
© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(5):2335-2346 | http://dx.doi.org/10.21037/tlcr-20-296

Lung cancer screening (LCS) trials raised over 100,000 
participants in the last two decades (1-11). This wealth 
of data witnessed the feasibility of early detection of lung 
cancer (LC) by low-dose computed tomography (LDCT) 
for reduction of LC mortality, enhancing the concept of 
high-risk profiling (12,13), gender variability (2,6), and 
post-test risk stratification (14). LDCT approach took over 

other potential methods for early detection of LC (e.g., 
chest radiography, sputum, electronic nose, etc.) because 
it grants detailed representation of lung parenchyma and 
notable sensitivity to findings potentially associated with 
early LC, mainly lung nodules.

Lung nodule is the most frequent finding in LDCT for 
LCS, it is seen in over 70% of screening participants (11) 
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Abstract: Lung cancer screening (LCS) is gaining some interest worldwide after positive results from 
International trials. Unlike other screening practices, LCS is performed by an extremely sensitive test, 
namely low-dose computed tomography (LDCT) that can detect the smallest nodules in lung parenchyma. 
Up-to-date detection approaches, such as computer aided detection systems, have been increasingly 
employed for lung nodule automatic identification and are largely used in most LCS programs as a 
complementary tool to visual reading. Solid nodules of any size are represented in the vast majority of 
subjects undergoing LDCT. However, less than 1% of solid nodules will be diagnosed lung cancer. This fact 
calls for specific characterization of nodules to avoid false positives, overinvestigation, and reduce the risks 
associated with nodule work up. Recent research has been exploring the potential of artificial intelligence, 
including deep learning techniques, to enhance the accuracy of both detection and characterisation of lung 
nodule. Computer aided detection and diagnosis algorithms based on artificial intelligence approaches have 
demonstrated the ability to accurately detect and characterize parenchymal nodules, reducing the number of 
false positives, and to outperform some of the currently used risk models for prediction of lung cancer risk, 
potentially reducing the proportion of surveillance CT scans. These forthcoming approaches will eventually 
integrate a new reasoning for development of future guidelines, which are expected to evolve into precision 
and personalized stratification of lung cancer risk stratification by continuous fashion, as opposed to the 
current format with a limited number of risk classes within fixed thresholds of nodule size. This review aims 
to detail the standard of reference for optimal management of solid nodules by low-dose computed and its 
projection into the fine selection of candidates for work up.
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and it is interpreted with dedicated decisional algorithms 
to distil the minority that is more suspicious for LC  
(15-17). Several features can be used for description of 
nodules, first of all, density is deemed a fundamental 
characteristic to embark the process of accurate risk 
stratification. Solid, part-solid, non-solid or calcified 
density: each reflects a specific likelihood of a nodule 
to be or become a clinically relevant LC (18). In this 
focused manuscript, we will be specifically discussing the 
characterization of solid (non-calcified) pulmonary nodules 
and the systematic approach for accurate management with 
optimized balance between the risk of overinvestigation 
and delayed diagnosis. Handling solid nodules through 
the LCS workflow might be summarized as follows: 
detect, characterize, describe, manage. Such workflow is 
essentially rendered by standardized structured reporting, 
which is agreed upon as relevant component of quality 
assurance in LCS (19).

Detect

Detection of lung nodules is approached by different 
methods worldwide, the choice of which depends on 
technical conditions of a specific LCS setting. 

Visual detection of nodule was the first historical 
approach, when the National Lung Screening Trial (NLST) 
started (20). Visual detection can be applied to any between 
serial or volumetric LDCT dataset, and its accuracy will 
depend substantially on the quality of the native dataset 
(e.g., slice thickness, noise, appropriate window setting, 
etc.). If volumetric LDCT reconstruction is available 
(preferably thin slice <1.5 mm), visual detection can be 
helped by maximum intensity projection (MIP), which aids 
in differentiating geometry of solid structures in the lung: 
elongated opacity of vessels are clearly discerned from focal 
spot of nodule (21,22). 

Visual detection is more prone to detect nodules larger 
than 3–5 mm (23). Such nodule size could be deemed the 
prognostically-diagnostically relevant dimensional range 
at the first screening round (e.g., baseline) (15,24-26).  
Otherwise, any screening round after baseline (e.g., 
incidence round) will need high sensitivity also for 
smaller nodules, which might represent the inception of 
minuscule LC to be characterized in the following months 
(15,27). Therefore, visual reading might lack sensitivity in 
detection of small new nodules at incidence rounds. Beyond 
sensitivity facts, it cannot be overemphasised that visual 
reading requires some time to read through native images 

and MIP, thus resulting in some length of reading time, 
eventually with multiple scrolling across the entire LDCT 
range. Furthermore, visual reading is influenced by “fatigue” 
errors and interruptions that are likely to happen in routine 
clinical practice. Some help to visual detection can come 
from post-processing software that reduce the “distraction” 
from anatomical structures by computing segmentation of 
vascular network and automatically suppress vessels (28). 
The “suppressed” image will result in completely “black 
lung fields” where nodules are obviously detected as they 
shine white focal spots of solid density. 

Computer aided detection (CADe) is another option for 
nodule retrieval in LCS by LDCT, it was prospectively used 
in large European trials (2,3). Unlike visual reading, CADe 
is technically restricted within volumetric LDCT dataset, 
which is indeed advocated in high quality LCS practice (19).  
Major advantage of CADe is found in consistency of 
the analysis, which is not influenced by fatigue. Further 
advantage of CADe is represented by potential time saving, 
when the workflow is optimally organized between LDCT 
acquisition, post-processing platform, and reporting 
workstation. Despite major technical developments in 
medical engineering, the workflow syncing still represents 
a hurdle for practical application of advanced platforms for 
analysis of medical images.

As a complementary value to visual reading, CADe 
systems enhance detection of nodules of any size by 
using several technical approaches, including artificial 
intelligence (29,30). Indeed, the foremost research in CADe 
has been relying on deep learning techniques, including 
convolutional neural networks (CNNs) (31,32). Although 
the clinical application of these most recent approaches is 
still limited, preliminary results are promising, with these 
techniques being able to accurately detect lung nodules 
(accuracy of 38% to 100% from various researchers) and to 
significantly reduce the number of false positives (33,34). In 
particular, CADe can be set specifically to show the reader 
only nodules above a certain size threshold, while hiding 
away smaller nodules. This setting is meant for reducing 
the rate of false positives: the lower the size of nodule, the 
higher the rate of false positive (35,36). Large amounts of 
false positives might severely slow down the reading time 
of LDCT, therefore hampering the perceived advantage 
of using CADe along with visual detection. Therefore, 
the selection of relatively large size thresholds will help in 
optimizing reading time at the cost of reduced sensitivity. 
Optimal size threshold was proposed at 3 mm; however, 
this setting should be considered and adjusted on the basis 
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of several conditions (e.g., baseline or incidence round). 
Also, CADe platform might apply filters for larger nodule 
candidates, again for reduction of false positives. Following 
these two assumptions on size filtering, one should feel 
discouraged and refrain from using CADe. However, 
it should also be underscored that CADe systems are 
usually set to perform efficiently within the size range that 
encompasses the vast majority of nodules (size between 
50–500 mm3) (37,38). Therefore, skilled use of CADe is 
an excellent companion for LDCT reading and is gaining 
consensus to optimize LCS workflow with fast reporting 
and high sensitivity (39). 

Characterize

Characterization of lung nodules in LCS is meant for 
stratification of one nodule to develop in LC with clinical 
potential. Characterization relies on several parameters that 
encompass heterogeneous domains: from visual description 
to different degrees of automation and ranked orders of 
complexity (18,30,40-42).

Size is  the f irst  and utmost feature for nodule 
characterization (15-17). Size is directly associated 
with the likelihood of LC, however some exceptions 
apply. Morphological features can help in apportioning 
LC likelihood beyond size (43). The most relevant 
morphological features for characterization of solid 
nodule  mal ignancy  inc lude :  sp icu la t ion  (18 ,44)  
(Figure 1), interaction with adjacent structures (45-52), 
lobar distribution, and presence of characteristic density 
pattern within the nodule (53). To date, the morphological 
characterization of pulmonary lymph nodes is the most 
frequent visual classification for the radiologist to rule out 
relatively large nodules up to 10 mm (15,54) (Figure 2). 
Conversely, nodule upstaging of smaller nodules on the 
basis of morphological descriptors is less robust since such 
descriptors are quite subtle in minor findings. Noteworthy, 
morphological features are relatively prone to individual 
interpretation as well as intra-observer variability (55), 
therefore they somehow contribute in potential disparities 
in nodule management (56). Therefore, size remains the 
pivotal parameter for stratification of LC risk in solid 
nodules.

Size measurement of lung nodules can be performed by 
bi-dimensional (2D) or three-dimensional (3D) techniques. 
Similar to detection considerations, the simpler 2D method 
of size measurement does not have substantial technical 
limitations, whereas the more complex 3D approach is 
restricted to specific technical setting. Three-dimensional 
measurement is exclusive for volumetric thin slice LDCT, 
which is the quality standard recommended for any 
radiology practice that embarks LCS program (19,57). 

Manual 2D measurement of lung nodules accounts 
for diameter estimation by electronic calliper (58). The 
longest diameter of a nodule is to be measured along with 
its perpendicular longest axis, this coupled measurement is 
intended to minimize variability associated with asymmetric 
shape of nodules. The measurement is to be performed in 
axial plain for limiting the inter-observer variability. Inter-
observer variability as well as intra-observer variability is a 
well-known concern in manual measurement and expected 

Figure 1 Axial CT image showing large solid nodule in the apical 
segment of right lower lobe, highly suspicious for lung cancer both 
for size and morphology (e.g., spiculation, traction of the fissure).

Figure 2 Axial CT image showing medium sized solid nodule 
in the anterior segment of right upper lobe, next to the minor 
fissure and with polygonal shape into the classic morphology of 
intraparenchymal lymph node.
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Figure 4 Axial CT image showing large solid nodule (squamous cell carcinoma, pT1bN0M0) in the apical segment of left lower lobe (A) 
with semi-automatic segmentation of volume (B) along with volume rendering reconstruction (C).

Figure 3 Axial CT image showing small-sized solid nodule in the anterior segment of right upper lobe. Manual measurement of this 
baseline nodule could lead to substantial differences in nodule management, for instance by LungRADS: (A) 5 mm to 1-year round;  
(B) 7 mm to 6-month recall; (C) 8 mm to 3-month recall.

B CA

A B C

L12D1
0.53 cm

L12D1
0.66 cm

L12D1
0.83 cm

to range 1.5–2 mm (59). Such magnitude interferes 
substantially with the estimate of risk in the majority of 
solid nodules expected on LDCT. Even more, using only 
one diameter of the nodule associates with even larger 
measurement bias, almost 3 mm (60). Solid nodules sized 
5–8 mm are extremely frequent in LCS and encompass 
the full range of LDCT outcomes at baseline: negative, 
indeterminate, or positive (15). Therefore, the accounted 
variability of 1.5–2 mm might result in over-reporting 
or under-reporting of each LDCT outcome (Figure 3). 
Furthermore, this size range of nodules will suffer from 
major imprecision in the calculation of nodule growth, 
which is universally recommended by volume doubling 
time (VDT) (15-17). Indeed, as low as 20% increase in 
nodule diameter translates in 100% variation of geometrical 
volume, which is then used to estimate the rate of nodule 

growth and stratify its likelihood of being a cancer (17). 
The 1.5–2 mm range of manual variability appears to be 
well beyond the 20% in most of such cases, therefore 
representing a substantial limitation to specificity of 
longitudinal assessment.

Alternative to 2D manual measurement is 3D volumetric 
segmentation by software, which is mostly performed by 
machine-learning algorithms (40). Volumetric LDCT 
dataset with thin slice is the starting point for accurate 
segmentation of nodule volume (Figure 4), including 
reconstruction algorithms that smooth down potential 
edge irregularities (61). The variability by volumetric 
measurement is expected to range around 25% (62,63) 
(Figure 5). The variability increases with smaller nodules 
and nodules in contact with solid structures, pulmonary 
emphysema, and quality of LDCT dataset (64-69). Indeed, 
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Figure 5 Axial CT image showing large nodule (adenocarcinoma, pT1cN1M0) in the apical segment of right lower lobe with repeated 
measurement on the same CT image showing some degree of variability (A: 4.402 mm3 and B: 4.373 mm3).

A B

the literature suggests to use volumetry only for nodules 
that present free from solid interface. Nonetheless, the 
rapid development and improvement of software might 
soon overcome this restriction by applying more complex 
algorithms already developed for subsolid nodules (65). Of 
note, nodule volume by software needs to be performed 
always with the same software to avoid major variability (70). 
Benchmarking of software by large representative datasets 
(including several nodule morphologies and short-mid-
long-term outcome) is encouraged to allow standardization 
between vendors. Furthermore, software version is to be 
consistent when measuring nodules at different time-points, 
to aim at minimized variability (70). 

Either 2D or 3D measurement of baseline nodule are 
intuitively directly associated with risk of LC. On the other 
hand, such stratification is everything but intuitive when 
stratifying LC likelihood in new incident nodules (71). 
The size threshold for new nodule is substantially lower 
compared to baseline nodules. Most guidelines reduce the 
minimum threshold of incident nodules to 4 mm or 30 mm3 
(15,17). However, large size might be associated with either 
extremely aggressive cancer (that are hardly addressed by 
LCS) (72) or inflammatory-granulomatous findings that 
might either disappear of persist (27). Models for LC risk 
in new nodules should be different from those that are 
currently used for baseline nodules (73). 

Both for baseline and new incident nodules, the optimal 
characterization is granted by longitudinal assessment 
of VDT that accurately predicts the likelihood of LC by 
reference threshold. Measurement of VDT is expressed in 
days, being 400 days a sharp boundary between nodules that 

should be considered for malignancy and those that might 
need further evaluation before work up (Figure 6). A grey 
zone of uncertainty is established for nodules with VDT 
400–600 days. These threshold were originally proposed 
by the NELSON trial, and their excellent performance 
is nowadays documented over more than 10 years of 
prospective trial (2,74). The use of VDT is especially 
handy for LCS screening because it allows controlling 
overinvestigation by advanced work up further beyond 
LDCT. Limits should be acknowledged and managed in 
the use of VDT: sufficient time to calculate growth beyond 
methodological limits of nodule measurement, awareness of 
rapid volume variability in pulmonary lymph nodes as well 
as inflammatory nodules (54). Indeed, VDT should not be 
calculated within a restricted time window below 3 months 
because this setting might lead to either over- or under-
estimation of LC risk. Most European LCS algorithms 
suggest 3-month control (16,17), whilst LungRADS allows a 
broader time window of 6 months for such characterization 
in indeterminate nodules (15). This latter setting might 
indeed increase VDT accuracy. Furthermore, some nodules 
might display continuous growth through the years, for this 
specific category of nodules VDT trend might be suggested 
to highlight discrete acceleration (e.g., adenocarcinoma), 
similarly to the prolonged approach dedicated to subsolid 
malignancies, as it is also already applied (75,76). It should 
be noticed that quick characterization of nodules <1 cm 
does not directly reflect increased accuracy nor efficiency.

Beyond size, morphological characterization is also 
reported in risk models for prediction of LC risk (18). The 
Brock University or PanCan model is one of the most 
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Figure 6 Axial CT image showing large nodule in the apical segment of right lower lobe with semi-automatic measurement at baseline (A, 
3.386 mm3) and 3 months later (B, 4.373 mm3) resulting in +29% volume increase (compared to no substantial change in diameter: RECIST 
1.1 size variation −2.6%) and volume doubling time of 198 days (C, bottom row of the table VolDTime).

accurate in external validations and is recommended in 
the British Thoracic Society (BTS) guideline to decide 
whether nodules that are 8 mm or more in maximum 
diameter should be worked-up by PET-CT (16,18). Upper 
lobe location, subsolid component, and spiculations are 
the most recognized features associated with increased 
likelihood of malignancy (18). While agreement on lobar 
distribution and presence of subsolid component might be 
relatively consistent among readers, other morphological 
features are prone to inter-rater variability (56,77). On the 

other hand, morphology and further quantitative features 
are being addressed by AI platforms (41,78). Baldwin et 
al reported a computer aided diagnosis (CADx) that was 
able to outperform the Brock model in the ranking nodule 
malignancy (79). This AI model was based on CNN and 
yielded better discrimination among nodules <15 mm), 
notably a population with substantial inter-observer 
variability because of small-intermediate overall size. This 
software allowed classification of a larger proportion of 
benign nodules without missing cancers, compared with 
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the Brock model, thus with the potential to substantially 
reduce the proportion of surveillance CT scans. This 
example opens a new perspective about criteria for nodule 
management, which somehow follows the evolution that 
we previously witnessed in the field of selection criteria for 
LCS (e.g., moving from fix threshold of age and pack years 
to multidimensional risk models with prespecified threshold 
of LC risk in the following 2–5 years). The new approach 
is foreseen with established thresholds of LC risk in the 
months-years after LDCT, thus representing a continuous 
stratification of risk by a LDCT (14,80). The forthcoming 
approach will be eventually incorporated in guidelines, 
which are expected to develop into a more continuous 
fashion of LC risk stratification as opposed to the current 
format with a limited number of risk classes. Such approach 
is likely to be enriched also with comorbidities that might 
hamper LC mortality in smokers (81).

Manage

The whole process of LCS aims to skilled management of 
LDCT findings that most likely represent asymptomatic 
(early) LC. The vast majority of LCs participants will 
be assigned to “negative” category both at baseline and 
incidence rounds, therefore they will not need action until 
the next screening round, after 1 or 2 years (80,82-84). 
About one fifth of subjects will end up with “indeterminate” 
finding at baseline, and even lower incidence of such 
category is  expected at further incidence rounds. 
Thereby, “indeterminate” findings will require further 
characterization at 3 months, 6 months or even 12 months, 
depending on the screening algorithm (15-17,85). Finally, 
“positive” finding will be the least represented category of 
LDCT outcome in LCS. Nonetheless, this category will 
represent the most complicated and delicate field of action 
because here is played the challenge of overinvestigation, 
overdiagnosis, overtreatment or delayed diagnosis, which is 
much debated around LCS efficiency (42,86-89).

The process of nodule work-up is guided by clear 
interaction between parties assigned to test interpretation 
(radiologist), clinical oversight (pulmonologist), and 
treatment perspectives (surgeon or radiation oncologist). 
The utmost communication is provided by shared 
knowledge and standardized terminology. Structured 
report is highly ranked for best communication between 
radiologists and other medical specialists, in many 
fields of thoracic and extra-thoracic radiology (90-93). 
Indeed, standardisation of reporting system ensures 

that all relevant findings are addressed, and the use of a 
standardized terminology prevents ambiguity, facilitating 
comparability of reports. Regardless of which radiological 
setting it is applied in, structured reporting ought to 
guarantee improved quality, quantification and accessibility. 
Standardisation surely represents the main quality 
improvement, ensuring that all relevant items listed in the 
provided checklist are addressed with the aim of minimizing 
the risk of false negative test. Furthermore, the use of a 
standardized terminology helps in comparing results, which 
is of great value in both clinical and research settings. With 
respect to quantification (otherwise named datafication), the 
structured report should integrate relevant information and 
even recommendation, based on the up to date literature. 
In LCS, for instance, this integrated information can be 
represented by LungRADS or BTS systems (15,16). Less 
but not least, accessibility, which is key, since radiology 
reports contain invaluable information for diagnosis 
purposes as well as for management and research ones (93). 

The intense and skilled workflow of screening demands 
such standard approach as it is readily understandable from 
many LCS guidelines, which propose synthetic categories 
(15-17). Although the potential of structured reporting in 
LCS is widely recognised for the abovementioned reasons, 
its use remains limited. With the aim of encouraging and 
easing the application of a structured report system, a 
recent initiative from the European Society of Thoracic 
Imaging focused on a template for minimal requirements 
in structured report for LCS (19). This task was included 
in a broader educational project for dissemination of 
LCS fundamentals to radiologists. The main focus of 
this template is picoted on lung nodule characterization, 
including prospective continuous registration of VDT. 
Moreover, this template includes collateral findings, which 
are expected to become quite frequent in heavy (former) 
smokers aged 50–55 or above. Noteworthy, a rank of 
relevance must be established for collateral findings to 
select appropriate reporting and prevent harm and costs of 
exaggerated referral or work-up. The screening participant 
will be informed about this pivotal strategy in population 
based LCS.

The main role of structured reporting is predominantly 
intended for highly special ized multidiscipl inary 
team; however, the consistent and reliable detailed 
characterization of relevant findings should also be intended 
to expand broader medical players. Structured report should 
be clear enough to grant peripheral understanding, for 
instance general practitioners who might deal with patients’ 
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questions about “negative findings”. He broad intelligibility 
of structured report could indeed help in of keeping a lean 
referral flow, including the proportion of negatives who 
might ask for further clarification. 

In summary, solid pulmonary nodule is the most frequent 
finding in LCS and it is among the most representative 
signs of early LC. Its detection and characterization are 
fundamentals of good performance within LCS practices. 
Strict guidelines are proposed by several governmental 
and scientific entities, which recommend the use of high-
quality standard based on nodule size, morphology, and its 
longitudinal behaviour though the years, as LCs is supposed 
to happen along a 20-year period of life. Key message of 
screening is not to translate solid nodule into a “pathology” 
for otherwise healthy individuals, but rather to control 
indeterminate findings with skilled restraint with respect to 
work up and treatment.
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