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Background: Overuse or misuse of positron emission tomography/computed tomography (PET/CT) 
should be avoided for its ionizing-radiation. Diffusion-weighted magnetic resonance imaging (DW-MRI), 
characterized by no radiation, may be regarded as an alternative in differentiating pulmonary nodules. We 
aim to estimate the diagnostic accuracy of DW-MRI in diagnosing of pulmonary lesions.
Methods: Relevant studies were searched through PubMed and Embase with no language restriction 
from inception to March 8, 2019. We selected studies reporting sensitivity and specificity of DW-MRI for 
differentiating pulmonary nodules. A summary estimates of sensitivity, specificity and area under curve (AUC) 
of receiver operating characteristic (ROC) of DW-MRI were analyzed with a random effects model.
Results: We included data from 37 studies, which altogether included 2,311 pulmonary lesions. The 
pooled sensitivity and specificity were 0.86 (95% CI, 0.82–0.89) and 0.79 (95% CI, 0.72–0.85), and AUC 
was 0.90 (95% CI, 0.87–0.92). Subsequent subgroup analysis showed the higher sensitivity of DW-MRI in 
pulmonary lesion >2 cm in comparison to lesions ≤2 cm, however, higher specificity was observed in smaller 
lesions. 
Conclusions: Radiation-free DW-MRI showed a favorable balance between sensitivity and specificity in 
diagnosing pulmonary malignancies especially in lesion size ≤2 cm. Existing evidence indicated that DW-
MRI may be considered as an independent substitute in diagnosis of lung lesions, which might help to 
prevent long-term side-effects from radiographic diagnosing and evaluating procedures.
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Introduction

Although 18F-fludeoxyglucose (FDG) positron emission 
tomography (PET) is recommended to evaluate suspicious 
lesions by diagnostic guidelines (1-3), the American Society 
of Clinical Oncology (ASCO) and European Society for 
Medical Oncology (ESMO) have all claimed that PET or 
PET/computed tomography (PET/CT) had been overused 
or misused and declined to include surveillance PET or 
PET/CT in disease-specific guidelines (4). For instance, 
US annual per capita radiation dose increased from 0.1 mSv 
in 1980 to 0.77 mSv in 2006 from the source of nuclear 
medicine (5). 

However, there have not been radiation-free and 
noninvasive test recommended by guideline used for 
diagnosis and evaluation in cancer patients so far. With 
consideration of this condition, magnetic resonance 
imaging (MRI) has been gaining increasing attention 
due to its radiation-free characteristic. There are several 
well controlled and rigorously conducted investigations 
showing that diffusion-weighted MRI (DW-MRI) could 
achieve a comparable even better performance in cancer 
diagnosis and metastasis staging as compared to PET/CT 
(6-11). In clinical practice, however, clinicians generally 
only consider PET or PET/CT as the method used for 
cancer staging and follow-up examination, but ignore the 
potential utilization of DW-MRI in cancer patients. As for  
DW-MRI, it is cost- and time-efficient, and no contrast 
agent is involved during screening, but if it could be 
regarded as an alternative selection to diagnose pulmonary 
lesions is still to be confirmed.

A recent  meta-ana lys i s  by  Deepen e t  a l .  have 
found PET combined with CT or not with reduced 
specificity of 61% in regions where infectious lung 
disease is endemic (12). MRI yields information, such as 
integrity, about microscopic structures. When analyzing 
quantitatively in DW-MRI, there is  a  s ignif icant 
difference in apparent diffusion coefficient (ADC) 
values between malignant and benign lesions. Most 
recently, Shen et al. reported ADC value was helpful for 
distinguishing malignant and benign lung lesions (13).  
In the only known meta-analysis about accuracy of DW-
MRI in lung lesions, this modality was reported to be 
useful for differentiation between malignant and benign 
pulmonary lesions with pooled sensitivity of 84% and 
specificity of 84% (14). However, no standardization of 
quality assurance protocols for DW-MRI was included 
in their study, which was critical to repeatability of this 

imaging modality in cancer screening. ADC was merely 
focused on as an imaging measure for lung lesion diagnosis 
in the previous meta-analysis by Shen et al., lesion size was 
not considered and only 10 studies were included in the 
study (13). In view of this, no sufficient evidence has been 
available to firmly establish the advantages of DW-MRI test 
performance to diagnose pulmonary malignancies so far.

Our aim was to estimate the sensitivity, specificity, 
diagnostic odds ratio (DOR) and area under receiver-
operator characteristics curve (AUC) of DW-MRI for 
discrimination between malignant and benign pulmonary 
lesions. Moreover, we intended to clarify the lesion size and 
other indispensable parameters of DW-MRI which may 
affect the accuracy of DW-MRI and drawing attention of 
researchers in the future.

Methods

We did a meta-analysis in accordance with the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines and the guidelines described in the 
Cochrane Handbook for Systematic Reviews of Diagnostic 
Test Accuracy (15).

Search strategy and selection criteria

We searched Embase and PubMed to identify the relevant 
studies. Under the supervision of a librarian at the Fourth 
Military Medical University, we searched these databases 
from their inception through March 8 2019. No language 
restriction was placed on these searches. We checked 
reference lists of all retrieved articles to identify additional 
suitable studies. A radiologist and an oncologist were asked 
to look through these literatures and assess their eligibility 
for analysis. The inclusion criteria included studies that 
assessed the diagnostic accuracy of DW-MRI in lung 
lesions. The inclusion criteria included: (I) studies that 
assessed the diagnostic accuracy of DW-MRI, among which 
systematic reviews and meta-analyses were used only as a 
source of references, (II) studies that assessed pulmonary 
lesions, (III) studies that validated the performance of 
DW-MRI in lung lesion diagnosis and should state that 
all participants had the index and reference tests, and (IV) 
studies which was possible to allow calculation of sensitivity 
and specificity. Conference abstracts were included when 
they contained relevant data or relevant unpublished data 
could be obtained from the authors. We excluded all studies 
that could be classified as (I) narrative reviews, letters, 
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editorials, comments, and case reports; (II) surveillance 
of the tumor response to therapy and survival in patients 
with cancers treated with chemoradiotherapy. A total of 
37 studies were finalized. Any disagreement between them 
was resolved by discussing with a third investigator. The 
information, including author list, journals, affiliation, 
and the publication date, remained blinded to the above 
reviewers. All studies were selected in two rounds, first 
on title and abstract and second on full text, against the 
following criteria.

Quality assessment

The quality of the selected studies and the potential 
bias were assessed using the pre-specified STARD and 
the Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) instrument (16), including additional items as 
recommended by the Cochrane Collaboration. This quality 
assessment procedure was independently performed by 
two pairs of reviewers and was checked by a fifth reviewer. 
Any disagreements were resolved by discussion involving 
all researchers when necessary. The reference of standard 
(ROS) was validated by a clinical review committee 
consisting of three researchers.

Data extraction

Two reviewers independently extracted relevant data from 
the selected studies in a standard form, a third investigator 
checked the extracted data, and a fourth investigator 
arbitrated on discrepancies between the first  two 
investigators. Any identified discrepancies were discussed 
and corrected. 2×2 contingency tables were constructed, 
summarizing true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). Moreover, if 
various kinds of research type (per-patient vs. per-lesion and 
DW-MRI only vs. DW-MRI with other sequence) were 
available in individual study, we incorporated them into our 
study separately and made a subgroup analysis of each type. 
In some investigations, either the number of patients or 
the number of lesions was used for the statistical analyses. 
In order to avoid this inconsistence, we also conducted 
separate analyses for each category.

Statistical analysis

A random effects model was performed for the primary 
meta-analysis using a non-linear mixed model approach. 

The objective is to estimate the sensitivity and the specificity 
with 95% confidential intervals (CIs) of DW-MRI. We also 
computed the distribution of individual studies on summary 
receiver-operator characteristic (sROC) plots. Positive and 
negative likelihood ratios (LR+ and LR–) are metrics that 
combine sensitivity and specificity in their calculation for 
the discriminating ability of each imaging modality (17,18). 
If the LR+ is >5.0 and the LR– is <0.2, then the test can both 
rule in and rule out the disease.

The heterogeneity was assessed using the Cochrane Q 
and I2 statistics (19). I2 over 50% indicates heterogeneous, 
while P<0.05 was considered having heterogeneity in 
likelihood ratio χ2 test. We assessed publication bias by 
Deeks’ plots (20). Subgroup analyses by statistical modeling 
were planned for pre-specified items. Allowing for variation 
in result of three signaling questions in QUADAS-2, we 
put them into subgroup analysis (consecutive enrollment, 
reference standard and operation interval) to seek potential 
impact. To assess the impact of covariates (i.e., subgroup 
factors) on test performance of DW-MRI for cancer 
diagnosing, we considered a meta-regression with various 
covariates, and it is a tool used in meta-analysis to examine 
the impact of moderator variables on study effect size using 
regression-based techniques. It is more effective at this task 
than standard meta-analytic techniques (21). 

We reported the average adjusted estimates of sensitivity 
and specificity because of the validity of their interpretation 
and general applicability. All tests were 2-sided with a type I 
error of .05. All analyses were performed using the software 
StataSE version 12 (StataCorp).

Results

A total of 748 articles were reviewed. Among them, 711 
were excluded after primary and subsequent reviewing. The 
remaining 37 articles involved 2,311 pulmonary lesions 
(Figure 1, Table S1). 

The quality of the included studies was assessed by the 
QUADAS-2 tool. Discriminations were primarily found in 
domain of “consecutive enrollment, reference standard and 
operation interval” for all studies. Consequently, we selected 
these signaling questions as covariates in subgroup analysis, 
to explore if they could affect the accuracy of our research.

For the assessment of efficacy of DW-MRI in lung 
cancer (with a 95% CI reported in the included individual 
studies), the detailed sensitivity and specificity values were 
illustrated by forest plot (Figure 2). Pooled sensitivity and 
specificity of 37 studies for DW-MRI were 0.86 (95% CI, 
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0.82–0.89) and 0.79 (95% CI, 0.72–0.85). The value of 
diagnostic odds ratio (DOR) was 23 (95% CI, 15–36), while 
summary estimates were 4.1 (95% CI, 3.1–5.6) for positive 
likelihood ratio (LR+) and 0.18 (95% CI, 0.14–0.23) for 
negative likelihood ratio (LR–). All these results indicated 
DW-MRI’s excellent ability to both confirm and exclude 
presence of lung cancer. 

Meta-regression showed heterogeneity from DW-
MRI examinations were found in subgroups of b value 
(I2=0, P=0.48). There was also a trend for the subgroup of 
lesion size to show heterogeneity (I2=98, P<0.01). Allow 
for lesion size is a heterogeneous factor which may affect 
the diagnostic accuracy of screening modality, a new 
histopathological classification for pulmonary nodule 
was proposed measuring ≤2 cm and >2 cm in maximum 
dimension. Among the included studies, 14 reported average 
or median lesion size of less than 2 cm, and 16 larger than 
2 cm. Average adjusted sensitivity of DW-MRI to diagnose 

lung cancer was significantly influenced by lesion size (0.83, 
(95% CI, 0.80–0.85) for studies with mean lesions ≤2 cm 
and 0.86 (95% CI, 0.83–0.88) for lesion size >2 cm P<0.01), 
however, results indicated that average adjusted specificity 
of lesion size ≤2 cm (0.85; 95% CI, 0.80–0.89) significantly 
higher than lesion size >2 cm (0.77; 95% CI, 0.71–0.82) 
(P<0.01).

The sROC curves reported the predictive value of DW-
MRI for all studies, the AUC value was 0.90 (95% CI, 
0.87–0.92) (Figure 3). The ROC space did not illustrate 
a curvilinear trend of points and no threshold effect in 
diagnostic accuracy was observed. Since we tried to gather 
all evidence in the published works, potential biases were 
unavoidable. The Deeks’ funnel plot showed the evidence 
of publication bias towards studies (P<0.05) (Figure 4). In 
view of this, we performed the subgroup analysis without 
this study and estimated the publication bias for each 
subgroup of different lesion size, asymmetric test did not 
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show any evidence in lesion size >2 cm (P=0.09) and ≤2 cm 
(P=0.14) (Figures 5,6).

Table 1 illustrated average adjusted sensitivity and 
specificity in subgroup analysis to estimate the magnitude 
of the effect by classifying studies in each covariate. As for 
critical parameter, DW-sequences are now almost routinely 
used as an adjunct to conventional MRI images. However, 
if it requires any other morphologic sequences to improve 
accuracy? The adjusted sensitivity and specificity for the 
imaging modality with DWI sequence only was 0.84 (95% 
CI, 0.78–0.90) and 0.75 (95% CI, 0.67–0.82), while those 
for DWI combined with other sequence was 0.84 (95% CI, 
0.79–0.89) and 0.77 (95% CI, 0.69–0.86), the pooled AUC 
was 0.87 and 0.91 for DWI sequence only and DWI with 
other sequence. Our results indicated that accuracy of DWI 
sequence only was lower than that of DWI combined with 

Figure 2 Forest plots of sensitivity and specificity for DW-MRI in 37 studies.

Figure 3 Summary receiver-operator characteristic (sROC) curves 
for DW-MRI in 37 studies.
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other sequence.
Additionally, DW-MRI should be performed with 

sufficient degrees by appropriate choices of b values, 
with considerations given for the anatomic region, tissue 
composition, and pathologic processes. According to previous 
study, we summarized b values that may be used as a guide 
when performing DW-MRI for qualitative assessment and 
750–1,000 s/mm2 may be served as optimal value for whole-
body imaging purpose. Thus, we conducted a subgroup 
analysis to compare the b value of 750–1,000 s/mm2  

with other values, pooled sensitivity, specificity and AUC of 
b value of 750–1,000 s/mm2 was 0.84 (95% CI, 0.79–0.88), 
0.79 (95% CI, 0.72–0.86) and 0.91, while those of other b 
value were comparatively lower of 0.84 (95% CI, 0.78–0.91), 
0.71 (95% CI, 0.58–0.85) and 0.88, respectively. Field 
strength is another essential parameter of MRI in predicting 
lung lesion. On the basis of our result, although 1.5 T was 
less sensitive than 3.0 T in screening pulmonary nodule 
[0.82 (95% CI, 0.77–0.87) vs. 0.88 (95% CI, 0.83–0.92)], it 
was more specific than 3.0 T [0.80 (95% CI, 0.74–0.86 vs. 
0.69 (95% CI, 0.53–0.85)].

As for study method, the adjusted sensitivity and 
specificity for quantitative analysis was 0.84 (95% CI, 
0.79–0.89) and 0.79 (95% CI, 0.71–0.87), while those 
for qualitative analysis was 0.84 (95% CI, 0.78–0.90) and 
0.73 (95% CI, 0.63–0.83). It was significantly specific in 
quantitative analysis (P<0.05). What’s more, prospective 
design and consecutive enrollment were with higher 
sensitivity in comparison to retrospective and inconsecutive 
study design.

Discussion

Use of PET/CT for routine surveillance is now clearly not 
recommended by Centers for Medicare and Medicaid Services 
(CMS) (22). In concurrence with this assessment, Cancer Care 
Ontario systematically reviews the literature and to date has 
not recommended PET/CT for surveillance (23). Available 
evidence from clinical studies suggests that using PET/CT 
to monitor for recurrence does not improve outcomes and 
therefore generally is not recommended, notably increased 
radiation from PET and PET/CT (5). Until high-level 
evidence demonstrates that routine surveillance with PET/
CT scans help prolong life or promote well-being after 
treatment for a specific type of cancer, this practice should 

Figure 5 The Deeks’ funnel plot showed the publication bias in 
lesion size >2 cm.

Figure 6 The Deeks’ funnel plot showed the publication bias in 
lesion size ≤2 cm.

Figure 4 The Deeks’ funnel plot showed publication bias towards 
studies.
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not be performed (4). Therefore, if radiation-free DW-MRI 
could be an alternative selection, this imaging test might 
help to prevent long-term side-effects from radiographic 
staging procedures.

Substantial advantage lies in the new MRI techniques 
nowadays. The principle of DW-MRI exploits the random 
motion, Brownian movement, of water protons in biologic 
tissue, leading to DW-MRI possessing no exposure to 
ionizing radiation and reflecting the diffusivity of water 
molecules in tissue. When ADC values are assessed with 
DW-MRI, there is a significant difference in ADC between 
malignant and benign lesions. Moreover, the use of T1-
weighted sequence obviates the need for an intravenous 
contrast medium, so patients with poor renal function can 
also undergo MRI for this purpose. In addition, compared 
to PET or PET/CT, advantages of DW-MRI include no 
anaphylaxis to high spatial resolution of images, diverse 
information from various sequences, high efficiency, and 
low consumption. To some extent these might explain 
why DW-MRI may outperform PET/CT in the assessed 
contexts.

Pulmonary lesion is a common finding on chest imaging, 
in which lung cancer represents the most frequently 
diagnosed malignancy. Lung cancer is regarded as the 
most common cancer and leading cause of cancer death 
in the whole world (24,25).  Radiation-free DW-MRI, 
which has been applied in recent years, may yields similar 
or even superior diagnostic value especially in lung cancer 
in comparison of PET/CT (10). The combination of 
anatomical, physiological and biological information makes 
multiparametric MRI an appealing tool for the diagnosis 
of malignant lesions, among which DW-MRI, visualizing 
the diffusion characteristics of tissue, is widely used and 
has presented promising results. Since the diagnostic 
performance of DW-MRI in distinguishing pulmonary 
lesions has been performed in many studies, we attempt 
to evaluate the overall diagnostic accuracy with a meta-
analysis.

We observed lower sensitivity but higher specificity of DW-
MRI in diagnosis of pulmonary malignancies when compared 
with sensitivity of 0.89 (95% CI, 0.87–0.91) and specificity 
of 0.75 (95% CI, 0.71–0.78) in PET/CT on basis of a recent 
study by Deppen et al. (12). Allow for heterogeneous results 
in different lesion size of imaging modality, we compared 
average adjusted sensitivity and specificity between DW-MRI 
and PET/CT in Deppen’s study, which nodule was proposed 
measuring ≤2 cm and >2 cm in maximum dimension. In 
comparison, DW-MRI had a significantly higher average 

adjusted specificity in both ≤2 cm and >2 cm subgroup, 
although with lower sensitivity (P=0.01 for studies with 
lesions ≤2 cm and P<0.01 for studies with larger average 
lesion size) in comparison to PET/CT in both subgroup. 
Although adjusted specificity of DW-MRI was higher than 
PET/CT, we found it had a lower specificity among studies 
reporting larger lesions than those with smaller lesions. 
From the practical aspect, difficulty of defining areas where 
the regions of interest are made to measure ADC values due 
to variable signal intensity on ADC maps, leading to certain 
confounds, might account for lower specificity in larger 
lesions.

As a trend in clinical practice, parameters in examination 
modalities were increasingly added to analytical method. 
Empirically, our study showed quantitative analysis with 
ADC value was with similar sensitivity and higher specificity 
than qualitative analysis in differentiating pulmonary 
lesion, which may imply that ADC is an objective value 
that can improve the efficiency of DW-MRI in screening 
on pulmonary nodules. Most scanners generate identical 
ADC value without significant difference, regardless of the 
manufacture, scanner type, field strength, gradient strength, 
or gradient slew rate. There are agreements among all 
stakeholders on standards for both acquisition protocols, 
repeatability/reproducibility and for the post-processing 
procedures, to ensure that quantitative ADC values have 
similar meanings across institutions, because the technique 
is quantifiable and can be repeated easily. For instance, 
the measured ADC values show good reproducibility 
between different MR systems, a GE 1.5 T (Signa Twin-
Speed HD, GE Healthcare, Milwaukee, WI), a Siemens 
1.5 T (Magnetom Espree, Siemens Healthcare, Erlangen, 
Germany) and a Philips 3.0 T (Achieva Dual, Philips 
Healthcare, Best, The Netherlands) scanners (26). Thus, 
ADC value has the potential for clinical trials and cancer 
screening.

As for standardized data sets, additionally, DW-MRI 
should be performed with sufficient degrees by appropriate 
choices of b values, with considerations given for the 
anatomic region, tissue composition, and pathologic processes. 
According to a previous study, we summarized b values that 
may be used as a guide when performing DW-MRI for 
qualitative assessment and 750–1,000 s/mm2 may be served 
as optimal value for whole-body imaging purpose. Thus, 
we conducted a subgroup analysis to compare the b value of 
750–1,000 with other values, and the results confirmed that b 
value of 750–1,000 s/mm2 was with comparable sensitivity and 
significant higher specificity in comparison to others. It may 
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be concluded that 750–1,000 s/mm2 may be served as optimal 
value for DW-MRI in whole-body imaging purpose.

Although subgroup of prospective and consecutive 
enrollment only exerted higher sensitivity, it may be caused 
by limited sample size or other potential biases. On basis of 
our result, we suggest more scientific experiment design in 
future, which will predict the efficacy of imaging modality 
in a more convincing way. Despite a noninvasive test to 
assess the risk of cancer or benign disease recommended 
by diagnostic guidelines (1-3), PET or PET/CT should be 
limited for use of diagnosing lung cancer in regions where 
infectious lung disease is endemic (12). Our meta-analysis 
established the advantages of DW-MRI for the diagnosis 
of lung cancer. This strong evidence exists for health-care 
systems to consider the introduction of DW-MRI as a 
crucial evaluating examination for lung lesions.

Advances in MRI technique, providing operability to 
achieve whole-body DW imaging and excellent tissue 
contrast, have led to good diagnostic performance in clinical 
practice and investigation. DW-MRI, for either whole-
body or regional purposes (7,8), is no more technically 
challenging and prone to be reliable as an examination. 

Although the application of PET/CT has grown rapidly 
during the past several years, this modality is associated 
with substantial exposure to ionizing radiation equivalent 
to roughly 700–750 chest radiographs (27). Exposure to 
ionizing radiation in radiosensitive patients causes roughly 
an increased risk of cancer, especially leukemia and brain 
cancer (28). According to our result, radiation-free DW-
MRI may be considered as a potential alternative by 
medical practitioner. This finding will contribute to balance 
against an increasing tendency of diagnosing cancer patient 
using PET/CT initially and the risk of radiation on certain 
population before evaluation has been done.

Conclusions

Radiation-free DW-MRI shows a favorable balance 
between sensitivity and specificity in diagnosing pulmonary 
malignancies. Existing evidence may indicate that DW-
MRI could be considered as an independent substitute 
in diagnosis of lung lesions, which might help to prevent 
long-term side-effects from radiographic diagnosing and 
evaluating procedures.
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Supplementary

Table S1 Baseline characteristics of the included studies

Study Country
Patient 
number

Lesion 
number

Man/women Age Design
Consecutive 
enrollment

Magnetic field 
strength, T

b value, s/mm2 Modality Analytical method Lesion size

Chen W 2010 (29) China 56 7 35/21 51 P Yes 1.5 1,000 Only Qualitative >2 cm

Cai C 2011 (30) China 133 97 77/56 55 R ND 1.5 600 Combined Quantitative <2 cm

Chen A 2010 (31) China 58 58 38/20 55 P ND 1.5 300, 600, 900 Combined Quantitative <2 cm

Coolen J 2012 (32) Belgium 80 80 ND ND P Yes 3.0 ND Only Quantitative ND

Coolen J 2014 (33) Belgium 54 54 36/18 61 P Yes 3.0 50, 500, 750, 1,000 Combined Quantitative >2 cm

Das SK 2017 (34) China 32 27 ND ND P Yes 3.0 500, 1,000 Only Quantitative ND

Deng QM 2012 (35) China 71 71 46/25 52 R ND 1.5 300, 500, 800 Only Quantitative <2 cm

Gümüştaş S 2012 (36) Turkey 67 67 49/17 64 P Yes 1.5 500, 1,000 Only Quantitative >2 cm

Guo MT 2018 (37) China 46 48 33/13 ND P Yes 3.0 1,000 Only Quantitative <2 cm

Jao ZY 2019 (38) China 96 96 43/53 ND P Yes 3.0 600, 800, 1,000 Combined Quantitative ND

Jouvet JC 2014 (39) France 37 45 ND ND P ND 1.5 600 Combined Qualitative <2 cm

Koyama H 2010 (40) Japan 32 33 14/18 65 P Yes 1.5 1,000 Only Qualitative >2 cm

Koyama H 2015 (41) Japan 32 36 20/12 68 P Yes 1.5 500, 1,000 Combined Qualitative <2 cm

Laurent V 2010 (42) France 35 14 ND ND P Yes 1.5 600 Combined Qualitative <2 cm

Li W 2011 (43) China 116 120 69/47 58 ND ND 3.0 200, 500, 800, 1,000 Only Quantitative >2 cm

Liu H 2010 (44) China 62 66 38/24 58 P Yes 1.5 500 Only Quantitative >2 cm

Mori T 2008 (45) Japan 104 140 55/49 68 P ND 1.5 1,000 Combined Quantitative <2 cm

Nomori H 2015 (46) Japan 77 87 ND ND P ND 1.5 800 Combined Qualitative <2 cm

Ohba Y 2011 (47) Japan 58 76 ND ND P ND 1.5 3.0 1,000 Combined Quantitative >2 cm

Ohba Y 2009 (48) Japan 110 124 56/54 68 R ND 1.5 1,000 Only Quantitative <2 cm

Ohno Y 2019 (49) Japan 57 71 38/19 ND P Yes 3.0 ND Combined Qualitative ND

Ohno Y 2008 (7) Japan 203 51 109/94 72 P Yes 1.5 1,000 Combined Qualitative ND

Regier M 2011 (50) Germany 20 71 10/10 66 P Yes 1.5 500 Combined Qualitative <2 cm

Satoh S 2008 (51) Japan 51 54 37/14 66 P Yes 1.5 1,000 Combined Qualitative >2 cm

Sommer G 2012 (52) Switzerland 33 31 24/9 66 P ND 1.5 800 Combined Qualitative >2 cm

Tanaka R 2006 (53) Japan 43 43 22/21 66 ND ND 1.5 1,000 Combined Qualitative >2 cm

Tanaka R 2007 (54) Japan 45 45 19/26 68 ND ND 1.5 1,000 Combined Qualitative >2 cm

Tanaka R 2009 (55) Japan 46 72 18/28 67 P Yes 1.5 1,000 Only Qualitative <2 cm

Tondo F 2011 (56) Italy 34 34 25/9 59 ND ND 1.5 500, 1,000 Combined Quantitative <2 cm

Uto T 2009 (57) Japan 28 28 22/6 64 ND ND 1.5 1,000 Combined Qualitative >2 cm

Wang W 2010 (58) China 105 105 58/47 57 ND ND 1.5 1,000 Combined Qualitative >2 cm

Wang MJ 2011 (59) China 56 56 39/17 58 P ND 3.0 300, 500, 700, 900 Combined Qualitative >2 cm

Wu HW 2008 (60) China 61 61 42/19 58 ND ND 3.0 500 Combined Quantitative >2 cm

Yang TH 2008 (61) China 13 24 ND ND ND ND 1.5 400, 500, 600 Only Qualitative ND

Zhang J 2014 (10) China 113 113 67/46 59 P Yes 3.0 1,000 Combined Quantitative + qualitative <2 cm

Zhang YJ 2018 (62) China 50 50 28/22 61 R ND 1.5 800 Combined Quantitative >2 cm

Zhou SC 2016 (63) China 56 56 41/15 52 P Yes 1.5 500 Only Quantitative ND

P, prospective; R, retrospective; ND, not documented; only, DWI; combined, DWI combined with other sequence.
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