

lifestyle, body mass index, and diet have not been examined. 
It is difficult to control all multiple factors of metabonomic 
studies applied to humans. Here, the power of identifying 
biomarkers with the potential clinical application for 
LC-Q-TOF-MS was shown by using metabolomics. In 
future work, we will acquire the utility of metabolomics 
biomarkers by using a larger patient cohort and combine 
this with other clinical diagnostic methods such as magnetic 
resonance (MR) imaging and the application of circulating 
tumor cells.
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