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Overview of non-small-cell lung cancer (NSCLC)

Lung cancer, the most common type of cancer worldwide, 
has a morbidity rate of 11.6% and a mortality rate of  
18.4% (1). Approximately 85% of lung cancers are within 
a group of histological subtypes collectively known as 
NSCLC. NSCLC is thought to originate in lung epithelial 
cells and comprises diverse histological subtypes, of which 
lung adenocarcinoma and lung squamous cell carcinoma 
are the most common (2). The most common genetic 
alterations in NSCLC are mutations in the receptor 
tyrosine kinases (RTKs) epidermal growth factor receptor 

(EGFR), Kirsten rat sarcoma (KRAS), tumor suppressor 
p53 and liver kinase B1 (LKB1); anaplastic lymphoma 
kinase (ALK) gene fusion; ROS1 gene fusion; and MET 
amplification (3,4). Over decades, treatment strategies 
for lung cancer have changed from chemotherapy to 
personalized medicine, such as tyrosine kinase inhibitors 
(TKIs), which specifically target mutations based on 
individual patients. Immunotherapy, a developing 
treatment, has already proven effective in treating NSCLC 
patients. Through controlling the statuses of programmed 
cell death-1 (PD-1), programmed cell death ligand-1 (PD-
L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) by 
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antibodies called immune checkpoint inhibitors (ICIs), 
patients can have a prolonged life with improved quality. 
Circulating tumor DNA (ctDNA) quantification is often 
used in TKI-based targeted therapy to facilitate more 
precise clinical decisions and prognoses. The efficiency 
of three generations of EGFR- or ALK-TKIs can be 
evaluated by monitoring the ctDNA level of corresponding 
EGFR and ALK mutant genes, respectively.

Activating mutations in EGFR, such as exon 19 del and 
L858R on exon 21, sensitize the majority of NSCLC tumor 
cells to the first-generation EGFR-TKIs gefitinib and 
erlotinib and the second-generation EGFR-TKIs afatinib 
and dacomitinib. Among patients with these tumors, 50% 
develop acquired resistance due to the EGFR T790M 
mutation, which was the source of major concern until 
the development of the third-generation EGFR-TKIs 
osimertinib and rociletinib (5-7). With the widespread 
use of osimertinib, the EGFR C797S resistance mutation 
appeared as well (8). In addition to secondary EGFR 
mutations, bypass mechanisms such as MET or ERBB2 
amplification, Hippo pathway inhibition, and insulin-
like growth factor 1 receptor (IGF1R) activation also 
contribute to resistance to EGFR-TKIs (9-12). EML4-ALK 
gene fusion is found in 3–7% of NSCLC patients (13-15). 
Similar to the resistance to EGFR, resistance to each of the 
three generations of ALK-TKIs occurs.

KRAS mutations, which are found in approximately 
30% of lung adenocarcinomas and 3% of lung squamous 
cell carcinomas, are not as targetable as EGFR and ALK 
mutations. KRAS mutations account for 90% of RAS 
mutations found in lung adenocarcinoma (16). Among all 
mutations detected in NSCLC patients, mutations in KRAS 
and EGFR constitute more than 60% of the mutations 
found in lung adenocarcinoma (4,17,18). KRAS and EGFR 
mutations, however, are usually mutually exclusive, but 
when these mutations coexist, KRAS mutations may result 
in tumors that are drug-refractory to EGFR-TKIs and do 
not respond to anti-EGFR monoclonal antibodies (19,20). 
Activated KRAS activates downstream pathways, including 
the BRAF/MEK/ERK and PI3K/AKT/mTOR pathways. 
Potential targeted therapies for KRAS-mutant lung cancer 
have focused on inhibiting the downstream effectors of 
these signaling pathways instead of mutated KRAS. Unlike 
EGFR-TKIs, which have evolved into the third generation, 
the development of clinically effective small molecule 
drugs for KRAS has met with great obstacles over the 
past decades. Recently, the association between PD-(L)1 

and KRAS has been discussed in several studies, and some 
have noted that PD-1 expression is significantly associated 
with the presence of KRAS mutations (21-24). However, 
more investigation is needed to increase understanding of 
immunotherapy so that developments in KRAS treatment 
no longer remain stagnant.

ctDNA aids diagnosis and treatment tracking

Tissue biopsy plays an important role in analyzing tumor 
properties but remains invasive and may cause harm to 
patients. In addition, tissue biopsy is not always feasible, 
and it cannot fully account for the temporal and spatial 
heterogeneity of cancer cells (25). Liquid biopsy, on the 
other hand, is noninvasive and provides a dynamic view 
of tumors with overall heterogeneity (26). Because liquid 
biopsy is highly sensitive to ctDNA, it can be utilized as an 
early detection method for cancer and remains useful during 
treatment procedures to evaluate treatment response (27,28).

ctDNA

ctDNA molecules produced by tumors have certain 
properties not possessed by normal cell-free DNAs 
(cfDNAs) (27). A wide variation in length is the most 
distinctive feature of ctDNAs. ctDNAs are typically highly 
fragmented; thus, their size varies between about 70 and 
200 bp. Some studies reported that the most frequently 
observed ctDNAs are 180 bp in size with a classic ladder 
pattern that correlates with the caspase-activated DNase 
digestion of chromatin in apoptotic tumor cells (29), 
and ctDNA fragments larger than 10 kb might originate 
from necrosis (30). Two recent studies pointed out that 
the modal size of ctDNA for many cancer types is about 
166 bp, which is the length of DNA wrapped around the 
chromatosome, and the result of protection from enzymatic 
degradation due to histone binding to nuclear DNA (31,32). 
Furthermore, an enrichment in mutated ctDNA fragments 
longer than 167 bp were also reported, notably around 
250–320 bp (32). However, shorter length of ctDNA 
fragments compared to wild-type allele was found in human 
hepatocellular carcinoma (134–144 vs. 167 bp), melanoma 
(132–145 vs. 165 bp), lung cancer, renal cell carcinoma, and 
colorectal cancer (33-35). In ctDNA analysis, an additional 
DNA fragment length cutoff could be applied for mutation 
identification to increase overall sensitivity (36). It is likely 
that due to different origins, various fragment sizes are 
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generated. The mechanisms behind ctDNA fragmentomics 
still require further research.

Because of the low concentration of ctDNA in blood, 
it is difficult to detect ctDNA using nucleic acid detection 
methods suitable for the qualitative detection of a large 
amount of DNA. However, with the development of highly 
sensitive DNA detection techniques with a low false-
positive rate, such as quantitative polymerase chain reaction 
(qPCR), digital polymerase chain reaction (dPCR), next-
generation sequencing (NGS), NGS-based techniques 
and other methods, the detection of ctDNAs at low 
concentrations became possible (37). Mutations in ctDNA 
molecules from tumor tissues can clearly reflect tumoral 
mutations and tumor heterogeneity (28,38), thus enabling 
the detection of tumors by detecting ctDNA mutations.

qPCR has been used to detect cfDNA from blood taken 
from lung cancer patients (39-41). A significant correlation 
between NSCLC severity and the levels of cfDNA was 
observed, and high cfDNA concentrations indicated more 
severe disease (41). cfDNA detection is currently more 
often used as a supplementary measure for diagnosis and to 
monitor NSCLC patients.

Detecting EGFR mutations by ctDNA

EGFR mutations can cause resistance to EGFR-TKIs in 
NSCLC patients (38,42). Sensitizing EGFR mutations are 
present in 14% to 38% of NSCLC patients depending 
on the location of the mutation and the ethnicity of the 
patient (43). In recent years, commonly used techniques 
to detect ctDNA EGFR mutations have been mainly 
the amplification refractory mutation system (ARMS) 
approach, droplet digital PCR (ddPCR) and NGS-
based methods (44-46). These techniques differ in their 
sensitivity, accuracy, specificity and coverage in detecting 
EGFR mutations (37).

ARMS is based on qPCR that uses specific probes to 
identify EGFR mutant sequences. As ARMS has an overall 
sensitivity of 0.1–1% (47,48), the abundance of the mutated 
DNA must be above this threshold to depress the false-
negative rate. However, the false-negative rate in plasma 
samples, which is approximately 30%, is still relatively high 
compared with that in tumor tissue. The sensitivity and 
specificity of plasma EGFR mutation detection are 92% 
and 100%, respectively, compared with those of tumor 
EGFR mutation detection (49). There are two subcategories 
of ARMS: ADx-ARMS and cobas-ARMS. Cobas-ARMS 

exhibits superior sensitivity in detecting the EGFR T790M 
mutation (0.1%) and sufficient sensitivity (90%) (44). The 
obvious advantage of ARMS is its use of simple workflows 
and consequent rapid turnaround time. Furthermore, 
ARMS is normally performed at initial tumor biopsy and 
therefore offers first-hand information about tumors (44). 
However, flaws in this method exist as cobas-ARMS can 
detect only EGFR variants, and studies have shown that 
ARMS cannot replace tumor tissue biopsy to detect EGFR 
mutation status (50). In addition, the sensitivity of ARMS 
is unmatched with that of ddPCR, which is approximately 
0.01% and thus ten times greater than that of ARMS (48). 
The increased precision and accuracy of ddPCR used to 
detect plasma T790M status are also advantages of ddPCR 
over ARMS.

ddPCR, which exhibits an unparalleled sensitivity of 
0.001–0.4%, can detect EGFR, KRAS, ALK and other 
mutations with greater precision than other methods  
(51-53). Due to the small amount of ctDNA present in the 
serum of lung cancer patients, a highly sensitive method such 
as ddPCR is essential. ddPCR costs less and requires shorter 
turnaround time; besides, ddPCR is highly accessible without 
complex bioinformatics support for data analysis. And it was 
shown by studies (54-56) that the sensitivity of ddPCR for 
the detection of EGFR or KRAS mutations in lung cancer can 
be as sensitive and highly concordant as NGS, sometimes 
even more. However, ddPCR requires specific primers, and 
we can detect only one locus per reaction, which limits its use 
in multiplex tests.

NGS-based methods are the most accepted and 
recognized method used to detect EGFR mutations with 
both high and low allele frequencies, especially those with 
low allele frequency. In a study performed by Xu et al. (44) 
cobas-ARMS, ddPCR and NGS all detected mutations 
with low allele frequencies well, and ddPCR and NGS also 
yielded excellent positive coincidence rates. Overall, the 
NGS platform demonstrates sensitivity equivalent to that of 
ddPCR, the most sensitive platform for EGFR mutational 
profiling. A sensitivity of 100% (30/30) for amplicon-based 
NGS was achieved compared to 87% (26/30) for ddPCR 
in the detection of EGFR activating mutations in advanced 
NSCLC (57). Similar studies generated data of 100% 
(18/18) NGS vs. 94% (17/18) ddPCR (54), and 83% (30/36) 
NGS vs. 69% (25/36) ddPCR (58). What makes NGS-
based techniques truly stand out is their ability to detect 
a wide range of mutations in EGFR and other clinically 
important genes, such as ALK and RAS, which ddPCR is 
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unable to do because it can detect one only locus in each 
reaction. Researchers believe that ctDNA can be used to 
confirm all EGFR primary driver mutations, along with 
additional mutations in other disease-relevant genes. These 
advantages have made NGS relatively costly compared 
to other methods. One setback of NGS is its high false-
positive rate. It is recommended that the results of both 
NGS and ddPCR are combined or repeatedly compared 
with an NGS library to validate the detected mutation. 
For example, the combination of NGS to discover 
EGFR primary mutations and other mutations with the 
specificity of the ddPCR assay was shown to be the optimal 
workflow for T790M analysis (37). In summary, NGS 
analysis is an ideal method for detecting EGFR primary 
mutations that avoids the possible harm caused by tumor 
biopsy. Furthermore, ddPCR can be used as an additional 
reassurance during NGS analysis, especially when detecting 
mutations with low allele frequencies (<0.1%). When the 
amount of cfDNA is limited, NGS is a better option than 
dPCR and qPCR because it requires only 10 ng of cfDNA 
per analysis, while dPCR and qPCR require 15 and 40 ng, 
respectively, according to Bartels et al. (37).

In recent years, different branches of NGS-based 
methods such as amplicon-based NGS (54,57,59) and ultra-
deep NGS (55,60) have shown transcendent sensitivity 
and specificity in the detection of mutations in NSCLC. 
Amplicon-based NGS demonstrated high accuracy for point 
mutations and indels, and it can also detect chromosomal 
rearrangement and fusion genes in ctDNA. This barcoded 
NGS in which PCR was used to enrich target genes 
provided excellent sensitivity by limiting sequencing 
artifacts compared to hybrid capture-based NGS, and 
further lowed the required amount of ctDNA sample (61).  
A shallow sequencing depth was a problem for NGS 
method, however, ultra-deep NGS assays can overcome 
this and achieved a 75% sensitivity in detecting lung cancer 
oncogenic driver mutations, according to Li et al. (55).

ctDNA assists clinical decision making

EGFR-activating mutations are the most important 
mutations among the many driver oncogenes that play 
critical roles in NSCLC (62). Initial patient responses to 
EGFR-TKI treatment are often very positive. As ctDNA 
is a convenient and precise parameter collected in real-
time, it can show sudden outbreaks that appears as spikes in 
data that correlate with the apoptosis of tumor cells within  

1 week after first-time TKI use (63,64). Riediger et al. (65) 
reported an 11-fold acute increase in ctDNA levels only  
26 hours after therapy started. After the initial outbreak, 
the amount of ctDNA continues to decrease over the 
following weeks. However, after a partial response (PR) or 
even complete response (CR) for a short time, the efficiency 
of TKIs decreases, which may lead to a stable disease (SD) 
condition and in some cases prevent TKIs from countering 
the effect of the mutation, finally eliminating its efficacy. 
The state in which specific TKIs no longer function is 
called a resistant state. Median progression-free survival 
(PFS) is 10–16 months among patients treated with EGFR-
TKIs, and almost half of acquired TKI resistance is caused 
by secondary EGFR T790M mutation (5,66).

Tracking ctDNA dynamics helps determine disease 
state
Tracking changes in ctDNA levels is informative for 
determining a patient’s disease state and capturing dynamic 
changes during TKI treatment (67). Changes in ctDNA 
levels also reflect the different sensitivities of heterogeneous 
cancer cell clones because of the different responses shown 
by EGFR ctDNA to EGFR-TKIs. All of the advantages 
of ctDNA monitoring are crucial for clinical intervention. 
ctDNA levels show a good correlation with radiologic CR/
PR but exhibit a poor correlation with patients in SD/
progressive disease (PD) states (68). Cancer cell clones in 
radiologic SD/PD patients with good ctDNA responses 
may be a mixture of cancer cells with wild-type EGFR and 
EGFR with activating mutations. Poor ctDNA responses 
indicate that the tumor may carry de novo resistance to 
EGFR-TKIs (69). Notably, early (often within one week) 
ctDNA responses are not a good predictor of radiologic 
response because the sudden increase in ctDNA results 
from rapid cancer cell apoptosis (63).

Differences in ctDNA levels before and after treatment
Husain et al. observed peaks in the level of ctDNA, followed 
by median decreases of 86% and 81% from weeks one to 
two, respectively, indicating EGFR L858R and exon 19  
del (64). Because patients who do not undergo therapy 
cannot exhibit patterns such as temporal spikes in their 
ctDNA profiles, instantaneous changes in ctDNA profiles 
before and after treatment reveal a significant quantitative 
rise in the number of EGFR copies after therapy, which 
reflects cell apoptosis within days of exposure to the drug.

In a drug-sensitive state, the continuous decline in 
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ctDNA levels in T790M-positive patients continues for a 
median of 6 months (70). Urine ctDNA levels decline to 
a greater extent than widely used plasma ctDNA levels. 
Urine ctDNA detection also has a remarkable 88% 
overall concordance rate with the detection of ctDNA 
in tissue samples. The concordance rate with plasma 
ctDNA detection is 98%. This shows the feasibility of 
replacing plasma ctDNA detection with urinal ctDNA 
detection, which exhibits a similar sensitivity and improved 
convenience (70).

Mechanisms of TKI resistance

EGFR

Three generations of TKIs have been designed to target 
EGFR mutations. As ctDNA has aided the detection and 
verification of resistance to various drugs, the mechanisms 
behind resistance to these drugs have been studied for 
more than a decade. Three generations of EGFR-TKIs 
are summarized in Table 1 (77,82-85,90). In the following 
section, we focus on several widely accepted resistance 
mechanisms along with less discussed novel resistance. 
Figure 1 shows most of the mechanisms of resistance to 

different inhibitors through signaling pathways mentioned 
in this review. Hopefully, the study of these mechanisms will 
shed light on the clinical treatment of NSCLC patients.

EGFR T790M and C797S
EGFR T790M, the most common mutation against 
first-generation TKIs, accounts for 50–60% of acquired 
resistance to TKIs. When the third-generation TKI 
osimertinib was developed, the response rate to osimertinib 
was 62.5%, and 52% of patients with the EGFR T790M 
mutation exhibited a PFS of 12 months (6). Though 
osimertinib is a revolutionary drug, there are still cases 
of osimertinib resistance. Novel osimertinib resistance 
mechanisms can be divided into different types: (I) the 
acquisition of tertiary mutations that restore EGFR 
signaling pathways and (II) bypass mechanisms, such as 
MET or ERBB2 amplification, Hippo pathway inhibition, or 
IGF1R signaling activation.

EGFR C797S is sensitive to first-generation TKIs 
but resistant to second- and third-generation TKIs. The 
second-generation EGFR-TKI dacomitinib directly induced 
secondary EGFR T790M or C797S mutations in Ba/F3 cells 
transfected with EGFR 19 del, L858R, or G719A mutants, 
and there was no significant difference in the timing of the 

Table 1 A summary of three generations of TKIs targeting EGFR and corresponding resistant mechanisms in NSCLC

TKI Targets EGFR mutations Resistant mechanisms References

Gefitinib EGFR EGFR exon 19 del, L858R, 

C797S

EGFR T790M and bypass mechanisms such as 

MET, ERBB2 amplification, or IGF1R activation

(5,9,11,38,42,62,71-77)

Erlotinib EGFR EGFR exon 19 del, L858R, 

C797S

EGFR T790M and bypass mechanisms such as 

MET, ERBB2 amplification, or IGF1R activation

(10,11,38,71-76,78-81)

Afatinib EGFR; ERBB2/4 EGFR exon 19 del, L858R; 

EGFR rare mutations like 

G719X, L861Q, S768I

EGFR T790M, C797S, L792 and/or bypass 

mechanisms

(78,82,83)

Dacomitinib EGFR; ERBB2/4 EGFR exon 19 del, L858R EGFR T790M, C797S and/or bypass 

mechanisms

(8,84,85)

Osimertinib EGFR EGFR T790M, exon 19 del, 

L858R

EGFR C797S, L792H/G796R in presence with 

T790M, and bypass mechanisms such as MET, 

ERBB2 amplification, small cell transformation, 

or EMT

(6,9,10,38,74-77,86-89)

Rociletinib EGFR EGFR T790M, exon 19 del, 

L858R

MET amplification, and bypass mechanisms 

such as ERBB2 amplification

(7,10,38,74-76,90)

EAI045 EGFR EGFR L858R, T790M, C797SUnder investigation (91-93)

TKI, tyrosine kinase inhibitor; EGFR, epidermal growth factor receptor; NSCLC, non-small-cell lung cancer; IGF1R, insulin-like growth 

factor 1 receptor.
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Figure 1 Resistant mechanisms of TKIs in target therapies of NSCLC. EGFR/ALK mutations, bypass mechanisms such as MET/ERBB2 
amplification, NRG1 fusion, IGF1R activation, and EGFR translocation-induced Hippo pathway inhibition result in the activation of 
their downstream pathways, such as PI3K/AKT/mTOR and RAS/RAF/ERK/MAPK, which directly confer TKI resistance. TKI, tyrosine 
kinase inhibitor; NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; NRG1, 
neuregulin 1; IGF1R, insulin-like growth factor 1 receptor; KRAS, Kirsten rat sarcoma; YAP, Yes-associated protein; TAZ, transcriptional 
coactivator with the PDZ-binding motif.

emergence of the T790M and C797S mutations (8,78). 
The C797S mutation occurred in 11% of L858R mutant 
clones (4 of 35) and 32% of G719A mutant clones (12 of 
38) established with low-dose dacomitinib (8). Afatinib, 
another second-generation EGFR-TKI, also induced the 
C797S mutation as a resistance mechanism (78). First-
generation EGFR-TKIs exert their effects independent of 
the cysteine at position 797 (94). Gefitinib or erlotinib can 
be used to overcome resistance to the C797S mutation. 
Erlotinib is particularly effective in treating EGFR C797S-
positive tumors (78-80). Tumors with T790M and the trans 
C797S mutation responded to a combination of erlotinib 
and osimertinib. In patients with acquired osimertinib 
resistance, gefitinib monotherapy was shown to successfully 

shrink T790M-negative/C797S-positive tumors (77,95). 
By studying the T790M and C797S mutations in lung 
adenocarcinoma, NSCLC containing T790M/cis-C797S 
mutations was shown to be more aggressive than that 
containing T790M/trans-C797S mutations (95). Tumoral 
heterogeneity plays an important role in the mechanism of 
dual cis/trans resistance.

Tumor heterogeneity reveals resistance potential
Overcoming tumor heterogeneity is a major challenge for 
the personalized treatment of cancer. The most effective 
treatment protocol can be designed only after tumor 
DNA profiling, which reveals the heterogeneity of each 
individual tumor.
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Cancer cells simultaneously carry several types of 
activating EGFR mutations even before EGFR-TKI 
treatment begins (68). If these cells possess the ability to 
develop multiple resistance mechanisms and are more 
adaptable to TKIs, resistance can emerge earlier (96). There 
may be an intrinsic minor population of T790M-positive 
cancer cells in EGFR-mutated tumor clones carrying 
multiple mutations (69). In addition, T790M-negative drug-
tolerant cells may persist in patients with drug-resistant 
EGFR T790M-positive tumors and undergo further 
evolution to acquire resistance to subsequent therapies (97). 
Emergence of the T790M mutation accounts for 50% of 
acquired resistance. Furthermore, the T790M mutation was 
more frequent among patients with the activating EGFR 19 
del mutation than those with the L858R mutation (6). By 
understanding the emergence of EGFR T790M mutation 
heterogeneity, better clinical decisions can be made during 
the period of disease resistance.

EGFR T790M heterogeneity
The presence of resistance mutations, such as the T790M 
mutation, does not necessarily lead to an overall resistant 
phenotype in tumor cells. In some cases, despite the 
selective pressure by TKIs in the treatment process, cancer 
cells with the T790M mutation still fail to dominate (68). 
The heterogeneity within tumors plays a much more 
important role than previously estimated. For instance, 
EGFR T790M-positive clones emerge from not only pre-
existing clones but also initially EGFR T790M-negative 
drug-tolerant cells through what is called the de novo 
acquisition of T790M (97). This mixed tumor evolution 
eventually determines the overall response to TKIs 
although a wide variety of tumor cells originating from 
different parental cells are contained within the tumor.

Heterogeneous EGFR-mutated cancer cells undergo 
convergence and divergence in response to EGFR-TKIs. 
Minor clones are eliminated first, and mutations such as 
T790M then arise and induce acquired resistance (68). 
For instance, the ratio of T790M to exon 19 del mutations 
changed significantly and fluctuated during treatment. 
While most EGFR alleles with exon 19 del seem to carry 
the T790M mutation at the first and second T790M 
DNA peaks, this does not appear to continue during the 
development of acquired resistance because exon 19 del 
alleles may have amplified more rapidly than T790M alleles 
over time (68).

Several studies have shown that the T790M mutation 

can be spatiotemporally heterogeneous in a patient because 
of selective pressure from EGFR-TKIs (66,69,97-99). This 
heterogeneity also reflects the dynamics within resistant 
tumor cell clones, which are likely made up of TKI-sensitive 
and TKI-resistant cells. Upon TKI withdrawal, the ratio 
of TKI-sensitive to TKI-resistant cells will increase as a 
result of the repopulation of TKI-sensitive cells due to the 
absence of selective pressure, thus leading to the regain of 
tumoral TKI sensitivity (100). In conclusion, long TKI-
free intervals may reduce TKI-resistant clones and induce 
restoration of EGFR-TKI sensitivity. Elimination of the 
T790M mutation is the result of a significant reduction 
in TKI resistance, such as that observed in T790M-
positive clones. T790M heterogeneity should be taken 
into consideration when making clinical decisions to apply 
TKI therapy in patients after the development of acquired 
resistance. Furthermore, by using T790M-positive clones 
as a predictive marker during TKI treatment, a better 
TKI rechallenge scheme with designed “on and off” TKI 
exposure can maximize elimination of the T790M-positive 
clones in the tumor.

The heterogeneity of T790M-positive patients is the 
result of a mixture of T790M-positive and T790M-negative 
cells that may have been present in heterogeneous tumors 
before TKI treatment. TKI pressure plays a selective role 
and controls the ratio between these two types of cells, 
thus determining the total tumor status (69). In contrast, 
the selective pressure exerted by TKIs can never induce 
T790M-positive cells in a T790M-negative cell clone.

EAI045 is the first allosteric TKI engineered thus far 
to overcome L858R/T790M and C797S mutations (93). 
EAI045 is 1000-fold more selective for mutant EGFR than 
for wild-type EGFR. Cetuximab, a monoclonal antibody that 
can block EGFR dimerization by preventing EGF ligand 
binding, synergizes with EAI045 by converting the inhibitor-
resistant receiver population into a monomeric form that is 
remarkably sensitive to EAI045 (92,93). EGFR mutations at 
position C797 do not affect the efficacy of EAI045, as C797 
is far from the allosteric binding pocket (91). In addition, 
EAI045 in combination with cetuximab potently inhibited 
L858R/T790M/C797S in Ba/F3 cells (93). More studies are 
needed to determine the clinical efficacy of EAI045 and shed 
light on its application.

T790M loss and C797S
The two main mechanisms of resistance to osimertinib are 
loss of the T790M mutation and emergence of the C797S 
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mutation. These two mutations cause more than 60% of 
resistance (88,101). T790M loss is a common mechanism 
of resistance in patients treated with osimertinib. Half 
of the patients in a progressive state exhibited T790M 
loss during osimertinib treatment (86,88,102). Twenty-
six percent of the patients were observed to harbor EGFR 
C797 and L792 mutations, and these mutations were 
exclusive to T790M-preserved cases (86). The C797S 
mutation was detected in approximately 40% of EGFR-
mutated NSCLC patients with T790M who developed 
acquired resistance to osimertinib (88). These results 
reveal that there are different resistance patterns in cases 
in which T790M is preserved or lost. In most T790M-
preserved cases, resistance was associated with continued 
EGFR activation through known tertiary mutations that 
cause resistance, such as C797S, or activation of bypass 
signaling pathways, whereas resistance in T790M-loss 
cases occurred through diverse and predominantly EGFR-
independent alternative competing mechanisms, such as 
MET amplification and small cell transformation (86).

Patients who develop early resistance to osimertinib are 
likely to have competing resistance mechanisms in other 
tumor subclones, while patients who develop late resistance to 
osimertinib are more likely to have maintained T790M and 
acquired the C797S mutation (87). Although both T790M-
loss and T790M-preserved patients had decreased T790M 
levels after 1 to 3 weeks of osimertinib treatment, repeated 
testing for T790M is still required to distinguish between these 
two biologically distinct types of osimertinib resistance.

Other novel mutations occur at a relatively low 
frequency. Among these mutations, L792F was detected 
in 1.76% (6 of 340) of patients with lung adenocarcinoma 
treated with osimertinib (89). The L792F mutation results 
in a level of resistance between that to both first- and third-
generation EGFR-TKIs due to the T790M and C797S 
mutations (89). Mutations in cis with T790M cannot be 
inhibited by cetuximab or EAI045 (89). However, L792F-
positive tumors were also found to be much less resistant to 
second-generation TKIs, especially dacomitinib (78). More 
precise treatment strategies and additional combinational 
approaches are required for patients with the EGFR L792F 
mutation.

ALK

Rearrangements of ALK, which are mutually exclusive 

with mutations in EGFR or KRAS, account for 3–7% of 
mutations (13-15). The most common ALK rearrangement 
occurs in the echinoderm microtubule-associated protein-
like 4 (EML4) gene, producing an EML4-ALK fusion (103). 
To treat ALK fusion, TKIs of ALK, such as crizotinib, 
ceritinib, alectinib and brigatinib, have been developed. 
We examined several clinical trials of ALK-TKIs and 
EGFR-TKIs and illustrate the clinical efficacies of ALK-
TKIs and EGFR-TKIs in Table 2 (111-116). Crizotinib is 
a competitive ATP inhibitor of ALK and MET tyrosine 
kinases that received Food and Drug Administration 
(FDA) approval in 2011 (117,118). A phase I clinical trial of 
crizotinib demonstrated a high overall response rate (ORR) 
of 60.8% and a median PFS of 9.7 months. Subsequent 
phase III trials demonstrated the prolonged PFS and 
increased ORR of crizotinib compared to those of standard 
first- or second-line chemotherapy (110,119).

Resistance to first- and second-generation ALK-TKIs
Acquired resistance to the first-generation ALK-TKI 
crizotinib has been identified in approximately 30% to 40% 
of patients. The occurrence of resistance may be attributed 
to three causes: (I) the acquisition of secondary resistant 
mutations that were reported to occur in 22–36% of  
patients (120); (II) ALK copy number alterations; and (III) the 
upregulation of bypass signaling pathways leading to ALK-
independent growth, such as the activation of the EGFR, 
MET, KIT, IGF1R, and/or other pathways (120-122).

Secondary ALK mutations in NSCLC are distributed 
throughout the kinase domain. The mutations L1196M, 
G1269A, F1174, 1151Tins, L1152R, S1206Y, I1171T and 
G1202R have been determined to confer major resistance 
to crizotinib (123-126). L1196M is a mutation of the 
gatekeeper residue, and G1269A is a mutation of a residue 
in the ATP-binding pocket that, upon its mutation, can 
cause changes that prevent crizotinib binding (127).

To counter resistance to crizotinib, the second-
generation ALK inhibitors ceritinib, alectinib and brigatinib 
were developed. Approximately 40–50% of crizotinib-
resistant patients were shown to respond to these TKIs, 
which exhibit a median PFS of 7–12 months (128-130). 
Secondary mutations at I1171 confer resistance to alectinib, 
and the I1171N and I1171T mutations destabilize ALK 
inhibitor binding while stabilizing the tyrosine kinase in its 
activated conformation (131,132). Ceritinib, however, was 
found to be capable of overcoming the I1171T mutation as 
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Table 2 Selected clinical trials of EGFR/ALK TKIs in NSCLC

Trial number with 
references

Trial design Trial target ORR (%) PFS (months) OS (months)

First-generation EGFR TKI

WJTOG3405 (104) Gefitinib vs. cisplatin plus docetaxel EGFR exon 19 del and L858R 62.1 vs. 32.2 9.2 vs. 6.3 30.9 vs. NR

UMIN-CTR No. 
C000000376 (105)

Gefitinib vs. carboplatin-paclitaxel EGFR exon 19 del and L858R 73.7 vs. 37.0 10.8 vs. 5.4 30.5 vs. 23.6

NCT01310036 (106) Erlotinib EGFR exon 19 del and L858R 74.1 11.0 31.0

Second-generation EGFR TKI

NCT00525148 (83) Afatinib, EGFR exon 19 del/L858R vs. 
others

EGFR exon 19 del and L858R 66 vs. 39 13.7 vs. 3.7 38.7/31.5 vs. 
16.3

NCT00525148, 
NCT00949650, 
NCT01121393 (82)

Afatinib, point mutation/duplication vs. 
de novo T790M vs. exon 20 insertion

EGFR T790M, G719, L861Q, 
S768I and other point 
mutations

71.1 vs. 14.3 
vs. 8.7

10.7 vs. 2.9 
vs. 2.7

19.4 vs. 14.9 
vs. 9.2

NCT01774721 (85) Dacomitinib vs. gefitinib EGFR exon 19 del and L858R 76 vs. 70 14.7 vs. 9.2 Immature at 
data cut off

NCT01360554, 
NCT00769067 (84)

Dacomitinib vs. erlotinib Mutated EGFR 62.1 vs. 60.0 14.6 vs. 9.6 26.6 vs. 23.2

Third-generation EGFR TKI

NCT02094261 (107) Osimertinib EGFR T790M 70 9.9 13.0

NCT02151981 (108) Osimertinib vs. platinum-pemetrexed EGFR T790M 71 vs. 31 10.1 vs. 4.4 NR

NCT02296125 (109) Osimertinib vs. gefitinib/erlotinib EGFR exon 19 del and L858R 80 vs. 76 18.9 vs. 10.2 NR

NCT01526928 (90) Rociletinib, T790M positive vs. 
negative

EGFR T790M 59 vs. 29 13.1 vs. 5.6 NR

First-generation ALK TKI

NCT00932893 (110) Crizotinib vs. pemetrexed/docetaxel ALK rearranged 65 vs. 20 7.7 vs. 3.0 20.3 vs. 22.8

Second-generation ALK TKI

NCT01685060 (111) Ceritinib in patients previously treated 
with crizotinib

ALK rearranged 38.6 5.7 14.9

NCT01828099 (112) Ceritinib vs. cisplatin/carboplatin ALK rearranged 72.5 vs. 26.7 16.6 vs. 8.1 NR vs. 26.2

NCT01871805 (113) Alectinib in crizotinib-resistant patients ALK rearranged 48 8.1 Immature at 
data cut off

NCT02075840 (114) Alectinib vs. crizotinib in previously 
untreated patients

ALK rearranged 82.9 vs. 75.5 25.7 vs. 10.4 Immature at 
data cut off

NCT01449461 (115) Brigatinib in previously crizotinib-
treated vs. crizotinib-naïve patients

ALK rearranged 72 vs. 100 13.2 vs. NR Immature at 
data cut off

Third-generation ALK TKI

NCT01970865 (116) Lorlatinib ALK rearranged 46 9.6 NR

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; NSCLC, non-small-cell lung 
cancer; ORR, overall response rate; PFS, progression-free survival; OS, overall survival; NR, not recorded.
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well as several crizotinib-resistant ALK mutations, such as 
L1196M, G1269A and S1206Y, in preclinical models (133).

Resistance to third-generation ALK-TKIs
The third-generation ALK-TKI lorlatinib is an ATP-
competitive inhibitor of recombinant ALK and ROS1 
kinases. Lorlatinib has the ability to penetrate the brain 
and central nervous system, where frequent lung cancer 
metastasis occurs. In preclinical settings, lorlatinib was 
shown to have low nanomolar potency against wild-type 
ALK and be highly effective against all clinically acquired 
ALK mutations, including the highly resistant G1202R 
mutant, which is resistant to both first- and second-
generation ALK inhibitors, by impairing drug binding 
through steric hindrance (126,134). Lorlatinib can also 
potently inhibit wild-type ROS1 and the G2032R ROS1 
mutant in vitro and in vivo (135).

The antitumor efficacy of lorlatinib has been shown 
in two recent clinical trials (116,136). In a phase I trial 
of lorlatinib in NSCLC patients with ALK or ROS1 
rearrangement, lorlatinib showed a high response rate and 
a median duration of response of 11.7 months in 42% of 
patients (11 of 26) previously treated with first- and second-
generation ALK-TKIs. Then, patients with different 
medical histories were involved in a phase II trial. Among 
these patients, the treatment-naïve group of ALK-positive 
NSCLC patients showed the best response rate; 87% (26 
of 30) of the patients in this group showed a PR, and only 1 
of 30 patients remained at disease progression. Consistent 
with those in the phase I trial, patients previously treated 
with crizotinib showed a good response rate that was second 
to the response of the treatment-naïve group. In all patients 
previously treated with at least one ALK-TKI, responses 
were rapid with a median of 1.4 months and durable. 
Lorlatinib is a new option for patients whose disease has 
progressed after treatment with crizotinib or second-
generation ALK inhibitors.

Bypass mechanisms

Bypass mechanisms for EGFR-TKI
Amplification of MET and ERBB2
MET gene amplification and the hyperactivation of MET are 
mechanisms of resistance to both first- and third-generation 
EGFR-TKIs, such as erlotinib, rociletinib and osimertinib, 
in patients that exhibit multiple mechanisms of resistance, 
such as those in whom tumor cells have undergone epithelial-

mesenchymal transition (EMT) or those with small cell 
lung cancer (SCLC) transformation (10,38). An inverse 
correlation between EGFR T790M and MET amplification 
was observed (137). EGFR and MET have been shown to 
act simultaneously to activate downstream effectors, such 
as PI3K/AKT/mTOR and RAS/RAF/ERK, and ultimately 
regulate tumor cell proliferation. MET signaling activation 
likely serves as a compensatory pathway for the loss of the 
EGFR-driven signaling cascade (138).

ERBB2 overexpression accounts for approximately 
3–26% of acquired resistance to first-generation EGFR-
TKIs and 5% of acquired resistance to third-generation 
TKIs in NSCLC patients (38,74-76). By activating the 
EGFR-independent phosphorylation of ERBB3 and 
downstream activation of the PI3K/AKT pathway, a 
bypass mechanism is created even in the presence of first-
generation EGFR inhibitors (9,10). The sensitivity of the 
third-generation EGFR-TKIs rociletnib and osimertinib 
decreased when they were used at nanomolar concentrations 
in a PC9/GR NSCLC cell line overexpressing ERBB2 (139). 
Shi et al. (10) demonstrated that ERBB3 phosphorylation 
in both HCC827/ER and HCC827/AR cells was minimally 
inhibited by osimertinib alone and could be fully suppressed 
only when osimertinib was combined with a MET inhibitor. 
Hence, the sensitivity to third-generation TKIs is restored 
by MET inhibition resulting from the suppression of 
ERBB3 phosphorylation.

Tumor resistance caused by the activation of accessory 
pathways can be theoretically overcome by a combination 
of EGFR inhibitors and other involved molecules, which 
serves as a potential strategy to counter acquired resistance 
often observed during the treatment of EGFR-mutated 
NSCLC. Dual inhibition of MET and ERBB has also been 
performed to determine the intratumor heterogeneity and 
plasticity in acquired resistance (140). The combination 
of capmatinib (MET inhibitor) and afatinib was shown to 
be more effective than afatinib as a single agent. This drug 
combination completely suppressed tumor growth in a 
patient-derived xenograft (PDX) mouse model that showed 
the necessity of MET amplification to lung cancer cell 
survival (140). KRAS G12C mutant clones emerged upon 
the blocking of two upstream activating components of 
the MAPK pathway, EGFR and MET, which suggests that 
the development of resistance in NSCLC cells is a flexible 
process.
IGF1R activation
IGF1R stimulates cell proliferation primarily through the 
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PI3K/AKT and RAS/MAPK signaling pathways. Activation 
of IGF1R enhances PI3K/AKT signaling, giving rise to 
resistance to EGFR-TKIs in PC9 cells resistant to either 
PF299804 or WZ4002 (11). IGF1R upregulation as an 
immediate response to erlotinib was also observed in 
erlotinib-resistant HCC827 cells with additional acquired 
features of EMT, whereas MET overexpression and 
secondary EGFR mutations were absent (71,81). Exogenous 
IGF1 also activated IGF1R in the PC9 and H460 cell  
lines (72). Targeting IGF1R with AG-1024 and inhibiting 
EGFR with gefitinib exerted antiproliferative effects in the 
H1975 cell line via a reduction in AKT phosphorylation 
and the subsequent upregulation of BCL-2-interacting 
mediator of cell death (BIM) (141,142).

The loss of IGF binding protein 3 (IGFBP3) has been 
reported to induce IGF1R activation and EGFR-TKI 
resistance. Overexpression of IGFBP3 or inhibition of 
IGF1R increased the sensitivity of NSCLC cell lines to 3rd-
generation EGFR-TKIs (11,73,143). A recent study found 
that both increased or decreased IGFBP expression induced 
the activation of IGF1R in response to TKI and served as 
a bypass mechanism in cells with MET amplification. In 
addition, the activation of IGF/IGF1R signaling was found 
in cell lines resistant to both the MET-TKI PHA665752 
and the EGFR-TKI gefitinib (144). IGF1R knockout 
enhanced MET amplification, resulting in resistance to 
erlotinib. In addition, IGF1R knockdown attenuated EMT, 
which involved a decrease in E-cadherin expression and an 
increase in vimentin, snail, and nuclear β-catenin expression 
in PC9/GR and H460/ER cells (72). However, tumoral 
clones with MET amplification do not always exhibit great 
advantages. IGF1R hyperactivation and heterogeneous 
EMT features, but not MET amplification, led to resistance 
to high-dose erlotinib in the HCC827 cell line. MET 
amplification tends to emerge instead of EMT as the 
resistance mechanism in HCC827 cells after their exposure 
to low concentrations of EGFR inhibitors (145).
TGFβ1 pathways
EGFR inhibition can result in an autocrine transforming 
growth factor β1 (TGFβ1) pathway loop and stimulate the 
downstream SMAD pathway (145). Hematopoietic pre-
B-cell leukemia transcription factor (PBX)-interacting 
protein (HPIP/PBXIP1) silencing can suppress TGFβ1 
secretion by inhibiting SMAD2 activation (146). Only 
continuous TGFβ1 secretion can promote and maintain 
mesenchymal transition and EGFR-TKI resistance; thus, 
this induced mesenchymal transition was reversible upon 

the removal of TGFβ1 (145). The reversal of TGFβ1-
induced EMT by E-cadherin overexpression in resistant 
cells can also restore TKI sensitivity (72). The expression 
of EMT-related markers and TGFβ1/SMAD2 was higher 
in cells transfected with miRNA-132 inhibitor (147). 
Furthermore, miRNA-138 knockdown cells exhibited 
mesenchymal phenotypes (148). These results imply that 
miRNA-132 inhibits EMT by regulating TGFβ1/SMAD2 
in NSCLC cells, while TGFβ1 downregulates miRNA-138, 
contributing to an EMT phenotype. This reversibility is 
clinically significant because the relief of EGFR inhibition 
could deplete TGFβ1 to reverse EMT, which in turn might 
resensitize tumors to EGFR-TKIs, thus prolonging the 
duration of EGFR-TKI therapy.
Hippo pathway inhibition
The Hippo pathway consists of a large network of proteins 
that include neurofibromin-2 (NF2), core kinase cassette 
containing mammalian STE20-like protein kinase 1/2 
(MST1/2), large tumor suppressor 1/2 (LATS1/2), adaptor 
proteins Salvador homologue 1 (SAV1) and MOB kinase 
activator 1 (MOB1). These proteins limit tissue growth by 
promoting LATS1/2-dependent phosphorylation of the 
oncoproteins Yes-associated protein (YAP) and transcriptional 
coactivator with the PDZ-binding motif (TAZ) (149-151). 
YAP and TAZ promote cell proliferation by regulating the 
activity of different transcription factors such as TEADs 
and SMADs (152). The association between Hippo pathway 
inhibition and the development of EGFR-TKI resistance was 
discussed in several recent studies (12,153-157).

Translocation of EGFR from the plasma membrane 
to the cytoplasm and nuclear membrane inhibits the 
Hippo pathway. EGF could stimulate the translocation 
of membranous EGFR (mEGFR) into the cytoplasm 
(cEGFR) and nucleus (nEGFR) by binding to importin-β 
through its nuclear localization sequence or binding with 
YAP (12,158,159). As a result, the expression of mEGFR 
decreased, and the expression of cEGFR increased. cEGFR 
interacted with SIK2 and enhanced its ability to bind to 
SAV1, which inhibited the interaction between LATS1 and 
MST1. Furthermore, downstream YAP phosphorylation 
was inhibited, thus increasing the nuclear translocation 
of YAP and ultimately inhibiting the Hippo pathway 
by binding with the transcription factor TEAD (12). 
Therefore, resistance against the first-generation EGFR-
TKIs gefitinib and erlotinib is associated with inhibition of 
the Hippo pathway and enhanced YAP activity (155,156). 
Furthermore, the combination of the YAP inhibitor 
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verteporfin with erlotinib sensitized the erlotinib-resistant 
H1975 cell line (155).

Bypass mechanisms for ALK-TKI
EGFR activation
Multiple bypass mechanisms could induce EGFR-TKI 
resistance, and the emergence of bypass signaling during 
ALK-TKI treatment also contribute to resistance in ALK-
positive NSCLC. EGFR activation as a bypass mechanism 
for ALK-TKI crizotinib, alectinib, and ceritinib was found 
in several cell models and one mouse model in recent 
studies (160-162). The activation of EGFR pathway 
induced by TGFα contributed to the resistance to alectinib, 
and upon TGFα knockdown, the sensitivity of alectinib in 
H3122-alecinib resistant NSCLC cells was restored (162). 
Epidermal growth factor (EGF) was also found to induce 
resistance to alectinib by activating EGFR signaling (161). 
Furthermore, through dual targeting of ALK and EGFR 
with alectinib and afatinib in mouse xenograft model, 
EGFR downstream signals to PI3K/AKT and MAPK were 
inhibited, and tumor volume decreased significantly (162).  
Similar study also discussed acquired resistance to 
ceritinib through EGFR bypass signaling activation in 
H3122 cells (160). Besides EGFR signaling, increased 
expression levels of other members of ERBB family 
such as ERBB2/3 induced by EGF were reported to be 
mechanisms contributing to resistance to ALK-TKI in 
EML4-ALK positive H3122 cells (163). Dual inhibition 
of ALK/ERBB family by shRNA and dacomitinib showed 
further antiproliferative effects in DFCI076 NSCLC cells 
that are resistant to both ALK inhibitor crizotinib and  
TAE684 (164). Similarly, crizotinib plus afatinib that 
inhibited ALK, EGFR, and ERBB2 signaling was able to 
inhibit the growth of H3122-crizotinib resistant cells (165), 
confirming EGFR activation as a resistance mechanism for 
ALK-TKI. However, if the cell line is resistant to both of 
the inhibitor, then even a combined inhibition might not 
work. In a comprehensive study by Katayama et al. (120), 
H3122 CR3 cells which were resistant to both crizotinib 
and gefitinib remained less sensitive to the combination of 
crizotinib plus gefitinib compared to crizotinib alone.
MET activation
Although mentioned in a smaller number of studies, MET 
activation also induces resistance to ALK-TKI. Hepatocyte 
growth factor (HGF) induced MET activation and triggered 
resistance to crizotinib and TAE684. HGF stimulated the 
phosphorylation of MET and its adaptor protein, GAB1, 

and activated downstream AKT and ERK1/2 pathways thus 
finally cause resistance to TAE684 (166). Another study 
also reported that HGF induced resistance to alectinib in 
H3122 and H2228 cell lines (167). MET activation but not 
gene amplification was observed in tissues from patients 
with ALK rearrangement (168). However, in another 
study, circulating tumor cells and ctDNA were analyzed by 
targeted NGS, and MET amplification up to sevenfold was 
detected after initiating crizotinib treatment (169). Further 
studies are still required to demonstrate whether MET 
amplification contribute to resistance to ALK-TKI.
Activation of KIT or IGF1R
Besides the activation of EGFR or MET signaling, a few 
studies discussed KIT or IGF1R signaling, and how they 
contributed to resistance to ALK-TKI. ALK positive 
H3122 cells with KIT overexpression showed sensitive to 
crizotinib. However, in the presence of stroma-derived 
stem cell factor (SCF), KIT-overexpressing H3122 cells 
exhibited high resistance to crizotinib through activation 
of downstream intermediates ERK and AKT (120). In 
another study that involved patients receiving crizotinib 
treatment, a significant decrease in PFS was correlated 
with high phosphorylation level of KIT in ALK-positive  
patients (170). Activating KIT mutation D816G was also 
identified in crizotinib-resistant cells, however, until now, 
only in ROS1-positive cell lines (171).

Through a special case of a patient with ALK-fusion 
who significantly responded to IGF1R-specific antibody, 
the combination of ALK plus IGF1R inhibitors was 
investigated in H3122 cell model and confirmed an enhanced 
antiproliferative response (122). This synergistic effect was 
verified by subsequent study in NSCLC (172). Furthermore, 
cellular dependence on ALK decreased because of increased 
IGF1R signaling induced by stimulation. IGF1R/insulin 
receptor substrate 1 (IRS1) signaling in the presence of ALK 
inhibitor therefore became a mechanism by which cells evade 
ALK blockade (122). In vitro experiments have confirmed 
that both ALK and IGF1R activation are inhibited after 
treatment with ceritinib or TAE684 (173), however, the 
clinical utility of these two ALK-TKIs in inhibiting ALK/
IGF1R still remains to be defined.

Other novel resistance mechanisms

Neuregulin 1 (NRG1) fusion
CD98hc (SLC3A2, solute carrier family 3 member 2) is the 
heavy chain of CD98 and forms large neutral amino acid 
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transporter LAT1 (SLC7A5) in cells. Overexpression of 
SLC3A2 occurs widely in cancer cells and is associated with 
poor clinical prognosis (174). SLC3A2 is upregulated in 
human osteosarcoma and promotes tumor growth through 
the PI3K/AKT signaling pathway (175).

The NRG1 gene encodes the growth factor NRG1; 
members of the NRG1 family are structurally related to 
EGF and stimulate ERBB3 RTKs (176). The EGF-like 
domain of NRG1 in the SLC3A2-NRG1 chimeric protein 
was shown to be critical for NSCLC proliferation and 
tumorigenesis (177). A SLC3A2-NRG1 fusion protein 
activated the formation and phosphorylation of the ERBB2-
ERBB3 heterocomplex and downstream PI3K/AKT/
mTOR signaling pathway. Inhibition of both ERBB2 and 
ERBB3 blocked the downstream signaling intermediates 
AKT and ERK (178). Therefore, the dual inhibition of 
ERBB2/3 might be a suitable strategy to block the signals 
activated by SLC3A2-NRG1.

CD74 is the most common NRG1 fusion partner, 
and CD74-NRG1 fusion occurs in approximately 1.7% 
of patients with lung adenocarcinomas (179). CD74-
NRG1 increases the expression and phosphorylation of 
the EGF-like domain of NRG1 III-β3 and leads to the 
heterodimerization of ERBB3 and ERBB2, subsequently 
activating the downstream PI3K/AKT pathway (179). An 
increase in the NRG1 ligand level was directly related 
to resistance to crizotinib treatment (180). Furthermore, 
the treatment of NSCLC cells with second-generation 
ALK inhibitors activated EGFR family pathways through 
activation of the NRG1-ERBB3-EGFR axis (181,182). 
Therefore, activation of the NRG1/ERBB3 pathway is a 
potential mechanism of TKI resistance.

Invasive mucinous adenocarcinoma (IMA) is a highly 
malignant type of lung adenocarcinoma that is mainly 
caused by KRAS mutations. However, an aberrant, novel 
tumor driver, the CD74-NRG1 fusion gene, was also found 
to contribute to KRAS-negative IMA tumorigenesis (179). 
CD74-NRG1 and KRAS mutations are mutually exclusive. 
Expression of the CD74-NRG1 protein not only induced 
sphere formation in vitro but also enhanced tumor initiation 
in vivo. The CD74-NRG1 protein activates the PI3K/AKT/
NFKB signaling pathway, leading the IGF2 autocrine/
paracrine circuit to initiate and maintain cells with cancer 
stem cell properties. IGF1R, the CD74-NRG1 receptor, 
was enhanced in an NFKB-dependent manner in cells 
expressing CD74-NRG1 (183).

Other NRG1 fusion proteins such as SDC4-NRG1 and 

ALK-NGR1 have been reported in some studies (184,185). 
Although SDC4-NRG1 fusion displays a rapid and durable 
PR to afatinib and NRG1 has been shown to respond to 
EGFR and ERBB2/3 inhibitors in the preclinical setting 
(184,186,187), targeting downstream of NRG1 through 
the direct inhibition of ERBB3 and other molecules in 
this pathway is thought to be a better strategy for clinical 
application than the use of a broad EGFR/ERBB family 
inhibitor to target mutant tyrosine kinases (183,184).

Overexpression of MET and BCL-2
AC0010 is a pyrrolopyrimidine-based, irreversible, third-
generation EGFR inhibitor that selectively inhibits EGFR-
activating and T790M mutations with an up to 298-fold 
increase in potency compared with its inhibition of wild-
type EGFR (188). A phase I study of AC0010 suggested 
that AC0010 has a well-tolerated safety profile and shows 
promising antitumor activity in NSCLC patients with 
acquired resistance to a first-generation EGFR-TKIs (189). 
However, AC0010 cannot overcome resistance caused 
by the overexpression of MET and BCL-2. The BCL-2 
inhibitor navitoclax inhibited cell growth in the AC0010-
resistant cell line H1975-AVR1 (97,138). Navitoclax 
together with gefitinib showed an enhanced ability to 
eradicate NSCLC cells (190). Combination treatment with 
AC0010 and crizotinib inhibited the growth of H1975-
P1-R1 cells, and synergistic effects with a 73.5% inhibitory 
rate at a nontoxic dose were observed (138). Thus, the 
overexpression of BCL-2 and MET is responsible for 
acquired resistance to AC0010 in NSCLC.

Immunotherapy

Tumors can evade immune detection by exploiting 
inhibitory immune checkpoints, such as the PD-1/PD-
L1 pathway. PD-1 signaling, which is driven primarily 
by the adaptive expression of PD-L1 within the tumor, 
represses the ability of T lymphocytes to recognize tumor-
specific antigens, resulting in tumor progression and  
metastasis (191). The PD-1/PD-L1 expression level is 
mediated directly by EGFR, ALK, and the presence of TKIs 
that exert their effects by influencing the expression level 
of EGFR and ALK and downstream signaling cascades. 
Studies have shown that the expression level of PD-L1 is 
significantly upregulated in NSCLC cell lines expressing an 
EGFR driver mutation and the EML4-ALK fusion protein 
(192,193). The EGFR-TKIs gefitinib and erlotinib both 
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increased the expression of PD-L1 in NSCLC cell lines 
with mutant EGFR (194).

PD-1/PD-L1 ICIs

The introduction of ICIs, such as monoclonal antibodies 
that target CTLA-4 and PD-1/PD-L1, has shed light on 
a new strategy to treat NSCLC patients. Currently, three 
widely used agents (two PD-1 inhibitors, nivolumab and 
pembrolizumab, and one PD-L1 inhibitor, atezolizumab) 
are approved as standard treatment options for pretreated 
NSCLC patients. Clinical trials of durvalumab and 
avelumab are underway.

A phase III study of nivolumab revealed the increased 
overall survival (OS) of patients with advanced-stage 
NSCLC who exhibited disease progression after cytotoxic 
therapy treated with nivolumab (12.2 months) compared 
to the OS of those treated with docetaxel (9.4 months) 
for the first time (195). Other studies have also shown the 
increased OS of nivolumab-treated NSCLC patients (17%) 
compared to that of docetaxel-treated NSCLC patients 
(8%) (196). Pembrolizumab and atezolizumab also showed 
greater efficacy than platinum-based cytotoxic therapy, with 
a PFS of 10.3 months observed in pembrolizumab-treated 
patients compared to 6.0 months in a chemotherapy group. 
A significant improvement in OS was also observed (197).  
A similar comparison of atezolizumab and docetaxel also 
showed that atezolizumab can increase OS in patients, 
although how the effects of atezolizumab treatment on 
the ORR and PFS differ from those of docetaxel still 
needs further investigation (198,199). ICIs combined with 
chemotherapy can act synergistically to improve treatment 
effects. The combination of pembrolizumab and pemetrexed/
platinum-based drugs significantly improved OS and PFS 
in patients with untreated metastatic nonsquamous NSCLC 
with no EGFR or ALK mutations (200).

Durvalumab and avelumab were developed more 
recently than the three other aforementioned ICIs, so an 
investigation of their efficacy compared to that of regular 
chemotherapy is underway. Some evidence already suggests 
the utility of durvalumab to treat NSCLC patients, as a 
significantly longer PFS (16.8 months with durvalumab 
vs. 5.6 months with placebo) was observed in patients 
with stage III NSCLC without disease progression after 
platinum-based chemoradiotherapy (201,202). Another 
phase III trial showed that avelumab did not increase OS 
compared to that following docetaxel treatment in PD-L1-

positive NSCLC patients previously treated with platinum-
based chemoradiotherapy. However, patients undergoing 
avelumab treatment had fewer adverse reactions, showing 
the favorable safety profile of avelumab (203).

Combining anti-PD-(L)1 with anti-CTLA-4

The expression of CTLA-4 delivers an inhibitory signal 
into T-cells, inhibiting T-cell activation (204). Thus, the 
dual targeting of PD-(L)1 and CTLA-4 may produce a 
greater and more durable tumor response than PD-(L)1 
inhibition alone. One critical study showed that nivolumab 
monotherapy (1-year PFS rate of 29%) was less beneficial 
in patients with a higher tumor mutational burden (TMB), 
while the combination of nivolumab and ipilimumab (1-year  
PFS rate of 42%) was significantly effective (205). 
Nivolumab plus ipilimumab was also shown to induce a 
strong and durable response and exhibited a tolerable safety 
profile in clinical trials (206). However, combination therapy 
with pembrolizumab plus ipilimumab was associated with 
increased toxicity in 51 patients with advanced NSCLC, 
despite the high antitumor activity of the two drugs (207).

When tremelimumab, another CTLA-4 antibody, was 
used with the PD-L1 inhibitor durvalumab in a phase I 
study, the complete suppression of PD-L1 was observed in 
most patients, indicating effective targeting by durvalumab. 
Additionally, increased peripheral T-cell activation and 
proliferation were observed in patients treated with 
durvalumab plus tremelimumab compared with that in 
patients treated with durvalumab monotherapy, even when 
tremelimumab was administered at the lowest dose (208), 
demonstrating the synergistic effect of dual PD-L1 and 
CTLA-4 inhibition. Another clinical trial (NCT02352948) 
of durvalumab plus tremelimumab treatment is ongoing. 
However, how dual PD-(L)1 and CTLA-4 blockade 
improves the response rate compared with that following 
PD-(L)1 blockade monotherapy remains unclear. Table 3  
contains information on finished and ongoing anti-PD(L)1/
CTLA-4 clinical trials for further reference (209-211). 
Recent studies (197,212-215) showed significant correlation 
between PD-(L)1/CTLA-4 expression levels and the effects 
of immunotherapy, low PD-(L)1 expression levels were 
linked with poor responses.

TMB predicts responses to immunotherapy

Immunotherapy has changed the landscape of NSCLC 
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treatment. However, just like ctDNA as a biomarker to 
predict the response of TKI therapy, novel biomarkers are 
being evaluated for their potential to provide precise and 
dynamic prediction of the response to immunotherapy. 
Although this evaluation is only at its early stage, 
biomarkers such as PD-(L)1 expression level, the presence 
of EGFR/ALK mutations, TMB, and microsatellite 
instability were all associated with the responses to 
immunotherapy (216,217). The dynamics of TMB were 
shown to be independent of PD-L1 expression (218,219), 
and greater benefit was consistently observed with high 
TMB and PD-L1 expression, suggesting the potential 
of TMB and PD-(L)-1 expression level as independent 

biomarkers (220). In patients with stage IV or recurrent 
NSCLC with a high TMB, the 1-year PFS rate was 43% 
with nivolumab plus ipilimumab treatment and 13% with 
chemotherapy. Notably, in patients with a low TMB, 
the PFS with nivolumab plus ipilimumab treatment was 
similar to that with chemotherapy, suggesting TMB as a  
biomarker (205). Several other studies also noted that 
higher TMB predicts favorable outcomes such as duration 
and survival of patients receiving anti-PD-1/PD-L1 
therapy in NSCLC (216,219,221). Furthermore, TMB was 
significantly lower among patients with EGFR, ALK, or 
ROS1 mutation compared to wild-type (216). Unsolved 
questions on the mechanism of combined PD-(L)1 and 

Table 3 Selected clinical trials targeting PD-(L)1 and CTLA-4 in NSCLC

NCT number with 
references

Design ORR (%) PFS (months) OS (months)

Selected clinical trials with results

NCT01673867 (195) Nivolumab vs. docetaxel 19 vs. 12 2.3 vs. 4.2 12.2 vs. 9.4

NCT01642004 (209) Nivolumab vs. docetaxel 20 vs. 9 3.5 vs.2.8 9.2 vs. 6.0

NCT02477826 (205) Nivolumab plus ipilimumab vs. 
chemotherapy in lung cancer with a high 
TMB

45.3 vs. 26.9 4.9 vs. 5.5; 7.2 vs. 5.5 (high 
TMB); 3.2 vs. 5.5 (low TMB)

NR

NCT01905657 (210) Pembrolizumab (2 mg/kg) vs. docetaxel; 
pembrolizumab (10 mg/kg) vs. docetaxel

30 vs. 8; 29 vs. 8 3.9 vs.4.0; 4.0 vs. 4.0 10.4 vs. 8.5; 12.7 vs. 8.5

NCT02220894 (211) Pembrolizumab vs. chemotherapy 27 vs. 27 5.4 vs. 6.5 16.7 vs. 12.1

NCT02578680 (200) Pembrolizumab plus chemotherapy vs. 
placebo

47.6 vs. 18.9 8.8 vs. 4.9 NR vs. 11.3

NCT01903993 (198) Atezolizumab vs. docetaxel 15 vs. 15 2.7 vs. 3.0 12.6 vs. 9.7

NCT02008227 (199) Atezolizumab vs. docetaxel 52 vs. 18 2.8 vs. 4.0 13.8 vs. 9.6

NCT02125461 
(201,202)

Durvalumab vs. placebo in non-disease 
progression patients after platinum-
based therapy

28.4 vs. 16.0 16.8 vs. 5.6 NR vs. 28.7

NCT02395172 (203) Avelumab vs. docetaxel in patients after 
platinum-based therapy

15 vs. 11; 19 vs. 
12 (PD-1+)

2.8 vs. 4.2; 3.4 vs. 4.1 (PD-
1+)

11.4 vs. 10.3

Selected ongoing clinical trials

NCT03001882 Nivolumab plus ipilimumab

NCT02659059 Nivolumab plus ipilimumab vs. nivolumab plus ipilimumab and chemotherapy

NCT02477826 Nivolumab plus ipilimumab vs. nivolumab plus ipilimumab and platinum-doublet chemotherapy

NCT02352948 Durvalumab plus tremelimumab vs. durvalumab

PD-1, programmed cell death-1; PD-L1, programmed cell death ligand-1; CTLA-4, cytotoxic T-lymphocyte antigen-4; NSCLC, non-small-
cell lung cancer; ORR, overall response rate; PFS, progression-free survival; OS, overall survival; TMB, tumor mutational burden; NR, not 
recorded.
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CTLA-4 blockade and the synergy of this treatment regime 
with high TMBs remain.

Significant links between ctDNA, TKI targeted 
therapy, and immunotherapy

ctDNAs as prognostic markers to determine acquired 
resistance and the effectiveness of TKIs

Even when patients exhibit an initial disease progression 
event observed by the monitoring of ctDNA levels, 
continued TKI treatment [osimertinib (86), afatinib (222)] 
can remain effective. In a phase III trial, continued afatinib 
treatment after disease progression doubled the patient PFS 
(5.6 months with afatinib treatment vs. 2.8 months with 
chemotherapy) (222). When a drug continues to suppress 
the majority of tumor cells, compensatory pathways may 
be upregulated. Upon drug withdrawal, dramatic disease 
progression called “tumor flare” might occur (223). 
However, treatment should be based on each patient’s 
mutation profile; for instance, a patient with the EGFR 
T790M mutation might exhibit disease progression after 
rociletinib treatment for a certain duration (7). In this case, 
a change in EGFR-TKI from rociletinib to osimertinib 
seems to be a better strategy than continued rociletinib 
treatment. A prolonged PR to osimertinib after PD with 
rociletinib treatment was observed in EGFR T790M-
positive NSCLC patients (224,225).

The ctDNA levels in EGFR T790M-positive patients 
exhibited a specific, similar, and sudden spike that developed 
at different time points during routine ctDNA profiling 
after TKI treatment, but this pattern was not observed in 
EGFR T790M-negative patients (70). This result illustrates 
the possibility of predicting cancer progression by analyzing 
ctDNA profiles and determining the possible mutation 
type. Analysis of ctDNA shedding in samples taken before 
and after disease progression showed a positive correlation 
between the level of ctDNA shedding and tumor burden, 
suggesting that disease in these non-shedding patients 
is entirely controlled at progression. The emergence of 
clinically important resistance may correlate with the 
presence of detectable ctDNA (226). Resistance caused by 
the EGFR T790M mutation has irreversible outcomes but 
can be detected by early ctDNA analysis, which can identify 
the mutation even before it has a large impact on patients (64).

EGFR T790M ctDNA profiling also provides solid 
evidence of the effectiveness of TKIs and indications for 
drug switching strategies. EGFR T790M was strongly 

correlated with large increases in mutant DNA levels. This 
strongly suggests switching from first-generation TKIs, 
which no longer effectively control disease progression, to 
third-generation TKIs with the need of intervention at an 
earlier time (67). Therefore, EGFR T790M has emerged 
as a favorable prognostic marker to determine acquired 
resistance and an important predictive marker for the 
effectiveness of TKIs.

ctDNAs as predictive markers for immunotherapy to assess 
pseudoprogression and blood TMB (bTMB)

ctDNAs are widely used as an efficient clinical tool 
to monitor the effects of chemotherapy and targeted 
therapy. Recently, more and more studies focused on the 
application of ctDNA assays in monitoring responses of 
immunotherapy by ICIs.

ctDNA levels correlated with tumor progression in 
patients receiving anti-CTLA-4 and anti-PD-L1 therapy, 
and pseudoprogression was revealed by undetectable ctDNA 
3 weeks prior to clinical improvement (227). Other studies 
(228-230) also proved the efficiency of ctDNA, decreased 
ctDNA levels were observed in response to treatment 
several weeks after initiation. Guibert et al. (231) monitored 
responses to anti-PD-1 treatment of KRAS mutated 
lung adenocarcinoma by ddPCR on plasma ctDNA and 
discriminated pseudo from true progression. Patients with 
pseudoprogression often began with undetectable ctDNA 
at baseline or detectable ctDNA at baseline followed by a 
greater than 10-fold decrease in ctDNA level in response 
to treatment (232); these patients with low or undetected 
ctDNA level at the beginning of and during therapy often 
have better responses to immunotherapy (233). Patients 
with more than 50% decrease compared to ctDNA baseline 
levels showed superior PFS and OS than those by less 
than 50% (234). Baseline ctDNA level, and ctDNA level 
post-treatment, could be prognostic factors in patients  
receiving ICIs.

ctDNA has been investigated as a predictive marker that 
reveals TMB in response to immunotherapy (235-237).  
TMB assessed by targeted NGS was significantly 
associated with improved benefit among patients with 
NSCLC treated with ICIs (238). Recent studies (239-241) 
investigated bTMB profiled with ctDNA sequencing and 
whether it predicts responses to immunotherapy. bTMB 
quantified by NGS were highly concordant with tissue 
TMB (tTMB), so that TMB can be accurately measured 
in plasma. bTMB also associated with clinical benefit such 
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as longer PFS in patients treated with atezolizumab (240). 
Although there are only a few relative studies, researchers 
positively concluded that bTMB quantified by ctDNA 
had the potential to be a novel biomarker for prognosis 
in patients with NSCLC treated by immunotherapy. 
However, due to the limitation of sequencing depth, 
in order to quantify TMB by ctDNA, mutations with a 
minimum allele frequency must be above 1% in ctDNA 
for a bTMB score to be valid (240).

Combining TKI therapy and immunotherapy

Many studies have pointed out, EGFR/ALK status in 
NSCLC cell lines were correlated with the expression 
level  of  PD-(L)1.  For example,  EGFR activating 
mutations, EGFR T790M, EML4-ALK fusion, and 
MET overexpression were significantly associated with 
increased expression of PD-L1 (192,193). However, the 
number of studies investigating how TKI treatment affects 
immunotherapy is still limited.

Although EGFR mutations or ALK rearrangements were 
associated with low ORRs to PD-1/PD-L1 inhibitors (242),  
and EGFR T790M upregulated PD-L1 level (243); It is 
contradictory to our current understanding that Haratani 
et al. (244) found out that 25 patients with EGFR mutation 
but negative for T790M benefited more from nivolumab 
treatment after EGFR-TKI therapy, possibly because of 
higher PD-L1 expression levels in those T790M-negative 
patients. A few nivolumab responders with high levels of 
PD-L1 expression also experienced copy number gain for 
MET. Prospective clinical trials are required to confirm the 
efficacy of anti-PD-1 treatment for EGFR T790M-negative 
patients. Another recent study (245) focused on combining 
erlotinib/gefitinib with pembrolizumab as first-line therapy 
for NSCLC patients with EGFR sensitizing mutations. 
ORRs were 41.7% and 14.3% in pembrolizumab plus 
erlotinib and pembrolizumab plus gefitinib, respectively. 
However, there were no improvement of ORRs compared 
to previous monotherapies, and 5 in 7 patients receiving 
pembrolizumab plus gefitinib were observed to have drug-
related liver toxicity. Patients received pembrolizumab 
plus erlotinib were observed to have adverse events similar 
to monotherapy, demonstrating the safety profile of this 
combination. Combining immunotherapy with EGFR-
TKI therapy might be reasonable, nevertheless, due to the 
small size of cohort in this study, further evaluation is still 
required. In another clinical trial (NCT02013219) (246), 
atezolizumab plus erlotinib demonstrated a manageable 

safety profi le and achieved ORR of 75%, a great 
improvement from previous atezolizumab monotherapy. 
Trial (NCT02088112) (247) on durvalumab plus gefitinib 
achieved ORR of 78.9%. Trials ongoing (NCT02013219, 
NCT02088112, NCT02364609, and NCT02143466) all 
involve the combination of EGFR/ALK-TKI therapy with 
immunotherapy, a novel treatment strategy that is still at an 
early stage of exploration.

Future prospects

Decades have passed since researchers first found that 
mutations in the KRAS, EGFR and ALK genes were related 
to lung cancer tumorigenesis. Lung cancer treatment has 
evolved from regular chemotherapy to targeted therapy 
using RTK inhibitors that diminish only cancer cells with 
certain gene mutations and to immunotherapy that utilizes 
our immune system to efficiently and precisely attack 
tumor cells through regulating PD-(L)1 and CTLA-4 or 
the genetic engineering of T-cells to perform chimeric 
antigen receptor T-cell immunotherapy (CAR-T). Each 
treatment revolution has helped us tackle the world’s 
second largest disease, which causes many deaths. Lots of 
ongoing studies continue to discuss the potential of TMB 
as a novel biomarker for immunotherapy, and using ctDNA 
to calculate bTMB as a more convenient and dynamic 
approach. Furthermore, ongoing trials on the combination 
of targeted therapy and immunotherapy might shed light on 
new strategies for NSCLC treatment.

Genetic profiling is the first step in targeted treatment, 
and serum or urine ctDNA sampling has greatly simplified 
the whole biopsy process, making it simpler than tissue 
biopsy. ctDNA sampling also enables the noninvasive, 
sensitive and dynamic capture of DNA information from 
heterogeneous tumors. ctDNA is often used in targeted 
therapy as a tool to aid in determining treatment efficacy 
and predicting prognosis.

Although targeted therapy is effective, there are still 
many cases of developed resistance. Three generations of 
TKIs have been developed to treat the clinically crucial 
RTKs in NSCLC EGFR and ALK; however, different TKI 
resistance mechanisms, such as secondary RTK mutations, 
gene fusion or signal activation bypass, occur for each 
drug despite our increasing understanding of the biology 
and treatment of NSCLC. Figure 2 describes the clinical 
strategies used to manage resistance in NSCLC. NSCLC 
patients still face many challenges, such as relatively poor 
survival rates and frequent metastasis. We hope that the 
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rapid development of targeted therapy and immunotherapy 
will facilitate the continuous development of new drugs and 
effective treatment strategies for NSCLC patients.
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