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Introduction

Proton therapy is an evolving radiotherapy modality with 
indication for numerous cancer types. With the benefits 
of reducing dose and sparing normal tissue, protons offer 
a clear physical and dosimetric advantage over photon 
radiotherapy for many patients. However, its impact on one 
type of disease, non-small cell lung cancer (NSCLC), is still 
not fully understood. 

Our review aims to highlight the data for using proton 
therapy in NSCLC, with a focus on the clinical data—or 
lack thereof—supporting proton treatment for early and 
advanced stage disease. In evaluating these data, we consider 
how future directions and advances in proton technology 
give rise for hope in defining a role for protons in improving 
NSCLC outcomes. We close with considerations for next 
steps and the challenges ahead in using proton therapy for 
this unique patient population. 

Clinical evidence for protons

To date, both retrospective and prospective reports 
demonstrate a potential advantage of protons (1-15)  
over photon radiotherapy in the NSCLC sett ing  
(16-30). This potential advantage persists despite the bias 
that patients receiving proton therapy are likely older (and 
potentially more toxicity-prone) owing to a proportionally 
higher degree of proton approval by Medicare. For 
early-stage I–II disease, single-arm phase I/II trials and 
retrospective data since the early 2000s have generally shown 
that proton therapy results in <5% grade 3 pneumonitis (18),  
the ability to dose-escalate (9,11,14,17), and variable 
degrees of local control, with better control in more recent 
trials, possibly attributable to advances in proton delivery 
(7,10,12,14,16-18). While these studies are promising, 
they were mainly done in the beginning stages of proton 
treatment, and their limitations include failure to utilize a 
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randomized approach, less-conformal passive scatter proton 
therapy, and utilizing conventionally fractionated or hypo-
fractionated regimens which are no longer employed for 
early stage disease. Instead, with recent results from CHISEL 
showing an overall survival advantage of stereotactic ablative 
radiotherapy (SABR) over conventional radiotherapy (31), 
SABR is currently the preferred therapy for such early stage 
tumors (32-34). Thus, those early proton studies utilizing 
conventional regimes now have limited relevance. 

More relevant is a meta-analysis evaluating protons versus 
SABR for early-stage NSCLC, which suggests that utilizing 
protons offers an overall survival advantage and a decrease in 
toxicity, including pneumonitis and grade 3–5 events (albeit 
not reaching statistical significance after accounting for 
potential confounding variables) (18). As might be expected, 
chest wall pain and dermatitis appear higher in proton 
therapy, likely attributable to the dosimetric profile of beam 
entry or end-ranging into thoracic chest wall anatomy, 
but these are factors which can be modified in today’s 
practice based on treatment techniques and/or technical 
planning/equipment (discussed below). To date, there is 
only one report of a randomized trial of protons in early-
stage NSCLC (1), a study by MD Anderson on 9 patients 
with photon SABR compared to 10 patients with proton 
SABR. The trial closed early due to concerns about lack 
of volumetric image-guided RT (IGRT), as well as poor 
accrual. The poor accrual was primarily attributable to a 
lack of insurance coverage, a major recognized barrier to 
conducting proton therapy trials and offering timely and 
appropriate patient access to proton therapy (35-37). Thus, 
overall the studies to date provide insight into the potential 
of proton therapy in early-stage NSCLC, but given the 
advances and changes in the early-stage NSCLC approach, 
modern randomized studies are greatly needed. 

A similar conclusion is suggested for using proton 
therapy in advanced stage III NSCLC. Early prospective 
reports and retrospective matched analyses show acceptable 
local-regional control with proton therapy used with 
chemoradiation (CRT) for advanced NSCLC (19-30). 
They also show the potential for reduced pneumonitis and 
other toxicity (19-21,23), as well as the possibility of dose 
escalation given the ability of protons to spare dose to the 
heart and central structures (21-23). High doses to the heart 
and, to a lesser degree, the lungs, is what was thought to 
account, in part, for the negative effects of dose-escalated 
photon therapy in RTOG 0617 (38-40). With protons, a 
dose escalation may be possible (and beneficial) because the 
heart and central structures might be spared. While protons 

are unlikely to have an effect on OS from a cancer-specific 
standpoint given that (I) the rates of distant metastasis 
were still on the order of 40–45% in these trials (21,22,25), 
and (II) advanced disease is a systemic problem, local 
control in the mediastinum and lung is highly desired, and 
a great source of potential morbidity/mortality reduction  
(41-43). Further, since CRT is a toxic treatment, reducing 
side effects and/or dose might reduce long-term effects 
from radiotherapy and that, in the long-term, may translate 
into a survival benefit (44). This question is discussed 
further below. 

Still, despite these potential advantages, the only 
randomized phase II trial to date was negative for a benefit 
of protons over photons in advanced NSCLC (28). In this 
MD Anderson-based study, protons did not improve the 
primary endpoint of local control or grade 3 pneumonitis 
in patients with stage IIB-oligometastatic disease who 
were candidates for CRT. However, on evaluation of this 
trial, the negative finding was likely due to its design and 
not necessarily attributable to the modalities themselves. 
Firstly, the trial used a very heterogeneous group of patients 
with a broad spectrum of disease states (from advanced to 
metastatic) and treatment strategies (from postoperative 
CRT to definitive CRT). Such heterogeneity limits 
interpretation of endpoints such as overall survival, disease 
specific survival, toxicity, and locoregional control. Due to 
the variability in target coverage, normal tissue exposure, 
and patterns of failure, all of which differ according to 
disease state and extent, the resulting interpretation remains 
guarded. 

Secondly, and perhaps most importantly, patients 
were only deemed eligible for randomization after initial 
screening with generation of comparative intensity-
modulated photon radiotherapy (IMRT) and proton 
treatment plans. Therefore, only patients with acceptable 
plans for both modalities were included. This inherently 
defeats the purpose of demonstrating superiority of one 
modality over another even if, prior to randomization, 
dosimetric profiles were generally good for both modalities 
for all patients. This is a major limitation because it requires 
that any signal of benefit had to be based on fine tuning 
points in the dosimetric profile for a given modality, so 
that patients who may have benefited tremendously from 
protons were outright excluded. 

Lastly, since the trial was conducted during the 
early phase of proton therapy at the center, the proton 
technology and delivery were not fully developed. 
Indeed, the authors state that there was a large learning 
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curve for proton treatment planning and delivery in 
NSCLC treatment during the course of that study (45), as 
reflected by the fact that, for patients receiving protons, 
the rate of pneumonitis decreased by half (31% vs. 13%) 
from the first years of enrollment to the second half of  
enrollment (28). Furthermore, the trial used passive scatter 
proton therapy which, with its lesser conformality, cannot 
be fairly compared to the highly conformal IMRT therapy 
of today. Pencil beam scanning with robust image-guidance 
should have been employed, but was limited by availability 
at the time. This highlights the fact that a great tool 
inadequately applied will lead to inadequate results, a notion 
supported by a recent report finding that NSCLC patients 
treated with protons at academic centers have improved 
outcomes (46). While these results can be due to a number 
of reasons, they speak to how greater experience in proton 
planning and delivery could lead to better outcomes, and 
such experience is a requisite to achieving desired results. 

The overall lesson learned from utilizing the suboptimal 
design and execution of the phase II study will be hard-felt 
throughout the coming years. The results exacerbate the 
conundrum faced by those attempting to test proton therapy 
in NSCLC: insurance companies want trial data before they 
authorize a modality (protons), yet to generate that data, 
they must authorize use of that modality for patients on 
trials. With the results of this trial showing a preliminary, 
but arguably inappropriate, conclusion that there is a lack 
of benefit, it will be exponentially more difficult to accrue 
patients for ongoing studies testing protons in this setting. 
Yet, we must have more randomized results in order to 
understand whether proton therapy does provide a benefit 
in the advanced NSCLC setting. 

The promise of protons in NSCLC

Reducing toxicity

Although there are currently no prospective clinical data 
demonstrating a clear benefit of proton over photon therapy, 
there are numerous reasons such data are likely to emerge, 
chief among them being that numerous reports have shown 
a dosimetric advantage. Both in using proton SABR for 
early-stage NSCLC and as the radiotherapy element of 
CRT for advanced stage NSCLC, overall dose to the lungs 
in the form of mean, V5, V10, V15, and V30, as well as 
esophageal dose, heart dose, and spinal cord dose, all have 
been reduced with protons over photons (2,5,6,47-49). For 
SABR, proton therapy allows for enhanced potential sparing 

of difficult to treat tumors near the mediastinum centrally, 
the spinal cord posteriorly, or those located more superiorly 
near the brachial plexus. When using ablative doses in 
this range, any advantage to reducing maximum dose, and 
other dosimetric parameters, enables better confidence in 
safe treatment delivery. In particular, the prevention of late 
debilitating side effects such as hemorrhage, fistula, and 
paralysis are potential benefits. This superior dose profile 
with protons has been demonstrated in at least one report 
evaluating intensity modulated proton therapy (IMPT) vs. 
IMRT photon therapy in the SABR setting (50). 

Furthermore, given the recent evidence for its similar 
outcomes compared to lobectomy in operable patients 
(32,51,52), SABR, which was traditionally reserved for 
only inoperable patients, is now being used to treat more 
individuals with early-stage NSCLC. New data on the 
effectiveness of low-dose CT for lung cancer screening 
will also lead to the earlier detection of early-stage tumors, 
which will be amenable to procedures such as SABR (53,54). 
In light of that data, more patients are expected to be 
treated with SABR, and, in fact, there has been a tripling of 
SABR use just from 2008 to 2013 (55). Because of this, and 
given the more favorable survival outcomes with early-stage 
NSCLC patients, using a SABR technique that minimizes 
dose to any normal tissue is preferable. This is largely 
because the effects of radiation on normal tissues, including 
low doses, increase over time. Proton therapy in this setting 
would be potentially advantageous given its better dose 
profile and native-tissue sparing effects compared to photon 
therapy. This would be particularly true for younger, 
healthier operable SABR patients, who are anticipated to 
live longer. 

However, an additional caveat to using SABR for 
treatment of early-stage NSCLC is that up to 1 in 7 patients 
can have isolated local-regional failure (32,34,56,57). The 
reason is that SABR does not remove the entire lobe of 
the lung or treat lymph nodes. However, these potentially 
curable failures are highly salvageable (58). As more patients 
are treated with SABR, more patients will invariably be 
treated for these recurrences. Using proton over photon 
SABR may offer a significant advantage for these patients 
moving forward where re-irradiation is often considered 
and performed in the salvage setting. Sparing normal 
tissues upfront, including elimination of a low dose bath to 
surrounding lung parenchyma, could enable safer and more 
effective salvage for the up to 1 in 7 patients who need it. 
From a forward-thinking perspective, and considering the 
NSCLC population being treated, proton SABR offers a 
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potential significant advantage when considering patterns 
of failure and the potential need for additional treatment in 
this patient population. 

From a concurrent CRT standpoint, advanced stage 
NSCLC patients are also poised to benefit from proton 
therapy instead of conventional photon therapy. As with 
SABR, a number of reports have found significant dose 
reductions to organs at risk by using IMPT over IMRT for 
advanced stage tumors (5,19,23,59,60). Since patients with 
advanced stage disease have much larger volumes to treat, 
a substantial amount of lung and central structures often 
are unnecessarily bathed in radiation. It has been shown 
that lung alveoli can be damaged by even low doses of  
radiation (61), and that each 1 Gy to the heart raises the 
chance of a cardiac event by 7.4% (62). As such, minimizing 
doses to these structures is paramount, particularly for 
NSCLC patients who often present in their elderly years 
and have other competing risks for mortality, chief among 
them a substantial smoking history. Most of these patients 
have other cardiopulmonary health problems including 
chronic obstructive pulmonary disease (COPD), heart 
failure, coronary artery disease, and emphysema (63-65). 
Thus, eliminating unnecessary radiation for these patients 
by sparing already damaged organs and not exacerbating 
the toxicity they endure, may have profound benefits in the 
long term. This is particularly true as significant advances 
have been made in prolonging survival in advanced stage 
NSCLC. With novel biologics, and most notably anti-PD1/
L1 immunotherapy (i.e., PACIFIC trial), advanced stage 
patients are now living much longer than before (66,67), 
making reduction in late-term effects a timely, and now 
newly energized priority for those patients. 

Furthermore, long-term side-effect reductions are not the 
only potential benefit for using protons in the CRT setting. 
CRT itself is a toxic treatment that is made more difficult 
because of the collateral radiation dose spillage into organs 
at risk. Since side effects such as esophagitis, dyspnea, 
and fatigue occur because of radiation exposure to at-risk 
organs, reducing dose all around could also reduce short-
term side effects during treatment. Reducing side effects is 
important to patients being able to complete radiation in 
order to achieve tumor control and cure. It is also important 
because concurrent CRT, versus sequential or staged 
chemotherapy and radiation, has a survival benefit (44) but 
often treating physicians do not pursue it due to concerns 
that it will be too toxic for these often frail and elderly 
patients (68-71). Using proton therapy to reduce short-term 
side effects through normal tissue sparing, may allow more 

patients to better tolerate, and be treated with, concurrent 
CRT. Thus, proton therapy to reduce acute side effects 
from treatment can have a profound effect [and potential 
survival benefit (44)] on the population of advanced stage 
NSCLC patients as a whole. 

Biologic tumoricidal rationale

The tissue sparing effects of protons are not the only 
proposed mechanistic advantage. With NSCLC patients 
living longer, owing mainly to improvements in screening 
and systemic therapies, durable control of treated disease 
is imperative. Protons, compared to photons, have a 
higher biologic effectiveness [termed relative biologic 
effectiveness (RBE)]; many accept this increase in tumor 
kill effectiveness to be on the order of 10% over photons, 
although there remains no clinical evidence supporting 
this increase in tumor killing. However, such effectiveness 
predictions are based on limited in vitro cell line data 
(72,73), and we now know that the biologic effectiveness 
with protons is variable—predicted to be much higher—
and greatest just at or beyond the Bragg peak (72,73). 
Thus, if we were to view radiation as a drug, protons 
compared to photons would be a much more biologically 
effective agent. There is ongoing investigation on how to 
optimize placement of this enhanced effectiveness [such 
as linear energy transfer (LET) property] into the tumor 
directly (74-76). When choosing a given agent, it would 
make sense to use the option that is more biologically 
effective, particularly if that agent also carries the 
demonstration or suggestion of reduced side effects. Such 
an advantage in therapeutic ratio may lend itself well in 
the CRT setting, where loco-regional failure (including 
in and out of field) can approach 50% for advanced stage 
disease (40), but >95% local control of the treated tumor 
is already achieved with SABR (32,56,57). 

Finally, although highly speculative, proton therapy may 
also be able to spare circulating lymphocytes from radiation 
by reducing the volume of blood that is irradiated, thereby 
preventing lymphopenia, which has been correlated to 
worse outcomes in some studies (77). This is particularly 
true of advanced NSCLC, where mediastinal irradiation 
is common, and for which subsequent immunotherapy is 
now standard of care for appropriately selected patients. 
For those patients, it is desirable to spare immune effector 
cells from radiation since they are the moderators of 
immunotherapy’s anti-tumor response and the drug’s 
(durvalumab) survival effect (66). 
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Advancing proton therapy to the next level

The reality is that we are still in the infancy stages of proton 
therapy. Many advances are on the horizon, and to realize 
the full potential of proton therapy in the NSCLC setting, 
innovation will be required. Yet already there are general 
advances for the modality (protons) and specific advances 
pertaining solely to NSCLC and thoracic tumors. 

General advances are being made on all levels of proton 
therapy planning, delivery, and evaluation; many of these 
have been reviewed elsewhere. However, for planning 
purposes, one advance that will undoubtedly improve 
proton treatment for NSCLC is the employment of dual 
energy CT (DECT) or other techniques that reduce range 
uncertainty for treatment delivery (74-76,78-80). Indeed, the 
range uncertainty with proton stopping estimation may be 
improved by up to 50% with DECT. Currently, algorithms 
using single energy CT photon to proton stopping power 
calculations implement a 3–3.5% uncertainty for each 
centimeter (cm) of beam path length. That means the 
uncertainty as to how protons interact and deposit dose in 
tissue, compared to traditional photons, requires an extra 
dose cloud expansion around the target in order to ensure 
therapeutic radiation is robustly delivered to the full tumor. 
For short beam path lengths, such as in the brain or head 
and neck, this extra dose added around the proton treatment 
volume to account for uncertainty is less. But when treating 
tumors deep in the chest, such as for NSCLC, a beam 
with 10–20 cm of path length could result in an additional  
3–6 mm of dose all around (3–3.5% margin for uncertainty), 
and that translates into a significant amount of extra dose 
volume delivered solely because of uncertainty. As such, 
DECT or other techniques to improve uncertainty can lead 
to profound improvements in the ability to sculpt proton 
radiation to NSCLC targets. This would lead to much 
enhanced tissue sparing and the ability to treat tumors near 
critical structures to potentially higher doses or with more 
confidence. Conformality can thus be greatly improved 
with these techniques. Although potentially dangerous 
with regard to marginal miss and density changes from 
anatomical changes (inter- and intra-fractional), high-
quality image guidance can greatly assist in attenuating 
these concerns.

Another general advance will come with continued 
improvements in computational power. With IMRT, 
a major limitation in its development and clinical 
implementation was the computer power needed to 

generate the inverse planning algorithms to perform 
the complex and time-intensive dose calculations  
(81-83). The same will be true for proton therapy. Currently, 
Monte Carlo and fast Monte Carlo techniques are being 
developed for use with commercial treatment planning 
software (TPS) (84-86). Such techniques have the ability 
to more accurately depict where proton particles will travel 
and deposit energy for a given plan. The end result will be 
greater confidence that the visual treatment plan generated 
for review by dosimetry and physicians will match what will 
actually be received by the patient. Along this vein, other 
computational modeling, including LET modeling (being 
able to adjust a plan to put more “biologic effectiveness” 
with protons directly into the tumor and away from normal 
tissues) is also being developed. For NSCLC and moving 
thoracic tumors, incorporating the breathing cycle (4D) 
into the robustness optimization for a given patient is also 
being investigated (87,88). This will significantly help to 
accurately model where a dose is going within a part of the 
body, such as the thorax, that is continuously moving. Yet, 
all these examples of enhancements in complex treatment 
planning to improve certainty with proton therapy and 
to exploit their biologic advantages over photons require 
substantial computational power that is not routinely 
supported by current systems and that requires significant 
time and resources. As TPS system vendors and proton 
centers invest in the development of these programs and 
the computer resources to support them, we can expect 
important advances in proton planning that will lead to 
improved tissue sparing, target coverage, and plan delivery. 

Finally, from a delivery and evaluation stance, further 
reductions in spot size will improve dose painting with 
normal tissue sparing/dose sculpting. Whereas the 
“historical” technique for proton therapy has been passive 
scattering, the newest technique involves pencil beam 
scanning (89,90). The latter has the chief advantage of 
increased target conformality by means of intensity-
modulation. However, these come at the expense of 
technical concerns such as “overconformality” (marginally 
missing the tumor owing to unforeseen tumor changes 
and/or motion) and the “interplay effect” (referring to the 
degradation in dose distribution based on the simultaneous 
relative motion between a tumor and the beam). However, 
with technical advances, these limitations may be attenuated. 
Gantry/accelerator/vault modifications will reduce cost and 
treatment time, and will broaden the scope of delivery and, 
therefore, proton planning options (91-93). In addition to 
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robustness optimization at the treatment planning step, 
robustness evaluation both for target coverage and normal 
tissue avoidance will continue to improve. Depending on 
the methods utilized to calculate the dose, evaluation of only 
the nominal DVH for protons is often inadequate. Dose 
heterogeneity (mean dose, min, max, variability around the 
DVH curve) is often weighted against tumor coverage and 
OAR avoidance. Beam angle placement is vital: evaluating 
so as not to aim at critical structures is a basic principle. 
Adjusting beams throughout treatment in order to spread 
out the LET and RBE when this is unavoidable can be 
attempted, but with consideration of the impact of adding 
more radiation with additional beams. With increased 
experience and better planning algorithms these decisional 
aspects can be further optimized. Also, trusting dose 
representation near metal alloys, and considering artifact 
effects on what is being delivered versus what is predicted, 
remains a challenge but provides room for improvement. 

As demonstrated by the points made above, the need for 
complex proton planning and delivery, with the advances 
that can be made there, is matched by the importance 
of a treating physician taking the time to carefully and 
completely evaluate a final plan. To that end, advances in 
our understanding of proton characteristics and treatment 
modeling will also advance our abilities to judge plans 
for their safety and efficacy. Our abilities to determine 
which features on a printed plan are clinically relevant to 
evaluate, and how to adjust these variables iteratively in 
order to optimize a final product, will continue to improve. 
With volumetric imaging, we also will be able to help 
determine when and how often to adapt plans based on 
tumor and normal tissue changes throughout treatment (90), 
something that protons are exquisitely sensitive to. 

Considerable research is taking place on all these fronts, 
and the end result of our improved understanding and 
confidence in plan evaluation will undoubtedly translate into 
safer and more effective proton treatment (94). The bottom 
line, as revealed through some of the data already gathered, 
is that the importance of funding clinical research testing 
proton versus photon therapy is matched by the need to 
invest in efforts to improve the modality (95). Failure to 
advance on both fronts could lead to suboptimal results 
and, ultimately, a premature and inappropriate conclusion 
that protons may not provide benefit in NSCLC. But 
forging ahead with significant, coordinated effort offers 
the potential for developments in proton therapy that will 
benefit many NSCLC patients. 

Conclusions

Early investigations of proton therapy for NSCLC have 
taught some difficult but important lessons. Most notable of 
which is the recognition that there is a substantial learning 
curve for using protons and much room for significant 
advances. Yet, we also have learned that there are notable 
clinical and preclinical rationales for proton therapy in 
providing advantages over photon therapy when treating 
lung cancer. This is particularly the case for a population of 
patients who are living longer and could drastically benefit 
from side effect reductions in radiation therapy, not only 
for long-term effects, but also improved tolerance to the 
curative modality that is prescribed. 

IMPT offers many advances, but can be suboptimal if 
not appropriately employed. Trials testing IMPT versus 
photons in NSCLC require excellent quality control to 
ensure study results are a product of the treatments, and not 
the trial execution. Since dosimetric planning, simulation, 
and setup is entirely different for protons than for photon 
therapy, having a physics staff trained in proton therapy is 
key to success. The new proton centers emerging across the 
globe must provide appropriate levels and types of staff that 
have the requisite training and experience with this unique 
modality, or IMPT could hold as much risk of harm as it 
does benefit. 

The coming years will be exciting as more advances are 
made in proton therapy. Perhaps no cancer type is better 
suited to reap benefits from these advances than NSCLC, 
in light of the tissue heterogeneity, depth of tumor sites, 
and motion issues encountered. We encourage NSCLC 
patients considered for proton therapy to also be enrolled 
on trial whenever possible, as we evaluate the potential life-
changing improvements in NSCLC treatment with this 
advanced RT modality. 
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