
© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2015;4(1):67-81www.tlcr.org

Introduction 

Lung cancer is the leading cause of cancer related deaths 
in Canada (1). In the developed world, non-small cell 
lung cancer (NSCLC) is the predominant form of the 
disease, accounting for approximately 85% of cases (2). 
The advent of molecular profiling has led to the discovery 
of “driver mutations”, targeted therapy, and personalized 
medicine. Some of the earliest driver mutations discovered 
and targeted were mutations in the epidermal growth 
factor receptor (EGFR) gene (Figure 1). EGFR is a receptor 
tyrosine kinase which, once activated by binding ligand and 
receptor dimerization, transphosphorylates its cytoplasmic 
tails, activating cellular signaling pathways such as the 
phosphoinositide 3-kinase (PI3K)-AKT pathway, the STAT 
pathway, and the MAPK pathway, ultimately leading to 
increased cell proliferation, migration, and survival (3-6). 
Approximately 10-30% of NSCLC patients have activating 
mutations in EGFR (7-9). Targeting EGFR in these patients 

with activating mutations has shown initial and significant 
success in the clinic (10,11). 

Classical activating mutations, such as the exon 19 deletions 
and exon 21 L858R substitution, account for approximately 
45% and 40% of all EGFR mutations, respectively; these 
two mutations are associated with good responses to 
EGFR-targeted small molecule inhibitor therapies (11). 
Initially, these mutations were shown to destabilize the 
auto-inhibited conformation of the receptor (the normal 
state of the receptor in the absence of ligand) thus causing 
constitutive activation of the kinase domain (12-14). More 
recently, Shan et al. (15) reported that the L858R mutation 
causes a partially disordered state of the EGFR kinase which 
promotes dimerization and thus aberrant activation. Dixit 
and Verkhivker (16) recently published the sequence and 
structure-based computational model which predicted that 
the L858R mutation synergistically shifts EGFR towards 
the active state and favours the formation of the asymmetric 
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dimer. The L858R activating mutation has also been shown 
to decrease ATP binding affinity. Yun et al. (17) report 
that this decreased affinity for ATP essentially creates a 
“therapeutic window”, which renders the oncogenic EGFR 
mutants more easily inhibited by TKIs, as they now have 
higher binding affinity than, and thus can outcompete ATP.

Over the years, drugs have been developed which 
specifically target EGFR. One such class is a group of small 
molecule inhibitors that inhibit the tyrosine kinase domain 
of EGFR, and are thus referred to as tyrosine kinase 
inhibitors (TKIs). The first TKIs shown to have clinical 
benefit were gefitinib and erlotinib (10,11,18). These 
two TKIs are considered first-generation; they reversibly 
bind to the tyrosine kinase domain of EGFR (19). First-
generation EGFR TKIs have shown significant success 
clinically in patients with the most common activating 

EGFR mutations. As first-line treatments, EGFR inhibitors 
have been shown to produce overall response rates (ORRs) 
of close to 75% in patients who harbor activating mutations 
in EGFR (3,20,21).  

Despite this, the vast majority of patients develop resistance 
to treatment; the median progression free survival (PFS) after 
treatment with a first generation EGFR TKI in patients with 
activating mutations is typically less than one year (20-22). 
Numerous biological mechanisms of acquired resistance (AR) 
have been elucidated (Figure 2), but in up to 30% of patients, 
the mechanism of resistance remains unknown (23). To date 
few patients have been cured by an EGFR TKI alone and 
almost all patients eventually acquire resistance and relapse 
(21,24). This review aims to give an overview of the most 
common mechanisms of primary and AR as well as highlight 
novel, newly emerging theories.

Figure 1 Missense mutation is represented by the reference amino acid, followed by the residue number, followed by the mutant residue. 
For summary of somatic mutations found in EGFR. Mutations in green are typically sensitive to EGFR TKIs, those in red are typically 
resistant. Approximate frequency of occurrence in NSCLC patients of each mutation is shown in parentheses. *T790M is found in ~5% 
of pre-EGFR TKI treated patient samples and ~60% of post-EGFR TKI treated patient samples. Horizontal numbers represent exons, 
vertical numbers represent amino acid residues. X indicates when one amino acid has been shown to be replaced by multiple different amino 
acids, as example, the glycine at position 719 has been shown to be mutated to an alanine, cysteine, or serine. LREA: string of amino-acids 
leucine, arginine, glutamate, and alanine). VAIKEL: string of amino-acids valine, alanine, isoleucine, lysine, glutamate, and leucine). TM, 
transmembrane domain; EGFR, epidermal growth factor receptor; TKIs, tyrosine kinase inhibitors [Modified from Sharma et al. (3)].
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Primary resistance

EGFR somatic mutations

Depending on the mutation present in EGFR, tumors exhibit 
differential TKI sensitivities. While the most common 
EGFR-activating mutations, L858R and exon 19 deletion, 
typically confer sensitivity to EGFR TKIs, other primary 
EGFR mutations can confer resistance. Exon 20 insertions 
or duplications, which account for approximately 4-9% 
of EGFR mutations, appear to be resistant to EGFR 
inhibitors in vivo, despite the fact that these mutations 
appear to also be activating mutations, at least in vitro 
(25-33). Most of these insertions occur between amino 
acids 767 to 774 (31). The crystal structure of the exon 
20 D770_N771insNPG EGFR mutant revealed that the 
ATP-binding pocket is unaltered, thus EGFR is activated 
without increasing its affinity for EGFR TKIs (34).  
Interestingly, loss of these activating EGFR mutant genes 
has been reported in vitro, which leads to a decrease in 
addition to EGFR signaling, gained addiction to both 
HER2/HER3 and PI3K/AKT signaling, and thus AR 
to EGFR TKI (35). Other, much less frequent, primary 
EGFR mutations such as G719X and L861X, have been 
reported (Figure 1) (36,37).

Although recognized mainly as a mechanism for AR, 
another EGFR exon 20 mutation, T790M, has also been 
associated with primary resistance. This mutation is 

within the gatekeeper residue, and restores the L858R 
mutant receptors affinity for ATP to wild-type levels, 
thus decreasing the effect of TKIs (38). Biochemical 
studies have demonstrated synergistic kinase activity and 
transformational potential when T790M is concurrently 
expressed with a TKI-sensitizing, EGFR-activating 
mutation (39,40). 

Minor clones with the T790M mutation have been 
identified in treatment-naive tumors that contain classic 
sensitizing mutations. While this mutation has low allelic 
frequencies in treatment-naive tumors, pressure from 
TKIs may select for enriched growth of these T790M 
clones, leading to overall AR. As allelic dilution most likely 
obscures the detection of de novo T790M mutations via 
conventional Sanger sequencing methods, higher sensitivity 
assays such as high-performance liquid chromatography, 
mass spectrometry, locked nucleic acid PCR techniques 
and next generation sequencing have been suggested as 
alternate screening methods (41-47). Recent studies using 
these more sensitive techniques have reported T790M 
mutations in 35%, 38%, and 79% of EGFR-mutant, 
NSCLC pretreatment specimens (48-50). Interestingly, 
Rosell et al. (48) reported that low levels of BRCA-1 negates 
the desensitizing effects of the T790M mutations and is 
associated with longer PFS to erlotinib. Conversely, high 
levels of BRCA-1 lead to increased DNA damage repair 
capacity and thus de novo resistance. 

Figure 2 Summary of mechanisms of resistance to first generation EGFR TKIs. Reported occurrence of each mechanism varies somewhat 
cohort to cohort, thus the shown prevalence rates are approximations. Red text represents mutations, blue text represents amplifications. 
E, increased expression; A, increased activation; R, up-regulation; R, down-regulation; E, loss of expression.
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EGFR germ line polymorphisms associated with primary 
resistance

T790M
This mutation has also been identified rarely in patients as 
a germline polymorphism; it has been identified in 0.5% 
of never smoker-lung cancer patients’ blood samples (51).  
Furthermore, the T790M mutation has also been putatively 
associated with familial cancer syndromes (52). In short, 
the proband’s mother, maternal grandfather and great 
uncle all succumbed to bronchioloalveolar carcinoma in 
their 60’s and 70’s. Furthermore, three out of the four 
siblings, including the proband, also developed lung cancer; 
two of these individuals (including the proband) failed to 
respond to gefitinib treatment, alone or in combination 
with chemotherapy. The third sibling was only recently 
diagnosed at the time of the referenced publication, thus 
their cancer treatment and subsequent response were 
not reported. Tumor specimens were available from two 
of the siblings (five independent primary tumors from 
the proband and a biopsy from metastatic disease from a 
brother). EGFR sequencing identified the T790M mutation 
in all tumors in a 1:1 ratio with the wild-type allele. Three 
of the five tumors from the proband had additional EGFR 
somatic mutations that typically respond to EGFR TKI 
therapy (two with L858R, one with delL747_T751); the 
biopsies from the remaining two primary tumors revealed 
no additional mutations in EGFR. The biopsy from the 
brother’s metastatic lesion also harbored the G719A EGFR 
mutation, which typically confers sensitivity to EGFR TKI 
therapy. Most intriguingly, the T790M mutation was also 
present in the germline (measured from peripheral blood 
mononuclear cells) of both individuals as well as their other 
two siblings (52). In the report by Girard et al. (51), no 
response information to EGFR TKI was reported. 

V843I
In 2008, there was a care report about a woman with a 
family history of lung cancer (father and a brother) who was 
diagnosed with multiple adenocarcinomas that exhibited 
either L858R or L861Q EGFR mutations as well as a 
rare germline EGFR mutation, V843I. Three of her four 
remaining siblings were sequenced, two of whom also 
harbored the germline mutation, neither of whom had 
developed lung cancer despite their advanced age (67 and 
72 years of age) (53). Another report was published in 2011 
on a family with a history of cancer where four of the family 
members exhibited the germline V843I mutation (54). 

Three of these family members developed lung cancer, and 
all of them had the EGFR somatic L858R mutation. Only 
the proband underwent EGFR TKI therapy, however they 
did not respond to either gefitinib or erlotinib. The most 
recent report of this germline variation was in 2013, which 
described the first Caucasian patient with this mutation 
as well as the first patient without concomitant additional 
known EGFR-activating mutation (55). This patient did 
not respond to erlotinib and their tumors continued to 
grow rapidly while on this treatment. Modeling analysis of 
V843I suggests that ATP and TKI affinities for EGFR are 
not affected by this mutation; the mechanism of action for a 
possible germ line predisposition of V843I to develop lung 
cancer remains unknown. Matsushima et al. (56) demonstrated 
that the V843I mutation increased the phosphorylation of 
EGFR and downstream signaling proteins compared to wild 
type EGFR, especially when induced by EGF, suggesting a 
potentially oncogenic role for this mutation. Furthermore, 
they demonstrated that the double V843I/L858R mutant 
did not have increased phosphorylation levels, however the 
double mutant was resistant to erlotinib, gefitinib, afatinib 
and dacomitinib. Finally, structural modeling suggests that 
TKI binding to EGFR would be sterically hindered by 
Arg841 in the V843I/L858R double mutant (56). 

Other genetic polymorphisms

BIM
Despite our furthered understanding of the sensitizing 
effects that various EGFR mutations have to TKIs, patients 
with identical mutations can demonstrate a spectrum of 
responses. One explanation for this variability in responses 
lies within the apoptotic machinery. Recent studies have 
demonstrated up-regulation of BIM in response to EGFR 
TKIs in mutant cell lines, which correlated with apoptotic 
response. EGFR-mutant patients with low BIM expression 
prior to treatment exhibited less tumor shrinkage and 
shorter PFS after TKI therapy (57-61). Variances in BIM 
expression levels have been suggested to be due to a genetic 
polymorphism in BIM, leading to alternative splicing and 
altered function (58,59,62,63). Clinically, the BIM deletion 
polymorphism has been reported in 12.9% of East Asian 
individuals. Furthermore, patients with NSCLC who 
harbor this BIM polymorphism exhibit significantly inferior 
responses to EGFR-TKI treatments compared to wild-
type BIM counterparts (64). Indeed, Nakagawa et al. (64) 
demonstrated sensitization in EGFR-TKI resistant cell lines 
that harbor BIM polymorphisms by combination therapy 
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with HDAC inhibitor vorinostat. Recent results from the 
randomized phase III EURTAC trial demonstrated that 
high BIM expression prior to treatment was a marker of 
longer PFS (HR =0.49; P=0.0122) and overall survival  
(HR =0.53; P=0.0323) (65). As such, BIM appears to act as 
both a biomarker and mediator of TKI-induced sensitivities 
in several oncogene-driven cancers. 

Acquired resistance (AR)

Secondary EGFR mutations

The earliest reported mechanism of resistance to TKIs 
in EGFR-mutant NSCLC is the T790M mutation (see 
previous section on primary resistance), which accounts 
for approximately 50-60% of cases with AR to EGFR 
TKI therapy (24,66-69). Despite the multiple avenues 
of enhanced oncogenicity, tumors harboring T790M 
mutations often exhibit surprisingly slow growth rates (70). 
A retrospective study examining T790M status on rebiopsy 
specimens from 93 patients with EGFR-mutant lung 
cancer and AR to TKIs found that T790M patients had a 
better prognosis. Furthermore, lack of T790M at time of 
rebiopsy was associated with a poorer performance status at 
progression, earlier development of new metastatic disease 
sites, as well as shorter post-progression survival (24).

Other secondary mutations in EGFR linked to AR have 
also been identified such as D761Y, T854A, and L747S. 
However, the structural basis for how these mutations 
confer resistance remains unknown (71-73).

Gene copy alterations of alternative pathways

MET
Amplification of the MET gene is considered one of the 
more common causes of AR in EGFR-mutant NSCLC. 
Heterodimerization of MET and ERBB3 leads to sustained 
activation of the PI3K/AKT signaling pathway, bypassing 
the inhibition of EGFR conferred by TKIs (74). Initial 
reports suggested that MET amplification accounted for 
approximately 22% of AR cases, independent of T790M 
status. However, two recent studies, each testing 37 patients 
with AR to EGFR TKIs for MET amplification by FISH, 
suggest that this prevalence is closer to 5% (44,75). This 
discrepancy between studies may be in part due to technical 
difficulties in identifying this genetic alteration in clinical 
samples. The initial studies with the higher reported 
percentage of MET amplification used several methods of 

assessment such as array comparative genomic hybridization 
(aCGH), quantitative real-time PCR, as well as FISH. On its 
own, FISH is the most widely acceptable technique in clinical 
laboratories, however technical difficulties arise due to both 
MET and EGFR being on chromosome 7. Furthermore, 
polysomy of chromosome 7 is common in NSCLC, 
particularly in samples with EGFR activating mutations (76).  
As such, it’s been suggested that new clinical protocols 
to distinguish meaningful MET amplification and copy 
number gain from underlying polysomy in both EGFR-
mutant and wild-type lung cancers, is required. Aberrant 
activation of MET and subsequent AR has also been 
reported via excessive hepatocyte growth factor secretion, 
the natural ligand for MET (77,78). MET-amplification 
may not be solely a mechanism of AR but also an inherent 
event. Low frequencies of MET-amplified subclones 
have been identified in treatment naive specimens (79).  
Similar to the development of AR in tumors with low 
frequencies of T790M, the dominant mechanisms of AR 
at the time of disease progression in the majority of these 
cases has been MET amplification (80). Recent and on-going 
attempts to overcome AR due to overriding EGFR inhibition 
via aberrant MET signaling is to inhibit both receptors 
simultaneously (80-83). Overall, there is reasonable rationale 
for clinical trials to evaluate MET inhibitors in patients who 
developed AR to EGFR TKI therapy via MET amplification 
mechanism. 

HER2 amplification
Recently, amplification of HER2 has been reported in three 
of 26 (12%) EGFR-mutant NSCLC patients who have AR 
to TKIs. Similar to MET, it is believed that HER2 is able 
to signal parallel to inhibited EGFR and thus reactivate 
common downstream signaling pathways (84).

MAPK amplification
Due to KRAS mutations’ associations with primary resistance 
to EGFR inhibitors, recent studies have focused on RAS/
MAPK signaling as potential mechanisms of AR (85). KRAS 
mutations themselves are known to be mutually exclusive 
with EGFR mutations in patients. Thus, despite their role in 
primary resistance, no KRAS mutations have been identified 
in EGFR mutant patients with AR (75,85,86). However, Ercan 
et al. (87) identified MAPK1 amplification in an erlotinib-
resistant EGFR-mutant NSCLC patient. The investigators 
further demonstrated that a mechanism of resistance to the 
irreversible EGFR TKI WZ4002 was increased ERK signaling 
due to amplification of MAPK or down regulation of negative 
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regulators of ERK signaling. This resistance was overcome by 
inhibition of MEK or ERK and prevented the development of 
subsequent resistance.

Mutations in downstream effector molecules of EGFR 

PIK3CA mutations
Alternative to paral lel  pathways being act ivated, 
downstream effector molecules of the EGFR signaling 
pathway have also been reported to be mutated, leading 
to AR (76). PIK3CA mutations have been reported in 5% 
of EGFR-mutant patients who have AR and preclinical 
studies demonstrate the ability of these mutations to confer 
resistance via activation of downstream AKT (88). PI3K 
phosphorylates PIP2 to PIP3; PTEN (phosphatase and 
tensin homolog), reverses this phosphorylation. The loss or 
decreased expression of PTEN has also been linked to AR 
(89,90).

BRAF mutations
A recent retrospective study identified point mutations in 
BRAF in two out of 195 (1%) lung cancer patients with 
AR to EGFR TKIs. The investigators further confirmed 
BRAFs potential role in AR by inducing ectopic expression 
of mutant BRAF in drug-sensitive EGFR-mutant cells, 
inducing resistance to EGFR TKIs. The addition of a MEK 
inhibitor was able to overcome induced resistance (86).

Epigenetic and other mechanisms 

Epigenetic 
Although the genetic basis for acquiring TKI resistance 
has been well established, a number of recent observations 
reveal a reversible epigenetic mechanism of drug resistance. 
Firstly, genetic mechanisms alone cannot account for the 
high prevalence of TKI-resistant tumors. Secondly, many 
NSCLC patients who previously developed TKI resistance 
respond to TKI again after being off the drug for a period 
of time. Such a phenomenon indicates that acquired TKI 
resistance might not require a permanent genetic alteration. 
Thirdly, there is still a significant proportion of TKI 
resistant tumors that do not harbor any known genetic 
alterations and activation of alternative signaling pathway. 
Finally, tumors exhibit not only genetic but also epigenetic 
heterogeneity within cell populations (91,92).

Epithelial-to-mesenchymal transition (EMT)
EMT, as the name suggests, is a cellular phenotypic change. 

It can be characterized molecularly by a loss of epithelial 
markers such as E-cadherin, and a gain of mesenchymal 
markers, such as vimentin (93). At the cellular level, EMT 
leads to enhanced motility, invasiveness, and in vitro EGFR 
TKI resistance (94-96). EMT has also been identified 
in subsets of clinical EGFR TKI-resistant specimens. 
Despite the growing evidence that EMT may play a role 
in resistance to treatments, the underlying biology of 
this change and specific mechanisms of resistance remain 
unknown (75). Recent work demonstrated the efficacy 
of blocking ERK1/2 in preventing EMT in lung cancer 
cells and enhancing their sensitivity to EGFR TKIs. By 
inhibiting MEK1/2 (MAPKK1/2), an epithelial phenotype 
was promoted and maintained in NSCLC cells despite 
exogenous stimulation by TGF-beta. Furthermore, cells 
that exhibited de novo or AR to gefitinib demonstrated 
decreased cell migration and enhanced sensitivity to the 
EGFR TKI when MEK was inhibited long enough to 
trigger changes in EMT marker expression (97). 

Histological transformation 
Several studies have reported the histological transformation 
to small cell lung cancer in EGFR mutant NSCLC patients 
with acquired EGFR TKI resistance, accounting for 
resistance in possibly up to 3% of the patients. Interestingly, 
the conversion to SCLC was associated with sensitivity 
to standard SCLC treatment while the original EGFR 
mutation was still maintained in the tumor (75,98). The 
mechanism underlying this histological transformation still 
remains unknown.

AXL activation 
AXL is a tyrosine kinase receptor which induces cell 
proliferation, migration and invasion in cancer. Recently, 
several groups reported that activation of AXL signaling 
pathway may confer TKI resistance in EGFR mutant 
NSCLC (99,100). Activation of AXL signaling pathway 
can occur through overexpression of AXL or its ligand 
GAS6. Small-molecule AXL inhibitors, MP-470 and 
XL-880 were able to restore the TKI sensitivity in TKI 
resistant NSCLC cells. Forced overexpression of AXL in 
TKI sensitive NSCLC cells can confer TKI resistance. 
These investigators also found an association between the 
overexpression of AXL and vimentin, a marker of EMT 
in the TKI resistant NSCLC cells. In their exploratory 
analysis of patient samples, approximately 20% of EGFR 
TKI resistant NSCLC patients were found to have tumors 
with upregulated AXL, GAS6 and vimentin.  
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NF-κB activation 
NF-κB is an important transcription regulator of the genes 
that controls cell proliferation and cell growth, including 
tumor growth. Bivona et al. (101) reported previously that 
activation of NF-κB signaling pathway can confer TKI 
resistance in EGFR mutant NSCLC cells. The investigators 
introduced a shRNA library to target >2,000 cancer relevant 
genes in the TKI insensitive H1635 NSCLC cell line. 
This line had an EGFR mutation, but no other identifiable 
mutations or activation of alternative signaling pathways 
that could confer insensitivity to EGFR TKI. Among the 
screen hits conferring TKI sensitivity in H1635, 18 target 
genes were linked to the NF-κB signaling. Inhibition 
of NF-κB signaling could enhance TKI sensitivity in 
H1635 and other EGFR-mutant NSCLC cells, and they 
reported that higher NF-κB activation state was correlated 
with worse PFS and decreased overall survival in EGFR-
mutant NSCLC patients treated with TKI. However, a 
recent clinical study of the combination of PF-3512676, 
an inhibitor for toll-like receptor 9 which activates NF-κB, 
and erlotinib did not increase PFS as compared to erlotinib 
alone in patients with advanced recurrent EGFR-mutant  
NSCLC patients (102).

IGF1-R and KDM5A activation 
Sharma et al. (103) reported that a subpopulation of 
NSCLC tumors developed reversible TKI resistance by 
engaging the IGF1-R signaling pathway and an altered 
chromatin state due to a histone demethylase, KDM5A. 
These TKI resistant cells had upregulated IGFBP-3, 
KDM5A and increased phosphorylation of IGF-1R. In this 
subpopulation, IGF1-R inhibitor, depletion of KDM5A or 
histone deacetylases (HDACs) could markedly suppress the 
TKI-resistant outgrowth of NSCLC cells in combination 
with TKI by restoring the TKI sensitivity of TKI resistant 
cells. Furthermore, inhibition of IGF1-R could lead to 
decreased KDM5A expression and restoration of H3K4 
methylation, suggesting a direct link between IGF-1R 
signaling pathway and KDM5A function. Altogether, the 
authors demonstrated that a transient altered chromatin 
state could potentially mediate TKI resistance in NSCLC. 
Unfortunately, a recent randomized Phase II study 
concluded that the combination of IGF1-R inhibitor 
(R1507) with erlotinib did not provide any PFS or survival 
advantage over erlotinib alone in unselected NSCLC 
patients (104). A clinical study to evaluate the combination 
of erlotinib and HDAC inhibitor, SNDX-275 vs. erlotinib 
alone in treatment of NSCLC patients has just been 

completed (NCT000602030), but the results have not been 
reported.  

Other alternative signaling pathway activation 
Recently many more signaling pathways have been reported 
to mediate resistance to EGFR TKI in NSCLC models, 
but as yet lack evidence for efficacy in patients. These 
pathways include: activation of Wnt-tankyrase-β-catenin 
pathway; reduced expression of NF1; downregulation 
of DAPK through DNA methylation of its CpG island; 
overexpression of FGF2 and FGFR1 in FGF2-FGFR1 
autocrine pathway; upregulation of ADAM17 in heregulin-
HER3 autocrine loop; activation of JAK2-related signaling 
pathway; overexpression of ROR1 caused by NKX2-1; 
activation of VEGF signaling pathway in stromal cells; 
overexpression of Notch-1 and its enhancement of EMT; 
loss of IGF binding proteins; acquisition of stem-cell like 
properties; and involvement of tumor stroma and cancer-
associated fibroblasts derived from EGFR-TKI-resistant 
tumors (105-118). Many of these pathways have been known 
to be relevant in cancer development and progression.  

Current clinical strategies to overcome AR

When patients relapse secondary to AR, alternative treatment 
strategies are desired. There is increasing evidence to support 
patient tumor rebiopsy upon development of resistance 
to determine the optimal second-line treatments; some 
cancer centers and clinical trials are already implementing 
this strategy (119,120). For various cancer sites, rebiopsy 
is a fairly simple procedure. For lung cancer patients, 
however, rebiopsy is often a highly invasive procedure, 
and in many cases, there is a difficult choice of which of 
multiple metastatic sites should be considered for biopsy. 
Some patients who develop initial resistance to an EGFR 
TKI respond again upon a second challenge, after a 
defined period of a TKI drug holiday (121-124). Song et al.  
reported that, based on multiple studies, over 50% of 
patients who progressed on a first line EGFR TKI and then 
stopped the TKI treatment, benefited from a subsequent 
second course of the same EGFR TKI (125). There is 
currently a poor understanding of the mechanisms of 
reversal of resistance conferred by such a drug holiday.  

Optimal therapies have not been established for the 
majority of EGFR-mutant lung cancer patients who develop 
disease progression after merely 10 to 14 months on TKIs 
(20,24,126). Table 1 summarizes the results of clinical trials 
to date using second and third generations TKIs that were 
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supposed to overcome AR. Second-generation EGFR TKIs 
have been developed to overcome resistance, however, 
results from clinical trials have not been as promising as was 
anticipated. 

Second-generation EGFR TKIs form irreversible 
covalent bonds with the ATP-binding site of EGFR as well 
as other members of the HER family of receptors (excluding 
Her3). Neratinib (HK1-272) did not show good response 
rates (RR) in patients with T790M mutations thus further 
development was halted (127). Afatinib (BIBW2992) has 
been investigated as a second- and third-line treatment 
in patients who have AR to first-generation EGFR TKIs  
(LUX-Lung 1, 4, and 5 program) and as a first-line treatment 
in EGFR-mutant patients (LUX-Lung 2, 3, 6 and 7).  
Thus far, afatinib has been shown to improve the disease 
control rate and prolong PFS in both LUX-Lung 1 and 2 
(131,132). The LUX-Lung 4 trial demonstrated a modest 
benefit of afatinib as a third- or fourth-line treatment for 
patients who had previously progressed while receiving 
erlotinib and/or gefitinib (133). The LUX-Lung 5 trial 
demonstrated the benefit of combining paclitaxel with 
afatinib after patients with AR to gefitinib and/or erlotinib 
progress on afatinib monotherpy (134). Dacomitinib  

(PF-00299804), another second-generation, irreversible 
pan-HER TKI, has shown activity against NSCLC cell 
lines that harbor the T790M mutation. Dacomitinib 
efficacy was studied in two phase II trials. The first was 
to evaluate benefit (compared to erlotinib) after failure of 
one or two chemotherapy regimens, the second compared 
its benefit as a second- or third-line treatment in patients 
with advanced NSCLC after failure of at least one prior 
chemotherapy regimen and prior treatment with erlotinib 
(141,142). While the results of these two studies seemed 
initially promising, two randomized phase 3 studies, the 
ARCHER 1009 trial and the NCIC CTG BR.26 trial, 
failed to meet their objectives (136,137). The ARCHER 
1009 trial did not demonstrate any statistically significant 
PFS in advanced NSCLC patients treated with dacomitinib 
compared to erlotinib in the second- and third-line therapy 
of advanced NSCLC (136). The NCIC CTG BR.26 trial, 
which included patients with advanced NSCLC who failed 
previous standard therapy with both chemotherapy and an 
EGFR TKI, failed to demonstrate significant prolongation 
of overall survival in those treated with dacomitinib versus 
placebo, though there was significant improvement in 
response rate, PFS and time to symptom deterioration in 

Table 1 Response rates to second and third generation EGFR TKIs in clinical trials

Agent Study
Prior  

chemo-therapy

Prior EGFR TKI 

therapy

EGFR 

mutation 

required

No. of pts 

with EGFR 

mutation

ORR (in all 

pts, %)

No. pts 

with 

T790M

ORR (in 

T790M+ pts, 

%)

Second generation TKI

Neratinib NCT00266877 (127) Yes & no Yes & no No 91 3 12 0

Afatinib LUX-Lung 3 (128) No No Yes 345 56 NR NR

LUX-Lung 6 (129,130) No No Yes 242 67 NR NR

LUX-Lung 2 (131) Yes & no No Yes 129 61 1 NR

LUX-Lung 1 (132) Yes ≥12 weeks E/G No 62 7 4 NR

LUX-Lung 4 (133) Yes ≥12 weeks E/G No 56 8 2 NR

LUX-Lung 5 (134) Yes ≥12 weeks  A No NR 32 NR NR

Afatinib + 

cetuximab

NCT01090011 (135) Yes Yes Yes 126 29 71 32

Dacomitinib ARCHER 1009 (136) Yes Yes No 47 11 NR NR

BR26 (137) Yes Yes No 157 7 NR NR

Third generation TKI

AZD9291 NCT01802632 (138) Yes Yes Yes 199 55 132 64

HM61713 NCT01588145 (139) Yes Yes Yes 93 17 27 66

CO-1686 NCT01526928 (140) Yes Yes Yes 88 58* 55 58*

pts, patients; EGFR, epidermal growth factor receptor; NR, not reported; ORR, objective response rate; E/G, erlotinib/gefitinib; A, 

afatinib; TKI, tyrosine kinase inhibitor; *, ORR was calculated from phase 2 which included only T790M+ pts.
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patients with KRAS WT NSCLC (137). In neither of these 
trials were patients selected specifically for the presence of 
the T790M mutation.

Recent studies have demonstrated the benefit of 
combining therapies in overcoming resistance that arises 
through secondary mutations in the driver oncogene. 
In both cell line-derived and transgenic mouse models 
harboring T790M mutations, concurrent administration 
of the irreversible EGFR TKI, afatinib, and EGFR 
monoclonal antibody, cetuximab, resulted in dramatic 
tumor shrinkage (143). A phase I/II trial investigating the 
same drug combination in NSCLC patients with EGFR 
mutations and AR to EGFR TKIs demonstrated responses 
in 40% of patients (135,143). The mechanisms underlying 
the synergistic effect of this combination appear to be a 
dramatic inhibition of both phosphorylated EGFR and 
total EGFR. In contrast, afatinib appears to affect only 
phosphorylated EGFR and cetuximab appears to only affect 
the total EGFR protein expression (143). Meador et al. (144) 
developed resistance to the afatinib/cetuximab combination 
in PC-9/BRc1- (exon19 deletion/T790M mutant EGFR 
NSCLC cell line) derived xenografts and found that this 
occurred via the additional amplification of the EGFR gene. 
They further demonstrated sensitivity in this resistant 
model to the third-generation EGFR TKI AZD9291. 

Third-generation EGFR TKIs specifically target both 
activating mutations and T790M mutations in EGFR. These 
agents seem promising; early results from phase I trials on 
three 3rd generation EGFR TKIs were presented at the 2014 
ASCO Annual Meeting. The first study of HM61713 in 
advanced NSCLC patients with EGFR mutations who had 
failed previous EGFR TKIs (NCT01588145) demonstrated 
disease control rates of 76.5% when treated <4 weeks, and 
73.1% when treated ≥4 weeks; 18 of 27 patients carrying 
T790M mutations showed a decrease in the target lesion 
sizes (139). The use of AZD9291 in EGFR mutant NSCLC 
patients (NCT01802632) resulted in (unconfirmed) 
response rates of 64% in 89 patients with T790M (with 
disease control in 96%) and only 23% in 43 patients 
without T790M mutations documented. Importantly, 
RECIST responses were observed at all dose levels and in 
brain metastases (138). For the 3rd generation EGFR TKI,  
CO-1686 (NCT01526928), preliminary results found 
that, of nine patients carrying T790M mutations, six 
demonstrated partial responses (PRs), two achieved stable 
disease, and the final patient achieved PR after transitioning 
to the HBr form of CO-1686 (140). Despite these 
promising, early clinical results, resistance to at least one of 

these third-generation TKIs, CO-1686, has already been 
demonstrated by an EMT mechanism (145).

Summary

Targeting EGFR in NSCLC patients with activating 
mutations holds great promise, however AR remains a 
currently insurmountable hurtle. Mechanisms behind 
AR have been identified in patients, such as secondary 
mutations within EGFR, activation of alternate proteins 
that are downstream of EGFR signaling or activation 
of proteins that feed into the EGFR signaling cascade. 
Further mechanisms of AR have been identified in 
cell lines and remain to be observed in patients. Novel 
treatment regimens of EGFR TKIs in combination with 
therapies that target EGFR in different ways or that target 
alternate proteins are being attempted to overcome known 
mechanisms of resistance. Third generation EGFR TKIs 
are being developed in the hopes of overcoming the most 
common mechanisms of resistance, T790M; to date, the 
results are preliminary but excitingly optimistic.
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