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Introduction

The treatment of advanced non-small cell lung cancer 
(NSCLC) uses different therapeutic strategies chosen based 
on the biological characteristics of disease and the patient's 
clinical conditions in order to balance the benefits and side 
effects associated with prolonged therapy and maintain a 
satisfactory quality of life. Numerous molecular alterations 
of NSCLC are now known that affect the tumor biology 
and represent a valid therapeutic target for molecular target 

treatments (oncogene-addicted disease). In particular, in 
adenocarcinoma have been identified activating mutations 
of epidermal growth factor receptor (EGFR) (in 10–15% 
of Caucasian patients and up to 40% of Asian patients), 
rearrangements of anaplastic lymphoma kinase (ALK) 
(in about 3–7% of cases), c-ros oncogene 1 (ROS-1) (in 
about 1–2% of the cases) and mutations of v-Raf murine 
sarcoma viral oncogene homolog B1 (BRAF) among the 
most relevant molecular driver aberrations (1-4). Patients 
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with specific types of oncogene-addicted tumor have a 
particularly high incidence of metastasis to the brain, typical 
site for dissemination of lung cancer, which at diagnosis 
exceeds 20% and reaches about 30–40% of EGFR-mutated 
and ALK-rearranged cases, respectively. The proportion 
rises during the course of the disease (5,6). Recognizing 
the heterogeneity of NSCLC, the peculiarities of clinical 
contexts, and the availability of various treatment options 
for brain metastases (BMs) (surgery, radiotherapy and 
systemic therapy), research now places increasing attention 
on personalizing care, which allows better treatment 
management in NSCLC patients with oncogenic drivers 
and BMs.

Systemic therapy for BMs from oncogene-
addicted NSCLC

With EGFR mutation

At least eight randomized phase III studies have shown, in 
patients with advanced EGFR-mutated NSCLC, the 
superiority of an oral treatment with an EGFR tyrosine 
kinase inhibitor (TKI) such as gefitinib (250 mg daily), 
erlotinib (150 mg daily) or afatinib (40 mg per day) in first-
line therapy compared to standard platinum-based 
chemotherapy, in terms of response rate (RR) and 
progression-free survival (PFS) (7-14). These are small 
molecules that are effective in blocking EGFR-mediated 
signal transduction through binding to the ATP attack site 
in the EGFR mutated kinase domain. Due to the blockage 
of the downstream transduction signal, cell proliferation is 
arrested and cell death is induced via the intrinsic apoptotic 
pathway (15). The median PFS in the cited studies were 
between 8.4 and 13.1 months for EGFR inhibitors, and 
between 4.6 and 6.9 months for chemotherapy. However, 
none of these individual studies showed a significant 
advantage in overall survival (OS), probably because many 
patients treated with chemotherapy received an EGFR 
inhibitor in subsequent treatment lines, and because the 
studies were not designed to observe differences in OS. A 
joint analysis of two randomized phase III studies of similar 
design, the LUX-Lung 3 and LUX-Lung 6 studies (in 
which patients were randomized to receive afatinib versus 
chemotherapy) showed, in the subgroup of patients with 
classical EGFR mutation, a small but significant advantage 
in OS in favor of afatinib compared to chemotherapy 
[median OS, 27.3 versus 24.3 months, hazard ratio (HR) 
0 .81 ,  95% conf idence  in terva l  (CI ) :  0 .66–0 .99 ,  

P=0.037] (16). Although there are few data available on the 
efficacy of EGFR TKIs in the case of uncommon mutations, 
it is believed that the rare mutations of exons 18–21 confer 
sensitivity to treatment, with the exception of insertions of 
exon 20 and de novo T790M mutation in exon 20 which 
instead constitute mutations of resistance for inhibitors of 
the first-(gefitinib and erlotinib) and second- (afatinib) 
generation (17-23). In the population of EGFR-mutated 
patients with BMs, gefitinib and erlotinib led to an 
intracranial objective response rate (ICR ORR) of over 50% 
(24-27). Actually, depending on the criteria used in the 
selection of patients, the range of responses varied between 
10% and 88%, also considering that both compounds show 
a limited ability to cross the blood-brain barrier (BBB) and 
therefore to penetrate in the central nervous system (CNS), 
being recognized by efflux pumps ABCB1 and ABCG2 
present at that site (27-31). In a prospective phase II study 
of 28 patients with EGFR-mutated NSCLC and BMs 
treated with gefitinib or erlotinib, a disease control rate 
(DCR) of 93% was achieved, with median PFS and OS of 
6.6 months (95% CI: 3.8–9.3 months) and 15.9 months 
(95% CI: 7.2–24.6 months), respectively. There were no 
differences in PFS and OS based on the EGFR TKI  
used (26). And 15.2 months of PFS (95% CI: 8.3– 
22.2 months) were achieved with erlotinib with an objective 
response in 6 of the 8 patients with known EGFR mutation 
enrolled in a phase II study of 48 pretreated NSCLC 
patients with BMs. OS for patients with EGFR mutation 
was 37.5 months (32). A prospective study with gefitinib in 
41 NSCLC patients with BMs, pretreated or not, not 
selected for EGFR, showed a 27% DCR (95% CI: 13–40%) 
and a  median part ia l  response  (PR)  durat ion of  
13.5 months (33). Retrospective analyses evaluated the role 
of the two TKIs for NSCLC BMs: in the first study, of 69 
identified patients treated with erlotinib, 17 presented 
EGFR mutation and achieved an ORR of 82.4%, a time to 
IC progression (TTIP) median of 11.7 months (95% CI: 
7.9–15.5 months) and an OS of 12.9 months (95% CI: 6.2–
19.7 months) (28). In the second study, the median OS of 
patients receiving erlotinib (n=11) was not significantly 
longer than that of patients receiving gefitinib (n=52) (25.0 
versus 18.1 months, HR 0.81, P=0.45) but almost no brain 
progression occurred in the erlotinib group compared with 
a median TTIP of 10.8 months in the gefitinib group 
(P=0.02) (34). From a previous retrospective study, erlotinib 
had been shown to prolong the survival of NSCLC patients 
with leptomeningeal carcinomatosis compared to gefitinib, 
although without statistical significance (35). Another study 
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in patients with BMs and EGFR mutation reported that, 
unlike gefitinib, erlotinib therapy was a favorable prognostic 
factor (36). Still, a progressive CNS disease proportion rate 
between 2.9% and 4.8% was reported from prospective and 
retrospective studies after treatment with erlotinib (37-39). 
The proportion of cases with CNS progression after 
erlotinib therapy was smaller than that with gefitinib, as 
shown in the randomized phase II study NEJ005 (40). The 
rate of brain progression was less than 10% in studies with 
erlotinib and 25.1–39.4% in studies with gefitinib (40,41). 
However, from a pooled analysis of published data, therapy 
with EGFR TKIs for NSCLC patients with BMs was 
particularly effective in patients with EGFR mutation, in 
which ORR and DCR rates of 85% and 94.6% respectively 
were observed, with a PFS of 12.3 months and an OS of 
16.2 months (42). Erlotinib and gefitinib dose variations 
have been studied to increase the concentration of the drug 
in cerebrospinal fluid (CSF) (43-45), but without leading to 
lasting responses (46) and with lower tolerability of high 
doses of TKIs by patients. Afatinib is a second-generation 
irreversible EGFR TKI, characterized by a limited ability 
to exceed BBB, even lower than that of first-generation 
TKIs, but pretreated patients with EGFR TKI-resistant 
NSCLC and BMs benefit from its use, with brain disease 
control in 66% of cases (47). In patients without brain 
involvement at diagnosis, the rate of brain progression with 
afatinib was 7.2% and 5.4% in the LUX-Lung 3 and LUX-
Lung 6 trials, respectively (48). Furthermore, PFS and ORR 
were examined in patients with asymptomatic BMs in both 
studies (13,14,48). Eighty-one patients had BMs and 
common EGFR mutations (35 patients in LUX-Lung 3 and 
46 in LUX-Lung 6), 10 the patients with BMs and 
uncommon EGFR mutations. The median PFS was longer 
with afatinib compared to chemotherapy in the 81 patients 
(11.1 versus 5.4 months, HR 0.54, P=0.1378 in LUX-Lung 
3 and 8.2 versus 4.7 months, HR 0.47, P=0.1060 in LUX-
Lung 6) but the differences did not reach statistical 
significance. From a combined analysis of the data, afatinib 
significantly improved the median PFS in these patients (8.2 
versus 5.4 months, HR 0.50, 95% CI: 0.27–0.95, P=0.0297). 
No significant difference in OS was observed in patients 
with BMs with afatinib versus chemotherapy. ORR was 
greater with afatinib than with chemotherapy in patients 
with BMs and common EGFR mutat ions.  In the 
randomized phase II trial LUX-Lung 7 comparing afatinib 
to gefitinib as first-line treatment in 319 patients with 
advanced NSCLC and classical mutation of EGFR, the 
differences in PFS in patients with (7.2 versus 7.4 months 

for afatinib and gefitinib, respectively, HR 0.76, 95% CI: 
0.41–1.44) or without (12.7 versus 10.9 months, respectively, 
HR 0.74, 95% CI: 0.56–0.98) BMs were similar to the 
difference in PFS observed with afatinib versus gefitinib in 
the global  populat ion (11.0 versus  10.9 months,  
HR 0.73, 95% CI: 0.57–0.95, P=0.017) (49). Evidence of 
emergence in about 60% of EGFR-mutated patients of 
T790M resistance mutation in EGFR exon 20 that reduces 
the activity of first- and second-generation TKIs has led to 
the development of third-generation EGFR TKIs (50-54). 
Of these, the clinical evolution of rociletinib and olmutinib 
was discontinued after an unsatisfactory pattern of efficacy 
and/or safety (55). On the other hand, osimertinib is an 
irreversible oral inhibitor of EGFR that exhibits sensitizing 
mutations and T790M mutation, successfully developed for 
NSCLC with these molecular characteristics. It crosses the 
BBB and inhibits the growth of CNS metastasis in mouse 
models (56). Goss et al. reported an ORR IC of 54% with 
osimertinib in 50 T790M-positive patients after previous 
EGFR TKIs (57). In the randomized phase III study AURA 
3 on 419 pretreated patients with T790M-positive advanced 
NSCLC, PFS was significantly better with osimertinib  
(80 mg daily) than with chemotherapy (10.1 versus  
4.4 months, HR 0.30, 95% CI: 0.23–0.41, P<0.001) with an 
advantage also observed in the 144 patients with BMs (8.5 
versus 4.2 months, HR 0.32, 95% CI: 0.21–0.49) (58). 
Compared with the other TKIs, osimertinib showed a 
better CNS efficacy in 61 patients with asymptomatic  
BMs (59). The median CNS PFS was higher with 
osimertinib compared to standard EGFR TKIs (HR 0.48, 
95% CI: 0.26–0.86, P=0.014), with CNS ORRs of 66% and 
43% respectively (odds ratio, 2.5, 95% CI: 1.2–5.2, 
P=0.011). In the phase I study BLOOM, AZD3759, EGFR 
inhibitor primarily thought to cross the BBB, showed 
promising clinical activity in NSCLC patients with BMs 
and EGFR mutation but has poor activity in the T790M-
positive NSCLC (60,61). The study also demonstrated the 
activity of osimertinib in leptomeningeal carcinomatosis 
from EGFR-mutated NSCLC in 10 (radiological 
improvement) and 13 patients (stable disease) out of 23 
evaluated with brain imaging (62). Selected trials with 
EGFR TKIs for NSCLC with BMs are shown in Table 1.

With ALK rearrangement

Patients with ALK-positive disease frequently show BMs, 
with percentages of 35% up to 50% of patients enrolled 
with BMs (65,66). The incidence rises during the course 
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of the disease: even 60% of patients may develop BMs 
primarily after treatment with crizotinib (67), first approved 
oral ALK inhibitor that significantly improved survival 
and tumor response in ALK-positive NSCLC patients 
when compared with standard chemotherapy (65,67,68). In 
the randomized first-line phase III study PROFILE 1014 
for ALK-rearranged NSCLC, of the 343 patients in the 
intention-to-treat (ITT) population, 23% had stable BMs at 
baseline. In these patients, IC DCR was significantly higher 
with crizotinib (250 mg twice daily) versus chemotherapy at 
12 weeks (85% versus 45%, P<0.001) and 24 weeks (56% 
versus 25% respectively, P=0.006). PFS was significantly 
longer with crizotinib versus chemotherapy in both the 
subgroup with BMs (HR 0.40, P<0.001; median, 9.0 versus 
4.0 months respectively) and those without (HR 0.51, 
P<0.001; median, 11.1 versus 7.2 months respectively) 
and in the ITT population (HR 0.45, P<0.001; median, 
10.9 versus 7.0 months respectively). The isolated CNS 
progression was more frequent in the crizotinib arm (69). 
In the joint analysis of the phase II studies PROFILE 1005 
and phase III 1007, IC DCR was 56% (95% CI: 46–66%) 
in 109 patients with untreated asymptomatic BMs and 62% 
(95% CI: 54–70%) in 166 patients with previously treated 
BMs. In the former, the median TTIP was 7 months while 
in the last 13.2 months. Among patients without baseline 
BMs, 20% developed BMs after initiation of crizotinib, 
supporting the hypothesis of inadequate drug concentration 
in the CNS (70) due to the poor ability to penetrate 

through the BBB (71,72). Strategies that include higher 
doses of crizotinib combined with chemotherapy and BBB 
efflux pump inhibition have been investigated to increase 
efficacy in the CNS (73,74). ALK newer generation 
inhibitors that exceed crizotinib resistance with improved 
CNS activities are currently available. Alectinib is a second-
generation ALK TKI, not recognized by ABCB1 (75,76), 
which demonstrated significant IC activity in crizotinib-
refractory patients. In a phase I/II study, alectinib led to an 
objective response in 52% of patients with BMs at baseline 
and a complete response (CR) in 29% of cases (77). In a 
phase II study, CNS DCR with alectinib was 83% (95% CI: 
74–91%) and ORR 57% (95% CI: 39–74%) with a higher 
probability for this drug of non-CNS progression compared 
with crizotinib (78). In another phase II study, CNS 
DCR with alectinib was 100% (95% CI: 79–100%) and 
ORR 67% among patients with untreated BMs (79). The 
ALEX study is a phase III trial conducted on 303 patients 
with non-pretreated advanced ALK-rearranged NSCLC, 
randomized to receive alectinib (600 mg twice a day) or 
crizotinib. Alectinib was significantly superior to crizotinib 
in terms of TTIP (HR 0.16, 95% CI: 0.10–0.28, P<0.001). 
A CNS response occurred in 81% and 50% of patients 
with baseline measurable BMs (n=43), respectively with 
alectinib (95% CI: 58–95) and crizotinib (95% CI: 28–72).  
The CNS efficacy of alectinib resulted in a large PFS 
benefit (25.7 versus 10.4 months, respectively with alectinib 
and crizotinib; HR 0.50, 95% CI: 0.36–0.70, P<0.001) (80). 

Table 1 CNS ORRs and DCRs from selected trials with EGFR TKIs for advanced NSCLC

Reference CNS ORR (%) CNS DCR (%) Compound Indication

(26) 83 93 Erlotinib or gefitinib Pretreated or not EGFRm NSCLC

(32) 58.3 – Erlotinib Pretreated NSCLC

(33) PRs [10]; SD [17] 27 Gefitinib Pretreated or not NSCLC

(47) 16 66 Afatinib Pretreated NSCLC

(48) 70–75 89.3–95 Afatinib Not pretreated EGFRm NSCLC

(57) 54 92 Osimertinib Pretreated T790M+ NSCLC

(59) 66 – Osimertinib Not pretreated EGFRm NSCLC

(62) PRs [31]; SD [40] 91 Osimertinib Pretreated EGFRm NSCLC

(60) 83 89 AZD3759 EGFRm NSCLC (not pretreated with EGFR TKIs)

(63) 55 72 Icotinib Pretreated or not EGFRm NSCLC

(64) 50 – Lazertinib Pretreated EGFRm NSCLC

CNS ORR, central nervous system objective response rate; DCR, disease control rate; EGFR TKIs, epidermal growth factor receptor 
tyrosine kinase inhibitors; NSCLC, non-small cell lung cancer; PR, partial response; SD, stable disease.
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Alectinib also appeared active in ALK-positive NSCLC 
patients with leptomeningeal metastases pretreated with 
crizotinib and ceritinib (81). The latter is a second-
generation ALK inhibitor that provided evidence of CNS 
antitumor activity in crizotinib-pretreated patients in whom 
IC ORR was 45% (95% CI: 23–68%) despite the drug 
being an ABCB1 substrate (82). Ceritinib (750 mg daily) 
was compared with chemotherapy as a first-line treatment 
for patients with advanced NSCLC and ALK translocation. 
ASCEND-4 is a randomized phase III study of 376 patients, 
44 with baseline measurable BMs. The IC response among 
the ceritinib recipient patients was 73% (95% CI: 49–89%) 
versus 27% (95% CI: 10–50%) among those receiving 
chemotherapy and the median PFS was 10.7 versus  
6.7 months (HR 0.70, 95 % CI: 0.44–1.12) for patients with 
BMs receiving ceritinib and chemotherapy, respectively (83).  
The phase II study ASCEND-7 (NCT02336451) in 
which the efficacy of ceritinib is evaluated in patients with 
metastatic brain NSCLC and/or leptomeninges harboring 
rearrangement of ALK, has recently been completed. 
Another second-generation ALK TKI is brigatinib which, 
in a phase I/II study of patients pretreated or not with 
crizotinib and with or without BMs, demonstrated an ORR 
IC of 50% in patients with BMs (84). The ALTA phase II 
randomized trial in crizotinib-pretreated patients divided 
into two groups, A with 90 mg of brigatinib daily and B 
with 90 mg a day for a week followed by 180 mg a day, 
showed ORRs of 42% and 67% in patients with BMs in 
groups A and B, respectively (85). Among patients with 
ALK-positive NSCLC who have not previously received 
an ALK inhibitor, IC ORR in patients with measurable 
BMs was higher among those who received brigatinib 
(78%, 95% CI: 52–94%) than those who received crizotinib 
(29%, 95% CI: 11–52%) in the randomized phase III 
ALTA-1L study in which, unlike the ALEX study, previous 
chemotherapy and crossover were allowed (86). Lorlatinib 
is a third-generation ALK inhibitor, developed to overcome 
resistance to first- and second-generation ALK TKIs and to 
improve brain penetration. In a phase I study, lorlatinib was 
active in the CNS, inducing IC response in 42% (95% CI: 
20–67%) of heavily pretreated ALK-positive patients with 
measurable BMs. In the study it was found that the average 
ratio of CSF/plasma concentrations of lorlatinib was 0.75, 
far exceeding the 0.03 ratio reported with crizotinib (87). 
IC ORRs of 68% (95% CI: 50–82%) and 48% (95% CI: 
37–59%) subsequently emerged with lorlatinib in patients 
pretreated with crizotinib and at least two ALK inhibitors 
respectively in a phase II study (88). The randomized phase 

III study CROWN (NCT03052608), which compares 
lorlatinib with crizotinib as a first-line treatment for ALK-
activated NSCLC is currently recruiting patients, even with 
BMs. Another novel ALK inhibitor is entrectinib, evaluated 
in two phase I, ALKA-372-001 and STARTRK-1 studies: 
of the 25 evaluable phase II-eligible patients, 32% (n=8/25) 
had brain disease and there was a response in 63% of them 
(n=5/8) of which one was a patient with ALK-rearranged 
NSCLC (89). STARTRK-2 is a phase II study with 
entrectinib (600 mg daily) for patients with solid tumors and 
several gene alterations, including ALK rearrangement. An 
IC response was reported in 50% of patients (90). The ALK 
inhibitor ensartinib was tested in a phase I/II study in which 
an ORR IC of 64.3% was achieved in 14 ALK-positive 
NSCLC patients with brain target lesions; the IC DCR 
was 92.9% (91). The randomized phase III study eXalt3 
(NCT02767804) comparing ensartinib (225 mg daily) and 
crizotinib in ALK-positive NSCLC patients pretreated or 
not with chemotherapy, with or without BMs, is ongoing. 
In a meta-analysis on ALK inhibitors in NSCLC patients 
with BMs, Zhang et al. reported favorable intracranial 
activity with an overall IC ORR of 48% (95% CI: 32–63%) 
(79% for alectinib, 48% for brigatinib, 45% for ceritinib 
and 18% for crizotinib). From five randomized trials with 
ALK inhibitors versus chemotherapy, the pooled HR for IC 
PFS was 0.52 (95% CI: 0.36–0.75) (92). Table 2 lists selected 
trials with ALK TKIs for NSCLC with BMs.

With ROS-1 rearrangement

Crizotinib was shown to be active in NSCLC patients with 
ROS-1 rearrangement. In an expansion cohort of the phase 
I study of crizotinib 50 patients were enrolled, most of 
whom had received first one or two lines of therapy. ORR 
was 72% with a median response duration of 17.6 months 
and a PFS of 19.2 months (94). These results are consistent 
with the results of the retrospective study EUROS1, 
which included 32 NSCLC patients positive for ROS-
1, treated with crizotinib as first-, second- or third-line 
forward. In the 29 evaluable patients for the response, RR 
was 80% and the median PFS was 9.1 months (95). In the 
absence of direct comparison data between crizotinib and 
chemotherapy in these specific patients and, as crizotinib 
activity data come predominantly from patients pretreated 
with chemotherapy, the high activity demonstrated by 
crizotinib in terms of RR and the prolonged response 
duration are elements that support its use in the front-
line in the ROS1-positive subgroup. With regard to brain 
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involvement, there is still wide variability in the reported 
incidence of BMs for ROS1-rearranged NSCLC (95-97). 
In a retrospective study by Patil et al., BMs for therapy-
naïve, stage IV ROS1- and ALK-positive NSCLC were 
present with an incidence of 36% and 34%, respectively. 
Median PFS times for ROS1- and ALK-positive patients 
were 11 and 8 months, respectively (P=0.304) (98). Clinical 
trials with TKIs for ROS1-positive NSCLC with BMs are 
listed in Table 3. A phase II study evaluated crizotinib in 127 
patients with ROS1-positive NSCLC treated from the first 

to the subsequent lines of therapy. Of these, 23 had BMs 
at diagnosis. In them, ORR was 73.9% (71.2% in those 
without baseline BMs) and the median PFS 10.2 months 
(18.8 months in those without baseline BMs). Globally, 
the responses were lasting with a median duration of  
19.7 months (97). Behind the duration of crizotinib-induced 
response in ROS1-translocated patients, various factors 
have been called into question, in particular the closer link 
to ROS-1 than ALK against which it has a diminished 
potency (102-104). Other inhibitors have been evaluated 

Table 2 CNS ORRs and DCRs from selected trials with ALK TKIs for advanced NSCLC

Reference CNS ORR (%) CNS DCR (%) Compound Indication

(69) 77 85 (12 weeks); 56 (24 weeks) Crizotinib Not pretreated ALK+ NSCLC

(77) 52 – Alectinib Pretreated ALK+ NSCLC

(78) 57 83 Alectinib Pretreated ALK+ NSCLC

(79) 67 100 Alectinib Pretreated ALK+ NSCLC

(80) 81 – Alectinib Not pretreated ALK+ NSCLC

(82) 45 80 Ceritinib Pretreated ALK+ NSCLC

(83) 73 – Ceritinib Not pretreated ALK+ NSCLC

(93) 27.6–51.5 75–85.7 Ceritinib Pretreated or not ALK+ NSCLC

(84) 50 – Brigatinib Pretreated or not ALK+ NSCLC and other tumours

(85) 42–67 83–85 Brigatinib Pretreated ALK+ NSCLC

(86) 78 – Brigatinib ALK+ NSCLC (not pretreated with ALK TKIs)

(87) 42 – Lorlatinib Pretreated or not ALK+ NSCLC

(88) 48–68 – Lorlatinib Pretreated ALK+ NSCLC

(90) 50 – Entrectinib Solid tumours with different gene fusions

(91) 64.3 92.9 Ensartinib Pretreated or not ALK+ NSCLC

ALK TKIs, anaplastic lymphoma kinase tyrosine kinase inhibitors; CNS ORR, central nervous system objective response rate; DCR, 
disease control rate; NSCLC, non-small cell lung cancer.

Table 3 CNS ORRs and DCRs from selected trials with TKIs for NSCLC and gene alterations other than EGFR and ALK

Reference CNS ORR (%) CNS DCR (%) Compound Indication

(97) 73.9 – Crizotinib Pretreated ROS1+ NSCLC

(99) 25 63 Ceritinib Pretreated ROS1+ NSCLC

(87) 60 – Lorlatinib Pretreated or not ROS1+ NSCLC

(100) 55 – Entrectinib Pretreated or not ROS1+ NSCLC

(101) 66.6 – Entrectinib Pretreated or not NTRK+ NSCLC

CNS ORR, central nervous system objective response rate; DCR, disease control rate; NSCLC, non-small cell lung cancer; NTRK, 
neurotrophic tyrosine receptor kinase; ROS-1, c-ros oncogene 1; TKIs, tyrosine kinase inhibitors.
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in this population. Ceritinib was active in patients heavily 
pretreated in a phase II study of 32 patients enrolled, 8 of 
whom with BMs. IC ORR was 25% with an IC disease 
control in 63% of patients (99). In a phase I study, lorlatinib 
showed IC activity in patients with ROS1-positive NSCLC: 
3 (60%) of 5 patients with measurable BMs had CNS 
responses, including 2 progressed to crizotinib (87). From 
an integrated analysis of three clinical studies (ALKA-372-
001, STARTRK-1 and STARTRK-2) with entrectinib in 53 
ROS1-rearranged NSCLC patients, among the 23 patients 
with baseline brain disease, ORR was 55% with a median 
duration of response (DOR) of 12.9 months (100). More 
generally, entrectinib was associated with longer time-to-
treatment discontinuation (TTD) and PFS in NSCLC 
patients with ROS-1 rearrangement versus a matched real-
world crizotinib population (105). A phase I study showed 
IC activity by another inhibitor, ropotrectinib, in TKI-
refractory ROS1-positive patients, also with BMs. 29 were 
the ROS1-positive NSCLC patients mostly TKI pretreated 
(n=19): in them, ORR was 11% versus 70% of TKI- naïve 
patients and IC activity was observed (106).

With other targetable gene alterations

Rearrangement of the neurotrophic tyrosine receptor kinase 
(NTRK) gene with relative expression of a Trk tyrosine 
kinase fusion protein is found in approximately 3% of 
NSCLCs (107). From integrated efficacy data (ALKA-372-
001, STARTRK-1 and STARTRK-2 studies) in NTRK-
positive NSCLC patients with BMs (n=6), entrectinib 
induced an IC response in 4 patients and a disease stability 
in another patient (101) (Table 3). Other inhibitors evaluated 
include ropotrectinib (106) and larotrectinib, a pan-TRK 
TKI that achieved a 78% RR in a phase I study with 55 
NTRK-positive solid tumors (5 NSCLC patients) (108). 
A phase II study (NCT02576431) with larotrectinib in 
patients with NTRK-positive solid tumors (BMs are 
allowed) is currently ongoing. BRAF mutations are present 
in 2–4% of NSCLCs and are among the new therapeutic 
targets (109). Unlike other BRAF-guided cancers, 
mutational variants different from the classic V600E 
represent half of the BRAF mutations in NSCLC (110).  
Preclinical studies suggest that the resulting kinase activity 
varies according to the type of BRAF mutation (111-113). 
This is supported by case reports and small series that show 
distinct activity by BRAF inhibitors in lung cancers with 
class I, II or III mutations (4,114,115). NSCLC patients 
with class II and III BRAF mutations were more likely 

to have BM (P≤0.001) than those with class I mutation, 
as reported in a retrospective analysis by Dagogo-Jack 
et al. (116). Even the survival was shorter than class I. 
Together, the BRAF inhibitor dabrafenib (150 mg twice 
daily) and the MEK inhibitor trametinib (2 mg per day) 
have demonstrated clinical activity in 57 pretreated BRAF 
V600E-mutated NSCLC patients in a phase II study, with 
67% RR and median PFS and OS of 10.2 and 18.2 months, 
respectively (117). Similar outcomes were reported in 36 
patients with untreated BRAF-V600E-mutant metastatic 
NSCLC (118). Two patients had baseline BMs as non-
target lesions. For both patients, an overall best response of 
PR was reported. There have been some reports in patients 
with brain disease (119) but further clinical validation is 
necessary.

Systemic therapy versus local radiotherapy or 
combination strategies for BMs from oncogene-
addicted NSCLC

Whole brain radiotherapy (WBRT) and stereotactic 
radiosurgery (SRS) are among the standard therapies for 
patients with BMs (120). However, numerous clinical trials 
demonstrated the efficacy of targeted drugs in the CNS 
for patients with oncogene-addicted NSCLC. Hence the 
question, still open, whether to use radiotherapy and above 
all with what timing with respect to systemic therapy. In a 
retrospective comparison of erlotinib and radiotherapy for 
NSCLC patients with EGFR mutation and BMs, Gerber et al.  
found a longer TTIP with WBRT versus erlotinib upfront 
(median, 24 versus 16 months, P=0.04), with no difference 
in OS between the two groups. Patients treated with SRS, 
on the other hand, had longer OS compared to those 
treated with erlotinib (median, 64 months, P=0.004) (121).  
In another retrospective analysis by Magnuson et al., patients 
were treated with SRS or WBRT followed by EGFR 
TKI or with EGFR TKI followed by SRS or WBRT at 
IC progression. The median OS for SRS, WBRT and 
EGFR TKI therapy was 46, 30 and 25 months, respectively 
(P<0.001). SRS followed by EGFR TKI resulted in the 
longest OS and allowed patients to defer WBRT (122). 
Upfront brain radiotherapy improved IC PFS (P=0.03) and 
OS (P=0.05) compared with EGFR TKIs alone in a meta-
analysis by Soon et al. in EGFR-mutated NSCLC (123). Li 
et al. confirmed better OS with upfront WBRT for this type 
of patients (124). Brain radiotherapy failed to demonstrate 
a significant association with survival in EGFR-mutated 
patients (P=0.643) and the timing of the treatment was not 
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significantly related to OS (P=0.246) in a retrospective study 
by Liu et al. (125). Preclinical studies have demonstrated the 
synergistic effect of TKIs combined with radiotherapy (126).  
The latter increases EGFR expression while TKIs inhibit 
radiation-induced DNA damage repair (127). They block 
the expression of RAD51, a protein involved in DNA repair 
mechanisms, inhibit phosphorylation of EGFR and enhance 
apoptosis (126,128). Furthermore, WBRT damages the BBB 
facilitating the penetration of TKIs in the CNS (129). In 
the pooled analysis of the LUX-Lung 3 and LUX-Lung 6 
trials, the benefit in PFS given by afatinib in patients with 
BMs, was greater in those undergoing previous WBRT 
(13.8 versus 4.7 months with afatinib and chemotherapy 
respectively, HR 0.37, 95% CI: 0.12–1.17, P=0.0767) 
compared to those not subjected to WBRT (6.9 versus  
5.4 months, HR 0.62, 95% CI: 0.28–1.36, P=0.2222) (48). 
In a phase II study with erlotinib plus WBRT for NSCLC 
patients with BMs, ORR was 86% and OS 11.8 months. 
Median survival was 19.1 months for EGFR-mutated 
patients (130). Gefitinib plus WBRT gave a higher ORR 
(64.4%) and a significant improvement in OS (23.4 months) 
compared retrospectively with gefitinib alone (ORR 26.7%, 
P<0.001; OS 14.83 months, P=0.002) (131). AZD3759 
combined with radiotherapy enhanced antitumor activity 
in BMs from EGFR-mutated NSCLC (132). Wang et al. 
indicated that brain radiotherapy could result in a lower IC 
PFS while EGFR-mutated patients receiving upfront or 
concurrent brain radiotherapy followed by TKIs had a longer 
OS than the upfront TKIs group (P=0.035) (133). In a recent 
retrospective study published by Chen et al. on EGFR-
mutated patients with NSCLC and BMs, the median OS 
was 14.3 months (95% CI: 9.5–18.3 months) in the TKI plus 
WBRT group and 2.3 months (95% CI: 2–2.6 months) in the 
TKI group alone (134). TKIs included gefitinib, erlotinib, 
afatinib and osimertinib. However, Ke et al. did not report a 
significant difference in OS between the group treated with 
only EGFR TKI compared to that treated with EGFR TKI 
plus WBRT; just as there was no statistical difference in OS 
using radiotherapy before or after (135). TTIP was longer in 
the EGFR TKI group plus WBRT than in the EGFR TKI 
group (P=0.001). Concurrent EGFR TKI (gefitinib, erlotinib 
or icotinib) and WBRT improved IC PFS compared with 
EGFR TKI alone (P=0.015) but not OS (P=0.756) in a 
retrospective study by He et al. (136). Compared to TKIs 
alone, the addition of WBRT to them was not associated 
with a superior benefit in terms of OS (P=0.049) and IC PFS 
(P=0.232) in NSCLC with EGFR mutation and BMs (137). 
This study included asymptomatic and symptomatic BMs. 

It is clear that all these often conflicting data are the result 
of meta-analysis and non-controlled studies characterized 
by heterogeneous patient populations and inadequate 
statistical power in many cases. Similar analyses concern 
patients with oncogene-addicted NSCLC with molecular 
alterations other than EGFR. Doherty et al. reported that 
WBRT for EGFR- and ALK-guided NSCLC BMs is 
associated with longer TTIP compared to SRS or only TKI 
(P=0.0038), with no differences in OS (P=0.67). This is 
also a retrospective evaluation and the authors suggest that 
WBRT may be delayed in some patients (138). The role of 
radiotherapy in the management of EGFR- or ALK-mutated 
NSCLC treated with TKIs was explored in a retrospective 
study by Borghetti et al., in which SRS positively influenced 
OS (139). The lack of randomized studies in this peculiar 
clinical context is striking. The BRAIN trial, the first open-
label, phase III, head-to-head study that compared EGFR 
TKI (icotinib) with WBRT in 158 patients with EGFR-
mutated NSCLC and BMs (63) was an exception (Table 1).  
Icotinib (125 mg three times a day) achieved a higher 
IC PFS than WBRT plus chemotherapy (10 versus  
4.8 months, HR 0.56, 95% CI: 0.36–0.90, P=0.014). 
Similarly, the median PFS was longer in the icotinib group 
than in the WBRT group (6.8 versus 3.4 months, HR 
0.44, 95% CI: 0.31–0.63, P<0.0001). IC ORR was 65% for 
icotinib and 37% for WBRT (P=0.001). However, OS was 
not statistically different between the two groups: 18.0 versus 
20.5 months for the icotinib and WBRT arm respectively 
(HR 0.93, 95% CI: 0.60–1.44, P=0.734), probably due to the 
high crossover rate from WBRT to icotinib (63). TRACTS 
(NCT01763385) is a randomized phase II study investigating 
erlotinib with concurrent brain radiotherapy and secondary 
brain radiotherapy after recurrence with erlotinib. However, 
the study also envisages the use of WBRT and not of SRS as 
a radiotherapy treatment.

Conclusions

Over the years, a specific histological characterization of 
NSCLC and the recognition of certain genomic alterations 
has made it possible to identify some subgroups of patients 
who are sensitive or resistant to specific treatments, in 
addition to paving the way towards new therapies being 
evaluated. The most frequent EGFR mutations are the 
deletion of exon 19 and the L858R point mutation of exon 
21, which together represent about 90% of cases. The 
remaining 10% of EGFR mutations is represented by not 
common mutations affecting exons 18–21 (140). EGFR 
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TKIs are the treatment of choice for the first-line in 
patients with advanced NSCLC and classic EGFR 
mutations. In the joint analysis of the LUX-Lung 3 and 
LUX-Lung 6 studies, the greatest benefit with afatinib was 
observed in patients with exon 19 deletion whereas in 
patients with the L858R mutation there was no benefit (16). 
These data, however consistent with similar available 
evidence for gefitinib and erlotinib, suggest biological and 
clinical differences between the two mutations but do not 
constitute a criterion for the preferential choice of one 
inhibitor over another (141-143). Comparative studies of 
TKIs were conducted in the treatment of patients with 
EGFR-mutated NSCLC. The randomized phase III study 
CTONG009 that compared erlotinib with gefitinib 
(amended to include patients with exon 19 mutation in 
addition to those with exon 21 mutation) in the first- and 
second-line, did not show significant differences between 
the two arms in terms of RR, PFS and OS (144). To these 
data are added those of the non-inferiority phase III 
randomized study WJOG5108L which compared gefitinib 
and erlotinib in pretreated patients without demonstrating a 
significant difference in OS in the two arms (145). The 
LUX-Lung 7 study with afatinib in first-line versus gefitinib 
in patients with classical EGFR mutation demonstrated 
superiority of the former in terms of PFS (P=0.017) but not 
of OS (P=0.285) (49,146). The randomized phase III 
ARCHER 1050 study compared the second-generation 
inhibitor dacomitinib with gefitinib as first-line treatment 
in patients with classical EGFR mutation (BMs were a study 
exclusion criterion). Both PFS (P<0.0001) and OS 
(P=0.0438) were significantly better with dacomitinib 
(147,148). Finally, the randomized phase III study FLAURA 
compared osimertinib with erlotinib and gefitinib in the 
first-line of therapy, again in patients with classical EGFR 
mutation, demonstrating a significant advantage in PFS 
(P<0.001) and OS (P=0.0462) with osimertinib (149,150). 
For IC PFS, patients with L858R mutation could benefit 
more  f rom the  combinat ion  of  EGFR TKI p lus 
radiotherapy although this result, which is derived from a 
meta-analysis, did not reach statistical significance (151). 
Some factors can be considered: BMs were particularly 
associated with deletion of exon 19 in a retrospective study 
of over 1,000 patients, in agreement with the results of Li  
et al.  in 2015 (152,153). Another study reported a 
localization of BMs with L858R mutation closer to the 
brain surface (154). Furthermore, the concentration of drug 
that influences IC PFS differed between EGFR mutations 
19 and 21 in a study by Okuda et al. in which it was found 

that, unlike the deletion of exon 19, IC PFS of mutated 
L858R patients was significantly different between low and 
high concentrations of gefitinib (155). Since radiation 
therapy a l ters  BBB integr i ty  by  increas ing CSF 
concentration of TKIs, this may explain why the mutation 
in exon 21 promotes combined therapy. On the other hand, 
deletion of exon 19 is associated with prolonged survival in 
BMs from NSCLC (156). Traditionally, WBRT is a 
standard treatment option for patients with BMs (157,158). 
It has been associated with higher incidence of radiation-
related toxicity than SRS (159). The latter directs high 
doses of radiation onto the tumor volume with millimeter 
precision, saving as much as possible the surrounding 
healthy tissues and reducing the treatment duration 
(160,161). Brown et al. found that among patients with 1–3 
BMs, SRS alone was in lower cognitive impairment than 
SRS combined with WBRT. In the absence of a difference 
in OS, this suggests that for those patients the SRS alone 
may be the preferred strategy (162). In a retrospective study 
by Wang et al., the median OS of the SRS group was longer 
than in the WBRT group, but this finding did not appear 
significant either in patients with asymptomatic BMs or 
with symptomatic BMs (133). Cai et al. reported 10 months 
of median PFS and 16 months of median OS in 7 NSCLC 
patients with BMs and EGFR mutation, treated with SRS 
and concurrent gefitinib (163). In addition, Yamamoto et al. 
have suggested that SRS in patients with up to 10 BMs 
(largest tumor <10 mL in volume and <3 cm in longest 
diameter; total cumulative volume ≤15 mL) could be a 
suitable alternative with fewer side effects than WBRT 
(164). Immediate SRS but not WBRT has been associated 
with longer survival in a recently published study by Lee  
et al. on EGFR-mutated patients with BMs (165). Today, 
thanks to SRS and new drugs it is possible to delay WBRT 
which is associated with adverse effects and may not 
improve the survival or quality of life of patients (166,167). 
The role of radiotherapy in patients receiving osimertinib 
requires further research. CNS response to osimertinib was 
observed independently of previous brain radiotherapy (59). 
Osimertinib gave 80% CNS DCR and 53.3% ORR in 
NSCLC patients in real-world setting (168). In this study 
CNS DCR was higher in patients with EGFR T790M +/
exon19del mutations than in those with EGFR T790M +/
exon21 L858R mutations but there was no statistical 
difference between the two groups, not even in terms of 
CNS ORR. This was consistent with the results of the 
overall population of the AURA2 study (169) and with 
studies that reported greater efficacy of EGFR TKIs in 
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patients with deletion of exon 19 rather than the L858R 
mutation of exon 21 (143). However, the emergence of the 
T790M resistance mutation is comparatively rarer in the 
CNS, suggesting that divergent evolution and different 
resistance mechanisms may occur (170-172). Lazertinib is 
among the mutant-selective EGFR inhibitors with a high 
CNS efficacy. Lazertinib is a third-generation inhibitor not 
recognized by ABCG2 and a weak substrate of ABCB1 that, 
compared in vivo to equimolar concentrations, produced 
better tumor regression than osimertinib (173). Yun et al. 
have proved potent BBB penetration by lazertinib and 
potential toxicity advantage (173). A total of 105 NSCLC 
patients with acquired resistance to EGFR TKIs with or 
without BMs were enrolled in a phase I/II study and treated 
with lazertinib. ORRs were 64% and 67% in evaluable 
patients (n=91) and in T790M-positive patients (n=76), 
respectively. In patients with BMs (n=9), ORR was 56% (64) 
(Table 1). NSCLC represents a heterogeneous disease that 
includes an increasing number of biologically and clinically 
distinct molecular subtypes (174,175). Their identification 
and subsequent development of targeted therapies have 
transformed the natural history of oncogene-addicted 
NSCLC. With increased patient survival, an increased risk 
of developing BMs was also observed. This has led to a 
growing interest in optimizing local disease control. The 
use of biological agents combined with radiotherapy 
requires well-designed, multi-institutional prospective 
assessments that can validate findings derived in most cases 
from retrospective studies from which no definitive 
conclusions can be drawn. Even trials that help to better 
define the optimal sequence of brain radiotherapy and 
systemic TKI therapy are also necessary. One of these is the 
phase II multiple-arm study ASCEND-7 (NCT02336451). 
Evaluation of the IC response in 28, 29, 7 and 33 patients in 
the respective arms (arm 1: previous brain radiotherapy and 
previous ALK TKI, arm 2: previous ALK TKI but not 
brain radiotherapy, arm 3: previous brain radiotherapy but 
not ALK TKI , arm 4: no previous brain radiotherapy nor 
ALK TKI) having baseline measurable BMs showed IC 
ORRs of 39.3%, 27.6%, 28.6% and 51.5%, and IC DCRs 
of 75.0%, 82.8%, 85.7% and 75.8%, respectively (93). 
Tools that predict the survival of patients with NSCLC and 
BMs can facilitate the choice of personalized treatment and 
be used to stratify patients enrolled in future clinical trials 
(176-178). However, following the progress of radiotherapy 
and the current availability of new drugs, some factors 
included in these scores may be less prognostic for patients 
with BMs and oncogene-addicted disease. Certainly, the 

timing and modalities of brain radiotherapy in patients with 
lung cancer and gene alterations should be determined on 
an individual basis and with a multidisciplinary approach, 
even in symptomatic patients usually excluded from clinical 
trials.
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