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Introduction

Solid tumors with high tumor mutation burden (TMB), 
including melanoma and non-small cell lung cancer 
(NSCLC), demonstrate remarkable responses to immune 
checkpoint inhibitors (1-4). It has been hypothesized that 
tumors with high TMB are more likely to harbor tumor-
specific antigenic peptides or neoantigens, which make 

them targets of activated immune cells and results in a 
positive response with immunotherapy (1,5).

Neoantigen load, although not clinically observable, 
has been shown to be associated with the burden of 
mutation and immunotherapy response (2,6). TMB was 
therefore considered an emerging predictive biomarker for 
the effectiveness of inhibitors of the immune checkpoint  
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(1-3,6). The number of mutations present in a tumor sample 
is estimated to be TMB or mutation load. It is measured 
as the number of somatic mutations per megabase (Mb) of 
the interrogated genome, including single nucleotide and 
nonsense variants and short insertion-deletion variations.

Whole exome sequencing (WES), spanning about 
30 to 50 Mb of coding sequences, has been traditionally 
used to estimate TMB (3). Advanced NSCLC patients 
with high TMB estimated by WES who received single-
agent or combination immune checkpoint inhibitors were 
more likely to have improved objective response, more 
durable clinical benefit and longer progression-free survival 
than patients with low TMB (2,7,8). In contrast to WES, 
targeted next-generation sequencing (NGS) with gene 
panels consisting of 300 to 500 genes, spanning about 1 to  
3 Mb of the genome, can accurately sequence genes 
or regions of interest at a much higher depth to reveal 
therapeutically-relevant mutations (9,10). The high 
correlation of TMB derived from WES and large targeted 
gene panels has then prompted the replacement of WES in 
the routine clinical assessment of TMB (3,4,11,12); however, 
its use is still limited by high cost and longer turnaround 
time. Moreover, despite providing a comprehensive mutation 
profile, information gathered from sequencing with large 
targeted panels is not needed in the therapeutic decisions for 
some patients.

Conversely, smaller targeted gene panels have been 
increasingly utilized in clinical practice, particularly in lung 
cancer, due to its cost-effectiveness and faster turnaround 
time as compared with the use of large targeted gene panels 
and WES (13). Like large gene panels, targeted sequencing 
using small gene panel can also simultaneously find genomic 
alterations in cancer-related genes but only in a limited 
number of genes. With the more common use of small 
targeted gene panel, we hypothesized that predicting TMB 
from it can be clinically useful as a first and cost-effective 
screening method. In this study, we explored the feasibility 
of using a 56-gene panel covering 0.26 Mb of the human 
genome to predict TMB.

To reach this goal, we first simulated the target regions 
of the small gene panel using sequencing data obtained with 
the large gene panel and derived an optimal TMB cut-off 
using a training dataset. We then confirmed the utility of 
this cut-off using an independent cohort sequenced using 
the small panel and further confirmed with the large panel.

Methods

Patients

Data derived from targeted sequencing using 520-gene 
panel (OncoScreen Plus, Burning Rock Biotech, China) 
from a total of 406 NSCLC patients with varied TMB 
status were used as the training dataset to identify the genes 
correlated with high TMB, and derive the optimal TMB 
cut-off through simulations.

An independent cohort comprised of 30 NSCLC 
patients with various stages and histological types from our 
institution who were referred for comprehensive molecular 
testing at Burning Rock Biotech [College of American 
Pathologists (CAP)-accredited/Clinical Laboratory 
Improvement Amendments (CLIA)-certified laboratory] 
between February 2017 and May 2018 were included for the 
validation stage of this study. Two independent pathologic 
examinations confirmed tumor histology. Tumors were 
staged according to the American Joint Committee on 
Cancer 7th edition TNM staging system of NSCLC (14).

This study was approved by the relevant Institutional 
Review Board of the West China Hospital and performed 
following the ethical standards of West China Hospital and/
or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical 
standard. Prior written informed consent was obtained from 
each of the recruited patients for the use of their plasma 
and/or tissue samples in further molecular studies.

Tissue DNA isolation and capture-based targeted DNA 
sequencing

Tissue DNA was extracted from formalin-fixed, paraffin-
embedded (FFPE) tumor tissues using QIAamp DNA FFPE 
tissue kit (Qiagen). A minimum of 50 ng of DNA is required 
for NGS library construction. Tissue DNA was sheared 
using Covaris M220 (Covaris, MA, USA), followed by end 
repair, phosphorylation, and adaptor ligation. Fragments 
between 200 to 400 base pairs from the sheared tissue 
DNA were purified (Agencourt AMPure XP Kit, Beckman 
Coulter, CA, USA), followed by hybridization with capture 
probes baits, hybrid selection with magnetic beads and PCR 
amplification. The quality and the size of the fragments 
were assessed using Qubit 2.0 Fluorimeter with the dsDNA 
high-sensitivity assay kit (Life Technologies, Carlsbad, CA). 
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Indexed samples were sequenced on Nextseq500 (Illumina, 
Inc., USA) with paired end reads and average sequencing 
depth of 1,000×.

Sequence data analysis

Sequence data were mapped to the reference human genome 
(hg19) using Burrows-Wheeler Aligner v.0.7.10 (15).  
Local alignment optimization and variant calling were 
performed using Genome Analysis Tool Kit v.3.2 (16), 
and VarScan v.2.4.3 (17). Variants were filtered using the 
VarScan fpfilter pipeline, loci with depth less than 100 were 
filtered out. Base-calling in tissue samples required at least 
8 and 5 supporting reads for single nucleotide variations 
(SNVs) and short insertion and deletion variations 
(INDEL), respectively. Variants with population frequency 
over 0.1% in the ExAC, 1000 Genomes, dbSNP, or 
ESP6500SI-V2 databases were grouped as single nucleotide 
polymorphisms and excluded from further analysis. 
Remaining variants were annotated with ANNOVAR (18) 
and SnpEff v.3.6 (19). Analysis of DNA translocation was 
performed using Factera v.1.4.3 (20).

TMB per patient was computed as a ratio between the 
total number of mutations detected with the total coding 
region size of the panel used (i.e., 520-gene OncoScreen 
Plus panel with 1.26 Mb, 56-gene LungCore panel with 
0.25 Mb) using the formula in Eq. [1]. Copy number 
variations (CNV), fusions, large genomic rearrangements 
and mutations occurring on the kinase domain of EGFR and 
ALK were excluded from the mutation count.

mutation count (except for CNV and fusion)TMB
the total size of the coding region of the panel used

= [1]

Model construction

Various learning methods, including support vector machine 
(SVM) (21), naive Bayesian, Bayesian network, logistic 
regression, additive logistic regression (22), random forest, 
and a multiclass probabilistic classifier were executed to 
construct the most optimal model in predicting TMB from 
the small 56-gene panel. These learning algorithms were 
implemented by WEKA v3.6 (23), with the corresponding 
packages, including LibSVM, NaïveBayes, BayesNet, 
Logistic, LogitBoost, RandomForest, MultiClassClassifier, 
and SVM. Default parameters were obeyed throughout the 
supervised learning process.

Model performance validation

The sensitivity (Eq. [2]), specificity (Eq. [3]), positive 
predictive value (PPV) (Eq. [4]) and Matthew’s correlation 
coefficient (MCC) (Eq. [5]) were calculated accordingly 
using the formula listed below considering the highest 
proportion of true positives and the lowest number of 
false negatives. Sensitivity is defined as the percentage of 
positive data correctly predicted. Specificity is defined as 
the percentage of negative data correctly predicted. PPV is 
defined as the percentage of positive results that are a true 
positive. MCC is a comprehensive indicator that considers 
both positive and negative data.

TPSensitivity
TP FN

=
+

 [2]

TNSpecificity
TN FP

=
+

[3]

TPPPV
TP FP

=
+

[4]

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

 [5]
Where TN, TP, FN, FP represent true negative, true 

positive, false negative, and false positive, respectively.

Statistical analysis

All the data were analyzed using the R statistics package 
(R v3.4.0; R: The R-Project for Statistical Computing, 
Vienna, Austria). Differences in the groups were calculated 
and presented using either Fisher’s exact test or two-tailed 
Student’s t-test, as appropriate. P value with P<0.05 was 
considered as statistically significant.

Results

Patient characteristics

A total of 406 NSCLC patients of varied histology and 
disease stage were included in the training dataset. Among 
the 406 patients, 62.6% (254/406) of the patients were male, 
while the remaining 37.4% (152/406) were females. The 
median age of the cohort was 60 years, ranging from 43 to 
88 years. Most of the patients were diagnosed with lung 
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adenocarcinoma (61.8%, 251/406), while 12.3% (50/406) 
were diagnosed with squamous cell lung carcinoma. Based 
on the TMB estimated from the large 520-gene panel, 7.9% 
(32/406) of the patients have TMB ≥20 mutations/Mb, 
17.2% (70/406) have TMB between 10–20 mutations/Mb 
and 75.4% (306/406) had TMB <10 mutations/Mb.

Among the 30 patients included as an independent 
cohort for the validation stage of the study, a majority were 
males (86.7%, 26/30). The median age of the validation 
cohort was 61 years, ranging from 31 to 79 years. About 
half of the patients (56.7%, 17/30) were diagnosed with 
lung adenocarcinoma, 40.0% (12/30) were diagnosed with 
squamous cell lung carcinoma, and a patient was diagnosed 
with large cell neuroendocrine lung carcinoma. The cohort 
was comprised of 30% (9/30) patients with early-stage 
disease, 53.3% (16/30) patients with advanced-stage disease 
and the remaining 5 patients had unknown disease stage. 
Early-stage patients included 4 patients with stage IB, 2 
patients each with stage IIA and IIB, respectively and 1 
patient with stage IIIA. Advanced-stage patients included 
4 patients with stage IIIB, 1 patient with stage IIIC, 10 
patients with stage IVA, and 1 patient with stage IVB.

Identifying the optimal cut-off for the small panel

In order to investigate the use of the small 56-gene panel to 
estimate TMB, by using data simulation, we first extracted 
the target regions covered by the small gene panel from 

the sequencing data obtained using the large gene panel 
for the training cohort composed of 406 NSCLC patients. 
TMB for both large and small panel is similarly calculated 
as the ratio of the number of SNVs per coding region of the 
genome covered by the gene panel as expressed in Eq.1 in 
the Methods section. We then analyzed the correlation of 
actual TMB calculated from the large gene panel and the 
simulated TMB for the small gene panel. Furthermore, we 
also derived an optimal TMB cut-off that could effectively 
identify patients with low and high TMB.

The large targeted gene panel (OncoScreen Plus, 
Burning Rock Biotech, China) includes 520 cancer 
development-related genes spanning 1.64 Mb of the human 
genome (1.26 Mb excluding the regions not included in 
TMB estimation). Previous validation of the 520-gene panel 
revealed high correlation between actual TMB estimated 
from the WES data of 8,092 patient samples with 35 types 
of cancers from the Cancer Genome Atlas (TCGA) and the 
simulated TMB from target regions included in the 520-
gene panel derived from the WES data (Pearson correlation 
coefficient R2=0.976; data not shown). In contrast, the small 
targeted gene panel (LungCore, Burning Rock Biotech, 
China) includes 56 lung cancer-related genes spanning 
0.28 Mb of the human genome (0.25 Mb excluding the 
regions not included in TMB estimation). The fitted curve 
illustrating the correlation between the TMB estimated 
from the large gene panel and the small gene panel is shown 
in Figure 1A. The TMB estimated from small gene panel, 

Figure 1 Deriving the TMB cut-off values. (A) Regression analysis revealed the correlation between the TMB estimated from the training 
dataset using the small gene panel (X-axis) and the large gene panel (Y-axis). (B) Receiver operating characteristic (ROC) plotting the 
specificity (X-axis) and sensitivity (Y-axis) revealed an area under the curve (AUC) of 90.0% with a TMB cut-off of 10.2 mutations/Mb. 
TMB, tumor mutation burden.
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and large gene panel is highly correlated, with a regression 
coefficient (R2) of 0.821 and a Pearson correlation 
coefficient of 0.906. The genes included in the large and 
small gene panels are listed in Tables S1 and S2, respectively.

Based on the TMB cut-off of 10 mutations/Mb for large 
gene panel, we divided the data for the small gene panel 
into TMB ≥10 and TMB <10. According to the receiver 
operating characteristic (ROC) curve illustrated in Figure 
1B, the most optimal cut-off was 10.2 mutations/Mb for the 
small panel achieving a specificity of 81.4%, sensitivity of 
83.6%, and area under the curve (AUC) of 90.0%. Hence, 
we have set the cut-off as 10 mutations/Mb.

Statistical performance indicators for TMB estimation 
using the small gene panel

After identifying the optimal TMB cut-off that could 
dist inguish between low and high TMB, we next 
determined the impact of the TMB cut-off value of  
10 mutations/Mb on the performance of TMB estimation 
using the small panel by calculating statistical performance 
indicators including sensitivity, specificity and PPV. 
Furthermore, seven different machine learning algorithms 
were employed to analyze the performance of the small 
gene panel in distinguishing and stratifying the TMB using 
10 mutations/Mb as the cut-off.

Table 1 summarizes the statistical indicators for the 
performance of the small gene panel in estimating TMB. At 
a TMB cut-off of 10 mutations/Mb, the specificity and PPV 

were 83.6% and 62.4%, respectively. Both the specificity 
and PPV had an increasing trend with the increase in TMB 
achieving 100% when the TMB was at 21 mutations/
Mb (Figure S1, Table 1). Meanwhile, the sensitivity had an 
opposite trend, with the highest sensitivity of 81.4% achieved 
at 10 mutations/Mb cut-off and concomitantly decreased with 
the increase in TMB (Table 1). The cut-off was confirmed as 
10 mutations/Mb considering the highest proportion of true 
positives and the lowest number of false negatives.

Further analysis of the analytical performance with 
seven different learning algorithms using a TMB cut-off of  
10 mutations/Mb achieved specificity between 92.1% and 
96.4% (Table 2). Among the algorithms, BayesNet revealed 
the highest sensitivity of 70.6%, followed by the sensitivity 
of 67.6% from both Logistic and MultiClassClassifier. 
Meanwhile, Logistic revealed the highest sensitivity, PPV 
and MCC of the model achieving 96.4%, 85.9%, and 
68.3%, respectively. Moreover, specificity, PPV and MCC 
of 95.1%, 82.1%, and 67.1% were respectively achieved by 
both Logistic and MultiClassClassifier (Table 2).

The inverse relationship between the sensitivity and 
TMB cut-off strongly supports the fact that small targeted 
gene panels are not dependable for the estimation of high 
TMB. In contrast, the increasing trend in both specificity 
and PPV with the corresponding increase in TMB 
demonstrated that TMB is likely to be overestimated by 
the small gene panel, but the likelihood of false-positive 
results is very low. Since TMB is overestimated, samples 
with TMB values above the cut-off (>10 mutations/Mb) 

Table 1 Derivation of the optimal TMB cut-off for the small gene panel using TMB cut-off value of 10 mutations/Mb for the 520-gene panel 
from 406 NSCLC patients

Cutoff for the small panel TP FP TN FN Sensitivity Specificity PPV

10 83 50 254 19 81.4% 83.6% 62.4%

15 65 15 289 37 63.7% 95.1% 81.3%

20 46 4 300 56 45.1% 98.7% 92.0%

21 29 0 304 73 28.4% 100.0% 100.0%

25 16 0 304 86 15.7% 100.0% 100.0%

30 11 0 304 91 10.8% 100.0% 100.0%

35 8 0 304 94 7.8% 100.0% 100.0%

40 5 0 304 97 4.9% 100.0% 100.0%

41 3 0 304 99 2.9% 100.0% 100.0%

NSCLC, non-small cell lung cancer; TMB, tumor mutation burden; TP, true positive; FP, false positive; TN, true negative; FN, false  
negative; PPV, positive predictive value.



76 Tang et al. Small gene panel as a screening method for TMB

© Translational lung cancer research. All rights reserved.   Transl Lung Cancer Res 2020;9(1):71-81 | http://dx.doi.org/10.21037/tlcr.2019.12.27

Table 2 Performance validation of TMB estimation using derived TMB cut-off value of 10 mutations/Mb for the small gene panel from 406  
NSCLC patients

Method TP TN FP FN Sensitivity Specificity PPV MCC

NaiveBayes 59 291 13 43 57.8% 95.7% 81.9% 60.8%

BayesNet 72 280 24 30 70.6%# 92.1% 75.0% 64.0%

Logistic* 69 289 15 33 67.6% 95.1% 82.1% 67.1%

LogitBoost 65 289 15 37 63.7% 95.1% 81.3% 64.1%

RandomForest 63 284 20 39 61.8% 93.4% 75.9% 59.4%

SVM* 67 293 11 35 65.7% 96.4%# 85.9%# 68.3%#

MultiClassClassifier* 69 289 15 33 67.6% 95.1% 82.1% 67.1%

*, methods in bold represent the most suitable method for TMB estimation; #, values in bold indicate the highest value for sensitivity,  
specificity, PPV, or MCC. NSCLC, non-small cell lung cancer; TMB, tumor mutation burden; TP, true positive; FP, false positive; TN, true 
negative; FN, false negative; PPV, positive predictive value; MCC, Matthew’s correlation coefficient.

requires revalidation with a larger gene panel, while samples 
with TMB values below the cut-off (<10 mutations/Mb) 
are more likely to be accurate and does not need further 
validation.

Identifying known genes and alterations associated with 
increased TMB

We further identified the specific genes associated with 
high TMB within the large 520-gene panel by performing 
statistical analysis on the sequencing data from 406 NSCLC 
patients with varied TMB status. This step aims to identify 
the genes that are associated with high TMB from the large 
gene panel and determine if they are present in the small 
gene panel.

At a TMB cut-off of 10 mutations/Mb, patients with 
high TMB had significantly more mutations in a total of 
106 genes than patients with low TMB. Of these, 26 of 
these genes were part of the small gene panel and covered 
46.4% (26/56) of the genes in the small panel (Table S3).

In teres t ing ly,  TP53  muta t ions  were  the  most 
predominant mutation among patients with high TMB 
(P<0.001, Table S3, Figure S2). Among all the other 
actionable mutations, ALK and ROS1 fusions were also 
more likely to be detected among patients with low TMB 
(ALK fusion P=0.0095; ROS1 fusion P=0.043).

Validation of TMB estimation with small gene panel using 
an independent cohort

After identifying the optimal cut-off and establishing 

the feasibility of TMB estimation with the small gene 
panel using simulated data from the training cohort, we 
next aimed to validate our findings with the use of an 
independent cohort consisting of an additional 30 NSCLC 
patients. This cohort was sequenced using both the small 
and the large gene panels to compare the TMB estimated 
from both panels. Furthermore, the statistical performance 
of the small gene panel was also evaluated with learning 
algorithms.

The mutation detection rate of TP53  was 67%, 
with 91.7% (11/12)  of  the pat ients  having TMB  
≥20 mutations/Mb, 72.7% (8/11) having TMB between 
10 to 20 mutations/Mb and 14.3% (1/7) having TMB  
<10 mutations/Mb (Figure S3).

Table 3  l ists the TMB estimated with the small 
(LungCore)  and further val idated with the large 
(OncoScreen Plus) gene panel for each of the 30 
patients. Most of the patients (66.7%, 20/30) had 5 or 
more mutations detected with an estimated TMB of  
≥20 mutations/Mb. Four patients had TMB between  
10–20 mutations/Mb, while the remaining 6 patients had 
TMB <10 mutations/Mb. In contrast, based on the TMB 
validated with the 520-gene panel, 40.0% (12/30) of the 
patients had TMB ≥20 mutations/Mb, 36.7% (11/30) had 
TMB between 10–20 mutations/Mb and the remaining 
23.3% (7/30) had TMB <10 mutations/Mb.

The analytical performance of the small gene panel in 
TMB estimation using a cut-off value of 10 mutations/Mb 
achieved specificity of 71.4%, PPV of 91.7%, and sensitivity 
of 95.7% (Table 4, Figure S4). Consistent with the trend 
observed in the training dataset (Table 1), the specificity 
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Table 3 Estimated TMB of the 30 NSCLC patients from the small and large gene panels

Patient ID MaxAF (LungCore) Mutation count (LungCore) TMB LungCore TMB OncoScreen

F21510* 61.31% 19 77.6 90.5

F21511* 13.27% 12 49.0 39.7

F21501* 79.46% 11 44.9 68.3

F21492* 76.35% 11 44.9 51.6

F21508* 61.90% 10 40.8 49.2

F21514* 57.33% 9 36.7 20.6

F21516* 35.58% 9 36.7 20.6

F21503* 57.91% 9 36.7 16.7

F21498* 48.62% 8 32.7 11.1

F21496* 35.28% 7 28.6 34.9

F21515* 91.69% 7 28.6 26.2

F21502* 80.71% 6 24.5 29.4

F21504* 14.76% 6 24.5 20.6

F21495* 35.66% 6 24.5 17.5

F21505* 23.57% 6 24.5 15.9

F21493* 19.28% 6 24.5 11.1

F21499* 81.11% 5 20.4 23.0

F21513* 65.59% 5 20.4 12.7

F21506* 67.28% 5 20.4 11.9

F21497* 45.69% 5 20.4 11.1

F45309* 56.47% 4 16.3 12.7

F45303 55.60% 4 16.3 5.6

F45305* 86.63% 3 12.2 17.5

F45308 44.86% 3 12.2 4.8

F45304 54.78% 2 8.2 4.0

F45307 71.28% 2 8.2 5.6

F45298 38.30% 1 4.1 10.3

F45299 92.37% 1 4.1 4.8

F45300 31.24% 1 4.1 2.4

F45302 44.65% 0 0 5.6

Patient data with * indicate the patients whose actual TMB data from the small panel matches the actual TMB data from the 520-gene 
panel according to the cutoff of 10 mutations/Mb. NSCLC, non-small cell lung cancer; TMB, tumor mutation burden.

and PPV also had an increasing trend, with both specificity 
and PPV reaching 100% at a TMB of 20 mutations/Mb. 
Meanwhile, the sensitivity also had a decreasing trend with 
the concomitant increase in the TMB in the validation 

cohort (Table 4). Consistently, the analytical performance 
evaluated by the seven different learning algorithms 
revealed the sensitivity of 91.3%, specificity, and PPV of 
100% and MCC of 84.3% in both LogitBoost and SVM 
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Table 4 Performance metrics for TMB estimation with the small gene panel from 30 NSCLC patients

Cutoff for the small panel TP FP TN FN Sensitivity Specificity PPV

10 22 2 5 1 95.7% 71.4% 91.7%

15 21 1 6 2 91.3% 85.7% 95.5%

20 20 0 7 3 87.0% 100.0% 100.0%

21 16 0 7 7 69.6% 100.0% 100.0%

25 11 0 7 12 47.8% 100.0% 100.0%

30 9 0 7 14 39.1% 100.0% 100.0%

35 8 0 7 15 34.8% 100.0% 100.0%

40 5 0 7 18 21.7% 100.0% 100.0%

41 4 0 7 19 17.4% 100.0% 100.0%

NSCLC, non-small cell lung cancer; TMB, tumor mutation burden; TP, true positive; FP, false positive; TN, true negative; FN, false  
negative; PPV, positive predictive value.

Table 5 Performance metrics of TMB cut-off value of 10 mutations/Mb for the small gene panel using the data from 30 NSCLC patients

Method TP TN FP FN Sensitivity Specificity PPV MCC

NaiveBayes 21 6 1 2 91.3% 85.7% 95.5% 73.7%

BayesNet 21 6 1 2 91.3% 85.7% 95.5% 73.7%

Logistic 19 7 0 4 82.6% 100.0% 100.0% 72.5%

LogitBoost* 21 7 0 2 91.3%# 100.0%# 100.0%# 84.3%#

RandomForest 20 6 1 3 87.0% 85.7% 95.2% 67.1%

SVM* 21 7 0 2 91.3%# 100.0%# 100.0%# 84.3%#

MultiClassClassifier 19 7 0 4 82.6% 100.0% 100.0% 72.5%

*, methods in bold represent the most suitable method for TMB estimation; #, values in bold indicate the highest value for sensitivity,  
specificity, PPV, or MCC. NSCLC, non-small cell lung cancer; TMB, tumor mutation burden; TP, true positive; FP, false positive; TN, true 
negative; FN, false negative; PPV, positive predictive value; MCC, Matthew’s correlation coefficient.

models (Table 5).
These data taken together indicate that the cut-off of 

10 mutations/Mb estimated from the small 56-gene panel 
could reliably stratify patients with low (<10) and high (≥10) 
TMB. Furthermore, by being overestimated, the TMB of 
the patients having low TMB were accurately estimated by 
the small panel, while the patients with high TMB required 
further validation with larger targeted gene panel.

Discussion

To the best of our knowledge, this is the first study to 
evaluate the utility of a small 56-gene panel to derive TMB 
as a first screening method. Our results suggest that at a 
cut-off of 10 mutations/Mb, TMB derived from the small 

56-gene panel can reliably identify the subset of patients 
with low TMB (<10 mutations/Mb). Also, the results were 
able to identify the individuals who would likely not benefit 
from TMB estimation using large targeted gene panel and 
the subset of patients with high TMB (≥10 mutations/Mb).  
Additionally, it was able to identify those who require 
further evaluation with large gene panel. Since smaller gene 
panels, such as the 56-gene panel analyzed in our study, are 
the more frequently used targeted panel in clinical practice, 
the inclusion of this TMB estimation into the clinical 
reports can provide a more meaningful contribution for 
making a timely treatment decision for lung cancer patients.

Previous studies have published that there is a highly 
imprecise estimate of TMB from small gene panels 
covering approximately 0.5 Mb of the human genome (10). 
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With the inclusion of about a third of the genes more likely 
associated with high TMB within the small LungCore panel 
(46.4%, 26/56), despite being limited, TMB estimation with 
the small panel still has the potential to be informative and 
clinically relevant. Using both simulated and actual TMB 
from the small panel, performance validation consistently 
revealed the same trend of increasing specificity and PPV, 
and decreasing sensitivity with a concomitant increase in 
TMB, strongly suggesting the likelihood of overestimating 
TMB with the small panel. Consistent with the results 
from the simulated data, the actual TMB estimated from 
both the small panel and the 520-gene panel in 30 patients 
in the independent validation cohort proved this concept. 
With a cut-off of 10 mutations/Mb, all of the patients with 
TMB ≥10 mutations/Mb (22/22) estimated by the 520-gene 
panel similarly had TMB ≥10 mutations/Mb from the small 
panel; however, only 91.7% (22/24) of the patients with 
TMB ≥10 mutations/Mb from the small panel had TMB 
≥10 mutations/Mb estimated by the 520-gene panel. This 
data strongly shows the overestimation of TMB with the 
small gene panel, thus requiring further validation with a 
larger gene panel for the correct TMB estimation.

On the contrary, all the patients (6/6) with TMB  
<10 mutations/Mb estimated from the small panel 
consistently had TMB <10 mutations/Mb estimated by the 
520-gene panel, indicating that estimation of low TMB is 
very accurate with no false-negative calls. These data further 
suggest that the TMB cut-off of 10 mutations/Mb from 
the small panel can accurately stratify the patients with low 
TMB who would not likely benefit from immunotherapy 
and does not require sequencing with a large gene panel. In 
addition, 5 of the patients who have more than 10 mutations 
detected and have estimated TMB of >40 mutations/Mb 
with the small gene panel consistently had TMB between 
39.7 to 90.5 mutations/Mb from the 520-gene panel. These 
findings indicate that TMB estimation from the small gene 
panel, although not entirely accurate, can still serve as a 
valuable reference.

The increased use of immune checkpoint inhibitor 
therapy in advanced NSCLC patients whose tumors do 
not harbor actionable EGFR or ALK mutations have driven 
the need to establish a biomarker in predicting therapeutic 
benefit. TMB, although still controversial, has now been 
adopted as a predictive biomarker for immunotherapy 
response. Traditionally, TMB was assessed using WES until 
data simulation studies have demonstrated the feasibility 
of using targeted NGS with gene panels consisting of 300 
to 500 genes (3,4,11). Several reports have since proven 

the utility of large targeted gene panels in accurately 
predicting TMB (3,4,8,10,11). Although large targeted 
gene panels providing a more comprehensive mutational 
profile of solid tumors, they are still substantially limited 
by their high cost and longer turnaround time. Recent 
reports have demonstrated that smaller targeted gene panels 
interrogating about 150 genes from blood samples were 
sufficient for estimating TMB.

Moreover, TMB estimated from the 150-gene panel 
were correlated with immune checkpoint inhibitor response 
in Chinese NSCLC patients, with patients having blood 
TMB (bTMB) of more than 6 mutations/Mb, considered 
as high bTMB, correlated with longer progression-free 
survival than those with low bTMB (P=0.001) (24). By 
providing a more concise but informative mutation profile, 
small targeted panels can serve as practical alternatives to 
large panels in clinical practice. Thus, the inclusion of TMB 
estimation into the analysis pipeline and clinical reports for 
small targeted gene panel could extend its utility as an initial 
TMB screening method, which can easily be integrated 
into the hospital-based diagnostic sequencing laboratories. 
Generally, NSCLC patients with actionable mutations 
benefit most from using small gene panels by revealing 
actionable mutations and allowing them prompt access 
to targeted drugs. On the other hand, patients with no 
actionable mutations revealed by testing with the small gene 
panel would either be treated with cytotoxic chemotherapy 
regimen or be recommended to undergo further molecular 
testing to explore other treatment options. By including 
TMB estimation in the small gene panel workflow, it 
extends the utility of small gene panels, particularly in 
patients with no actionable mutations, and ensures the 
timely treatment decisions for the patients that do not need 
further TMB validation with the larger gene panel.

Since our study is a proof of concept study in the utility 
of small gene panel in TMB prediction, we believe that the 
use of patient samples with various histologies and disease 
stage until mutations were no longer detected, and TMB 
could not be estimated, does not affect the study results.

Despite the limited number of patients and the inclusion 
of patients with various disease stage and histologies in 
both the training and validation cohorts, our findings 
demonstrate the reliability of the small targeted gene 
panel as an initial TMB screening method to distinguish 
the subset of patients with low TMB who will not benefit 
from sequencing with a large panel, thus providing a cost-
effective and convenient screening method that provides 
meaningful application in clinical practice. Our study is also 
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limited by the lack of clinical outcomes from the patients. 
Prospective studies with a larger cohort are needed to 
validate the predictive value of data from small gene panel 
as well as the clinical outcome.

Conclusions

Our study demonstrated that a small targeted gene panel 
could provide additional information on the TMB of 
patients, albeit limited, indicating its potential as a cost-
effective and convenient screening method and adding to 
its utility in the timely diagnosis and management of lung 
cancer patients.
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Supplementary

Figure S1 Scatter plots illustrating the derived TMB for the small panel and actual TMB from the 520-gene panel for 406 NSCLC patients 
using TMB cut-off of 10 mutations/Mb from the 520-gene panel. The X-axis denotes actual TMB derived from the large 520-gene panel. 
Y-axis denotes simulated TMB for the small panel. Dotted lines illustrate different cut-off points. Four quadrants clockwise from the upper 
left hand refer to false positives (FP), true positives (TP), false negatives (FN), and true negatives (TN). NSCLC, non-small cell lung cancer; 
TMB, tumor mutation burden.

Figure S2 Mutational spectrum derived from a large 520-gene panel of the 406 NSCLC patients. The boxed area denotes the genes that 
are present in the small gene panel. Each column represents one patient. Each row represents a gene. The top bar denotes the number of 
mutations detected in each patient. Sidebar represents the number of patients with a mutation in a certain gene. Distinct colors represented 
mutation types. Patient data was arranged according to their TMB status, and are annotated at the bottom of the spectrum; wherein red 
denotes TMB ≥20 mutations/Mb (n=32), blue denotes TMB between 10–20 mutations/Mb (n=70) and green denotes TMB <10 mutations/
Mb (n=306). NSCLC, non-small cell lung cancer; TMB, tumor mutation burden.
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Figure S3 Mutational spectrum derived from the large 520-gene panel of the 30 NSCLC patients. The boxed area denotes the genes that 
are present in the small gene panel. Each column represents one patient. Each row represents a gene. The top bar denotes the number of 
mutations detected in each patient. Sidebar represents the number of patients with a mutation in a certain gene. Distinct colors represented 
mutation types. Patient data was arranged according to their TMB status, and are annotated at the bottom of the spectrum; wherein red 
denotes TMB ≥20 mutations/Mb (n=12), blue denotes TMB between 10–20 mutations/Mb (n=11) and green denotes TMB <10 mutations/
Mb (n=7). The histogram below illustrates the actual TMB of each of the patients estimated with the 520-gene panel. NSCLC, non-small 
cell lung cancer; TMB, tumor mutation burden.

Figure S4 Scatter plots illustrating the actual TMB for the small panel and the 520-gene panel for 30 NSCLC patients using TMB cut-
off of 10 mutations/Mb from the 520-gene panel. The X-axis denotes actual TMB derived from the large 520-gene panel. Y-axis denotes 
actual TMB for the small panel. Dotted lines illustrate different cut-off points. Four quadrants clockwise from the upper left hand refer to 
false positives (FP), true positives (TP), false negatives (FN), and true negatives (TN). NSCLC, non-small cell lung cancer; TMB, tumor 
mutation burden.
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Table S1 The 520 cancer-related genes included in the OncoScreen Plus panel

ABL1, BCL2L1, CDKN2B, EGFL7, FAS, HIST1H3B, IRS1, MDM2, NOTCH4, PIK3R3, RAD54L, SMAD4, TMEM127ABL2, BCL2L11, 
CDKN2C, EGFR, FAT1, HIST1H3C, IRS2, MDM4, NPM1, PIM1, RAF1, SMARCA4, TMPR552ACVR1, BCL2L2, CEBPA, EIF1AX, FAT3, 
HIST1H3D, JAK1, MED12, NRAS, PLCG2, RANBP2, SMARCB1, TNFAIP3ACVR1B, BCL6, CENPA, EIF4A2, FBXW7, HIST1H3E, JAK2, 
MEF2B, NR4A3, PLK2, RARA, SMARCD1, TNFRSF14ADGRA2, BCOR, CHD1, EIF4E, FCGR2B, HIST1H3F, JAK3, MEN1, NRG1, PMAIP1, 
RASA1, SMO, TNFSF11AKT1, BCORL1, CHD2, ELOC, FGF10, HIST1H3G, JUN, MET, NSD1, PMS1, RB1, SNCAIP, TOP1AKT2, BCR, 
CHD4, EMSY, FGF12, HIST1H3H, KAT5A, MGA, NTHL1, PMS2, RBM10, SOCS1, TOP2AAKT3, BLM, CHEK1, EP300, FGF23, HIST1H3I, 
KDM5A, MITF, NTRK1, PNRC1, RECQL4, SOX2, TP53ALK, BMPR1A, CHEK2, EPCAM, FGF6, HIST1H3J, KDM5C, MLH1, NTRK2, POLD1, 
REL, SOX9, TRAF2ALOX12B, BRAF, CHUK, EPHA2, FGF7, HIST2H3C, KDM6A, MLH3, NTRK3, POLE, RET, SOX10, TRAF7AMER1,  
BRCA1, CIC, EPHA3, FGFR14, HIST2H3D, KDR, MPL, NUP93, POM121L12, RFWD2, SOX17, TRRAPANKRD11, BRCA2, CRBN, EPHA5, 
FGFR1, HIST3H3, KEAP1, MRE11A, PAK1, PPM1D, RHEB, SPEN, TSC1APC, BRD4, CREBBP, EPHA7, FGFR2, HLA-A, KEL, MSH2, 
PAK3, PPP2R1A, RHOA, SPOP, TSC2APCDD1, BRIP1, CRKL, EPHB1, FGFR3, HNF1A, KIT, MSH3, PAK7, PPP2R2A, RICTOR, SPTA1, 
TSHRAR, BTG1, CRLF2, ERBB2, FOXA1, HNF1B, KLF4, MSH6, PALB2, PPP6C, RIT1, SRC, U2AF1ARAF, BTK, CSF1R, ERBB3, FOXL2, 
HOXB13, KLHL6, MST1, PARK2, PRDM1, RNF43, SRSF2, VEGFAARFRP1, CALR, CSF3R, ERBB4, FRS2, HRAS, KMT2A, MST1R, PARP1, 
PREX2, ROS1, STAG2, VEGFBARID1A, CARD11, CTCF, ERBB5, FYN, HSD3B1, KMT2C, MTOR, PARP2, PRKAR1A, RPA1, STAT3, VEG-
FCARID1B, CASP8, CTLA4, ERCC1, GABRA6, HSP90AA1, KMT2D, MUTYH, PARP3, PRKC1, RPS6KA4, STAT4, VHLARID2, CBFB, 
CTNNA1, ERCC2, GATA4, ICOSLG, KRAS, MYC, PARP4, PRKDC, RPS6KB2, STAT5A, VTCN1ARID5B, CBL, CTNNB1, ERCC3, GATA6, 
ID3, LATS1, MYCL, PAX5, PRSS8, RPTOR, STAT5B, WISP3ASXL1, CCND1, CUL3, ERCC4, GID4, IDH1, LATS2, MYCN, PBRM1, PTCH1, 
RUNX1, STK11, WRNASXL2, CCND2, CUL4A, ERCC5, GNA13, IDH2, LMO1, MYD88, PDCD1, PTEN, RUNX1T1, STK40, WT1ATF1, 
CCND3, CUL4B, ERG, GPS2, IFNGR1, LRP1B, MYOD1, PDCD1LG2, PTK2, RYBP, SUFU, XIAPATM, CCNE1, CXCR4, ERRFI1, GREM1, 
IGF1, LYN, NBN, PDFRA, PTPN11, SDHA, SUZ12, XPO1ATR, CD274, CYCLD, ESR2, GRM3, IGF1R, LZTR1, NCOA3, PDGFRB, PTPRD, 
SDHAF2, SYK, XRCC2ATRX, CD276, CYP17A1, EWSR1, GSK3B, IGF2, MAG12, NCOR1, PDK1, PTPRS, SDHB, TACC3, XRCC3AURKA,  
CD79A, DAXX, EZH2, GSTM1, IKBKE, MALT1, NEB, PGR, PTPRT, SDHC, TAF1, YAP1AURKB, CD79B, DCUN1D1, FAM175A, 
GSTT1, IKZF1, MAP2K1, NEGR1, PHOX2B, QK1, SDHD, TBX3, YES1AXIN1, CDC73, DDR2, FAM46C, H3F3A, IL10, MAP2K2, NF1,  
PIK3CA, RAB35, SETD2, TCF3, ZBTB2AXIN2, CDH1, DICER1, FANCA, H3F3B, IL7R, MAP2K4, NF2, PIK3CB, RAC1, SF3B1, TCF7L2,  
ZFHX3AXL, CDK12, DIS3, FANCC, HDAC1, INHA, MAP3K1, NFE2L2, PIK3C2B, RAD21, SH2B3, TERC, ZNF217B2M, CDK4, DNAJB1, 
FANCD2, HDAC2, INHBA, MAP3K13, NFKB1A, PIK3C2G, RAD50, SH2D1A, TERT, ZNF703BACH1, CDK6, DNMT1, FANCE, HDAC4, 
INPP4A, MAP3K14, NKX2-1, PIK3C3, RAD51, SHQ1, TET1, ZNRF3BAP1, CDK8, DNMT3A, FANCF, HGF, INPP4B, MAP3K3, NKX3-1,  
PIK3CD, RAD51B, SLIT2, TET2, ZRSR2BARD1, CDKN1A, DNMT3B, FANCG, HIST1H1C, INSR, MAPK1, NOTCH1, PIK3CG, RAD51C, 
SLX4, TGFBR1, BBC3, CDKN1B, DOT1L, FANCI, HIST1H2BD, IRF2, MAX, NOTCH2, PIK3R1, RAD51D, SMAD2, TGFBR2, BCL2,  
CDKN1C, E2F3, FANCL, HIST1H3A, IRF4, MCL1, NOTCH3, PIK3R2, RAD52, SMAD3, TIPARP, BCL10, CDKN2A, EED, FANCM

Table S2 The 56 cancer-related genes included in the LungCore panel

AKT1, BRCA2, DDR2, FGF3, JAK1, MTOR, PDGFRA, ROS1, ALK, CCND1, DPYD, FGF4, JAK2, MYC, PIK3CA, SMO, ARAF, CDK4, EGFR, 
FGFR1, KDR, NRAS, PTCH1, STK11, ATM, CDK6, ERBB2, FGFR2, KIT, NRG1, PTEN, TP53, BCL2L11, CDKN2A, ERBB3, FGFR3, KRAS, 
NTRK1, RAF1, TSC1, BRAF, CTNNB1, ERBB4, FLT3, MAP2K1, NTRK2, RB1, TSC2, BRCA1, CYP2D6, FGF19, HRAS, MET, NTRK3, RET, 
UGT1A1



Table S3 Genes associated with high TMB using a cut-off of 10 mutations/Mb

Gene TMB ≥10 
count

TMB ≥10  
frequency

TMB <10  
count

TMB <10  
frequency

P value Inclusion in  
LungCore panel

TP53* 97 0.951 165 0.543 2.65E−16 Yes

LRP1B 45 0.441 23 0.076 1.84E−15 No

FAT3 36 0.353 13 0.043 2.29E−14 No

KMT2D 30 0.294 9 0.03 8.59E−13 No

CDKN2A* 23 0.225 15 0.049 1.10E−06 Yes

PIK3CA* 22 0.216 18 0.059 2.36E−05 Yes

NF1 19 0.186 7 0.023 1.35E−07 No

KRAS* 18 0.176 29 0.095 0.03222749 Yes

PIK3CG 15 0.147 8 0.026 3.30E−05 No

TRRAP 14 0.137 9 0.03 0.00019169 No

APC 14 0.137 16 0.053 0.00785903 No

PRKDC 14 0.137 14 0.046 0.00308381 No

ATR 14 0.137 7 0.023 4.38E−05 No

EGFR* 13 0.127 146 0.48 4.33E−11 Yes

EPHA3 13 0.127 3 0.01 2.39E−06 No

NOTCH1 13 0.127 5 0.016 2.28E−05 No

GNAS 13 0.127 8 0.026 0.0002656 No

IL7R 13 0.127 10 0.033 0.00092812 No

CCNE1 13 0.127 13 0.043 0.00453923 No

MAP3K13 13 0.127 5 0.016 2.28E−05 No

NOTCH3 12 0.118 3 0.01 8.50E−06 No

KEAP1 12 0.118 8 0.026 0.00071711 No

GRIN2A 12 0.118 5 0.016 7.19E−05 No

KAT6A 12 0.118 7 0.023 0.00036383 No

SMARCA4 11 0.108 9 0.03 0.00327072 No

RUNX1T1 11 0.108 6 0.02 0.00049139 No

TET2 11 0.108 6 0.02 0.00049139 No

SETD2 11 0.108 14 0.046 0.03216951 No

BCL6 11 0.108 3 0.01 2.95E−05 No

ARID2 11 0.108 8 0.026 0.00186624 No

PTEN* 11 0.108 8 0.026 0.00186624 Yes

EPHA5 11 0.108 4 0.013 8.72E−05 No

ERBB4* 11 0.108 4 0.013 8.72E−05 Yes

RICTOR 10 0.098 13 0.043 0.04715735 No

NTRK3* 10 0.098 6 0.02 0.00137068 Yes

KDM5A 10 0.098 5 0.016 0.00065146 No

KMT2A 10 0.098 8 0.026 0.00466477 No

EPHB1 10 0.098 3 0.01 9.97E−05 No

BRCA2* 10 0.098 2 0.007 2.92E−05 Yes

AMER1 9 0.088 5 0.016 0.00186098 No

NFE2L2 9 0.088 10 0.033 0.03005436 No

FBXW7 9 0.088 3 0.01 0.00032797 No

KDR* 9 0.088 4 0.013 0.00084159 Yes

CREBBP 8 0.078 7 0.023 0.02792485 No

NOTCH2 8 0.078 7 0.023 0.02792485 No

ZNF217 8 0.078 9 0.03 0.04450273 No

INHBA 8 0.078 9 0.03 0.04450273 No

STK11* 8 0.078 9 0.03 0.04450273 Yes

PARP4 8 0.078 5 0.016 0.00510351 No

PDGFRB 8 0.078 5 0.016 0.00510351 No

NTRK1* 8 0.078 6 0.02 0.00942689 Yes

PTCH1* 8 0.078 6 0.02 0.00942689 Yes

KLHL6 8 0.078 9 0.03 0.04450273 No

PALB2 8 0.078 8 0.026 0.03417598 No

PIK3C2G 8 0.078 8 0.026 0.03417598 No

ASXL1 8 0.078 8 0.026 0.03417598 No

ERBB3* 8 0.078 2 0.007 0.0003607 Yes

FGF4* 8 0.078 6 0.02 0.00942689 Yes

GATA2 8 0.078 4 0.013 0.00248079 No

KIT* 8 0.078 5 0.016 0.00510351 Yes

SOX2 8 0.078 6 0.02 0.00942689 No

TSC2* 8 0.078 5 0.016 0.00510351 Yes

DOT1L 7 0.069 2 0.007 0.00121716 No

SRC 7 0.069 1 0.003 0.00034148 No

AKT2 7 0.069 4 0.013 0.00701304 No

RET* 7 0.069 3 0.01 0.00321556 Yes

FANCM 7 0.069 4 0.013 0.00701304 No

FLT1 7 0.069 4 0.013 0.00701304 No

IGF1R 7 0.069 6 0.02 0.02298865 No

FGF3* 7 0.069 4 0.013 0.00701304 Yes

PMS2 7 0.069 5 0.016 0.01335819 No

CDK12 7 0.069 3 0.01 0.00321556 No

FLT4 6 0.059 4 0.013 0.01888016 No

PPP2R1A 6 0.059 2 0.007 0.00397191 No

RAD50 6 0.059 5 0.016 0.0331207 No

MYCN 6 0.059 1 0.003 0.00124908 No

MSH2 6 0.059 3 0.01 0.0094814 No

KDM6A 6 0.059 1 0.003 0.00124908 No

PDGFRA* 6 0.059 3 0.01 0.0094814 Yes

BRCA1* 6 0.059 4 0.013 0.01888016 Yes

FANCI 6 0.059 4 0.013 0.01888016 No

CDK6* 6 0.059 5 0.016 0.0331207 Yes

CTCF 6 0.059 1 0.003 0.00124908 No

FANCC 6 0.059 1 0.003 0.00124908 No

DDR2* 5 0.049 3 0.01 0.02657788 Yes

FGF23 5 0.049 2 0.007 0.01244915 No

XPO1 5 0.049 3 0.01 0.02657788 No

FANCA 5 0.049 4 0.013 0.04794848 No

TOP1 5 0.049 1 0.003 0.0044491 No

AKT1* 5 0.049 2 0.007 0.01244915 Yes

AXL 5 0.049 3 0.01 0.02657788 No

CSF1R 5 0.049 3 0.01 0.02657788 No

FANCL 5 0.049 1 0.003 0.0044491 No

NUP93 5 0.049 3 0.01 0.02657788 No

MUTYH 4 0.039 1 0.003 0.01533352 No

TSC1* 4 0.039 2 0.007 0.03710234 Yes

BCOR 4 0.039 2 0.007 0.03710234 No

REL 4 0.039 1 0.003 0.01533352 No

CDC73 4 0.039 1 0.003 0.01533352 No

ERG 4 0.039 2 0.007 0.03710234 No

SYK 4 0.039 1 0.003 0.01533352 No

MEN1 4 0.039 2 0.007 0.03710234 No

JAK1* 4 0.039 2 0.007 0.03710234 Yes

CEBPA 4 0.039 2 0.007 0.03710234 No

CHEK1 4 0.039 2 0.007 0.03710234 No

ESR1 4 0.039 2 0.007 0.03710234 No

*, cells are genes that are found in the small gene panel. TMB, tumor mutation burden.
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