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Background: Robust imaging biomarkers are needed for risk stratification in stage I lung adenocarcinoma 
patients in order to select optimal treatment regimen. We aimed to construct and validate a radiomics 
nomogram for predicting the disease-free survival (DFS) of patients with resected stage I lung 
adenocarcinoma, and further identifying candidates benefit from adjuvant chemotherapy (ACT).
Methods: Using radiomics approach, we analyzed 554 patients’ computed tomography (CT) images from 
three multicenter cohorts. Prognostic radiomics features were extracted from computed tomography (CT) 
images and selected using least absolute shrinkage and selection operator (LASSO) Cox regression model 
to build a radiomics signature for DFS stratification. The biological basis of radiomics was explored in the 
Radiogenomics dataset (n=79) by gene set enrichment analysis (GSEA). Then a nomogram that integrated 
the signature with these significant clinicopathologic factors in the multivariate analysis were constructed 
in the training cohort (n=238), and its prognostic accuracy was evaluated in the validation cohort (n=237). 
Finally, the predictive value of nomogram for ACT benefits was assessed. 
Results: The radiomics signature with higher score was significantly associated with worse DFS in both 
the training and validation cohorts (P<0.001). The GSEA presented that the signature was highly correlated 
to characteristic metabolic process and immune system during cancer progression. Multivariable analysis 
revealed that age (P=0.031), pathologic TNM stage (P=0.043), histologic subtype (P=0.010) and the 
signature (P<0.001) were independently associated with patients’ DFS. The integrated radiomics nomogram 
showed good discrimination performance, as well as good calibration and clinical utility, for DFS prediction 
in the validation cohort. We further found that the patients with high points (point ≥8.788) defined by the 
radiomics nomogram obtained a significant favorable response to ACT (P=0.04) while patients with low 
points (point <8.788) showed no survival difference (P=0.7).
Conclusions: The radiomics nomogram could be used for prognostic prediction and ACT benefits 
identification for patient with resected stage I lung adenocarcinoma.
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Introduction

Lung adenocarcinoma remains a critical challenge for 
global public health as it gradually evolves into the largest 
subtype of non-small-cell lung cancer, with its proportion 
increasing to over 60% (1). Complete surgical excision is 
conducted as the primary intervention for patients with 
stage I lung adenocarcinoma, but the 5-year recurrence rate 
of these patients reaches 30% (2). Because postoperative 
recurrence results in an extremely poor survival outcome, 
adjuvant chemotherapy (ACT) has been used in an 
attempt to reduce its occurrence. The absolute survival 
improvement of ACT for patients with resected stage II-III 
lung cancer has been endorsed (3,4). But its effect in stage 
I disease remains undetermined, especially in the stage IB 
(5,6). Previous studies revealed that the adoption of ACT 
was beneficial for some patients with stage I disease but 
harmful for those who could be cured by surgery alone (7,8). 
Therefore, a more accurate stratification within the same 
stage may allow for identifying low and high-risk patients 
for recurrence and selecting those with more likelihoods to 
benefit from ACT.

Medical imaging is a vital technology in clinical 
management to aid decision making and direct personalized 
treatment (9). Radiomics, as an advanced imaging analytic 
process for extracting high dimensional features from 
medical images, has been demonstrated with promising 
performance in prognosis evaluation for various types of 
cancers (10-12). A nomogram integrating the radiomic 
biomarkers with clinicopathological features appears 
to improve the prognostic accuracy (13). To date, there 
are five radiomics nomograms have been developed for 
prognosis prediction in lung adenocarcinoma (Table S1). 
But a radiomics nomogram research which investigates its 
association with survival of stage I lung adenocarcinoma 
and further guides candidates’ selection for ACT, has not 
yet been fully reported. 

Therefore, the aim of present study was to construct 
and validate a nomogram based on radiomics and clinical 
features to estimate the DFS in resected stage I lung 
adenocarcinoma patients and to further explore its potential 
value for predicting survival benefit from ACT. Additionally, 
we intended to explore the potential biological basis of 
radiomics with imaging and gene expression data.

We present the following article in accordance with the 
STROBE Reporting Checklist (available at http://dx.doi.
org/10.21037/tlcr-19-577).

Methods

Data collection

The study was approved by The Institutional Review Boards 
of Shanghai Pulmonary Hospital and the informed consent 
was waived for this retrospective study (No. k19-134Y). 
Consecutive patients who received complete resection for 
lung cancer in Shanghai Pulmonary Hospital from January 
2011 to December 2012 were retrieved. The patients 
diagnosed with stage I adenocarcinoma according to the 
eighth edition TNM staging system were identified (14).  
Patients were excluded based on the following criteria: 
(I) patients without thin-slice CT images (1 mm) within 
one month prior to surgery; (II) patients with incomplete 
clinicopathologic data and follow-up records; (III) patients 
whose lesions cannot be accurately segmented. The patients 
undergone surgical resection before December 2011 were 
set as the training cohort (n=238), and after December 2011 
as an independent validation cohort (n=237). In addition, 
a dataset comprised CT imaging data and matched RNA 
sequencing data of 79 resected stage I adenocarcinoma 
patients was obtained from the NSCLC Radiogenomics 
Dataset (15) of the Cancer Imaging Archive (TCIA) to 
evaluate the biological process of radiomics signature. 

The follow-up data was obtained through electronic 
medical records and telephone interviews as a complete. We 
set the endpoint of this study as disease-free survival (DFS), 
which was defined as the duration from the date of surgery 
to that of recurrence, death, or the last follow-up. The 
histologic subtype was re-evaluated according to the current 
lung adenocarcinoma classification system (16). 

Imaging data acquisition and radiomics processing

All details of CT image acquisition protocols in our 
study were described in Supplementary material I. After 
downloading CT images from the institutional Picture 
Archiving and Communication Systems with DICOM 
format, tumor segmentation was performed in an open-
source software (3D-slicer, v4.10.1, www.slicer.org) (17). 
The regions of interest (ROI) on CT images were manually 
delineated layer-by-layer by two junior radiologists (T.W. 
and Y.Y., with 3 and 5 years of experience, respectively) 
and verified by a senior radiologist (X.S., with 30 years of 
experience in chest imaging diagnosis). An open-source 
platform, PyRadiomics in Python, was utilized to extract 

http://dx.doi.org/10.21037/tlcr-19-577
http://dx.doi.org/10.21037/tlcr-19-577


1114 Xie et al. Prognostic radiomics nomogram for prediction chemotherapy benefits

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2020;9(4):1112-1123 | http://dx.doi.org/10.21037/tlcr-19-577

107 radiomics features from the non-filtered segmented 
ROI (18). The details of radiomics features were descripted 
in Supplementary material II and Table S2.

Radiomics feature selection and signature construction

We determined the optimum cutoff value for every 
radiomics feature based on its association with the patients’ 
DFS using X-tile program (version 3.6.1, Yale University 
School of Medicine, New Haven, CT, USA) (19). 
Accordingly, the significant features (P<0.05) which could 
divide patients into different risk groups were selected. To 
reduce the redundancy, the least absolute shrinkage and 
selection operator (LASSO) Cox regression model was 
adopted to select the optimal radiomics feature subset. 
Then a radiomics signature was obtained through the 
selected features and their respective weighted coefficients.

Survival analysis based on the radiomics signature

The radiomics signature stratified the patients of training 
cohort into low- and high-risk groups based on its optimal 
cutoff value which was identified by X-tile program. The 
Kaplan-Meier survival curves and log-rank test were 
delineated to seek the survival difference between the risk 
groups. These calculation and cutoff value were applied to 
the validation cohort. Meanwhile, subgroups analyses based 
on the clinicopathologic risk factors were performed for its 
robustness assessment. 

Gene set enrichment analysis (GSEA) 

We performed a GSEA to explore the biological basis of 
the developed radiomics signature for prognosis prediction. 
The RNA-seq expression data in Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) values for all 
samples were obtained from GSE103584 and transformed 
to log2 (FPKM + 0.1). Genes with missing expression values 
in more than 50% of all samples were removed, resulting 
in 12,901 genes. Then we created a rank of these genes 
using a fold change which was defined as the difference 
value the mean gene expression between the high- and low-
risk group. The pre-ranked GSEA was performed using 
the PIANO R package (20) with 10,000 permutations. As 
gene sets, we tested expert-curated pathways from the C2 
Reactome collection version 7.0 available at MSigDB (21). 
Gene sets were restricted to sizes between 15 and 500, 
resulting in 805 tested gene sets. The Enrichment Score 

(ES) was utilized to quantify the association of the rank of 
genes with pathways and validated with false discovery rate 
(FDR) to corrected for multiple comparison.

Development and validation of the radiomics nomogram

The univariate and multivariate Cox regression analyses 
with stepwise selection were carried out in the training 
cohort to identify the independent prognostic factors. Then 
a nomogram was applied for DFS prediction visualization. 
Corresponding calibration curves was developed in the 
validation cohort; the Harrell concordance index (C-index) 
quantified its discrimination ability; a decision curve analysis 
exhibited its clinical utility by measuring the net benefits at 
different threshold probabilities.

ACT benefit analysis based on the nomogram

A polynomial equation extracted from the prognostic 
nomogram were used for calculating the total risk point, 
which might reflect the weight of each predictor and 
correspond to the survival probability. The optimal cutoff 
risk point of stage IB patients was identified to divide them 
into low- and high-risk groups and the survival analyses 
were performed to evaluate the benefits of ACT.

Statistical analysis

Patients’ baseline characteristics in two cohorts were 
compared using analyses of independent t test for 
continuous variates and a chi-squared test for categorical 
variates. Statistical analyses were accomplished via R 
software, version 3.5.3 (http://www.R-project.org) and 
SPSS for Windows, version 20.0 (IBM, Armonk, NY, USA). 
The packages used in R programming were showed in 
Supplementary material III. A two-sided P value below 0.05 
was considered statistically significant.

Results

Clinicopathologic characteristics

The baseline characteristics of all included patients were 
listed in Table 1. The median follow-up time were 66.3 and 
64.7 months, the 5-year DFS with 80.3% and 79.5% in 
the training and validation cohorts, respectively. There was 
no significant difference between two cohorts in terms of 
clinicopathologic factors or follow-up time.
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Radiomics feature-based signature construction

A total of 58 radiomics features were significant (P<0.05) 
for risk stratification in training cohort. Then an optimal 
feature subset consisting of eight radiomics features, 
including maximum, minimum, IDN, joint energy, long run 
low gray level emphasis, gray level variance, coarseness, and 
large dependence emphasis, were identified mostly related to 
the DFS by the LASSO Cox regression analysis (Figure S1).  
The radiomics score (rad-score), was constructed with 
the calculation formula generating in the LASSO model 
(Supplementary material IV).

Survival analysis based on the radiomics signature

The distribution of rad-score and survival status indicated 
that patients with higher score generally had worse survival 
than did those with lower score (Figure 1, left panel). The 
optimal cutoff value of rad-score was 1.125, which divided 
all patients into low- (rad-score <1.125) and high-risk group 
(rad-score ≥1.125). The survival analyses showed that a 
significant difference existed between these groups (P<0.001) 
both in the training and validation cohorts (Figure 1, right 
panel). Furthermore, the survival analyses applied in the 
clinicopathologic subgroups of all patients, consisting of 

Table 1 The baseline characteristics of 475 patients with resected stage I lung adenocarcinoma in the training and validation cohorts

Characteristic Training cohort, N=238, n (%) Validation cohort, N=237, n (%) P value

Age, years 0.436

<65 165 (69.3) 172 (72.6)

≥65 73 (30.7) 65 (27.4)

Gender 0.966

Female 129 (54.2) 128 (54.0)

Male 109 (45.8) 109 (46.0)

Smoking 0.107

No 164 (68.9) 179 (75.5)

Yes 74 (31.1) 58 (24.5)

p-TNM stage 0.383

IA 121 (50.8) 111 (46.8)

IB 117 (49.2) 126 (53.2)

Surgery types 0.396

Lobectomy 221 (92.9) 215 (90.7)

Sub-lobar resection 17 (7.1) 22 (9.3)

Histologic subtype 0.589

LPA 83 (34.9) 83 (35.0)

APA 91 (38.2) 88 (37.1)

PPA 37 (15.5) 46 (19.4)

SPA 17 (7.1) 15 (6.3)

MPA 10 (4.2) 5 (2.1)

Pathologic tumor size, mm, mean ± SD 20.2±8.2 20.1±8.4 0.948

Follow-up time, median 66.3 64.7 0.054

SD, standard deviation; LPA, lepidic predominant adenocarcinoma; APA, acinar predominant adenocarcinoma; PPA, papillary predominant 
adenocarcinoma; MPA, micropapillary pattern-predominant adenocarcinoma; SPA, solid predominant adenocarcinoma.
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Figure 1 The distribution of radiomics score (left panel) and KM survival (right panel) in the training (A) and validation cohorts (B). The P 
values of survival curves were calculated using the log-rank test.
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age, sex, pathological TNM stage and histologic subtype, 
further proved that this signature remained significant for 
survival stratification (P<0.01, Figure S2).

Biological basis of the radiomics signature

The biological basis of the radiomic signature was evaluated 
in the independent Radiogenomics dataset with CT images 
and RNA-sequence-based gene expression data. The pre-
ranked GSEA showed that the significant enriched pathways 
(FDR <0.1) among the top associations with the radiomics 

signature were mostly correlated to various metabolic 
processes and immune system (Figure 2). This revealed that 
the developed imaging biomarker might reflect the different 
characteristic metabolic changes and immune system during 
the cancer progression, which could provide more potential 
for early prognosis prediction of lung adenocarcinoma.

Performance analysis of the radiomics nomogram

In the multivariate Cox regression analysis (Table 2), age 
(HR: 1.893; 95% CI: 1.061–3.379; P=0.031), pathologic 
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Figure 2 Gene set expression patterns—Radiogenomics dataset. The radiomics signature was linked to gene expression patterns using a 
pre-ranked gene set enrichment analysis (GSEA). Positive and negative enrichments are shown in red and blue, respectively. The top 10 
enrichments in each category are highlighted.

TNM stage (HR: 2.109; 95% CI: 1.039–4.338; P=0.043), 
histologic subtype (LPA: reference; APA/PPA: HR: 2.703; 
95% CI: 1.039–7.035, P=0.042; MPA/SPA: HR: 5.300; 95% 
CI: 1.782–15.767, P=0.003) and the radiomics signature 
(HR: 7.794; 95% CI: 3.185–19.078; P<0.001) were 
identified as independent predictors for DFS of patients 
with stage I adenocarcinoma. 

Then a nomogram that incorporated these independent 
clinical factors and radiomics signature was generated 

(Figure 3A). We found that the radiomics nomogram 
showed good discrimination performance (C-index: 
0.713; 95% CI: 0.646–0.780) in the validation cohort, 
as well as satisfactory agreements among prediction 
outcomes and actual observations (Figure 3B). The decision 
curves analysis exhibited that the integrating radiomics 
nomogram achieved higher clinical usefulness relative to 
the clinicopathologic factors and radiomics signature alone 
(Figure 3C).
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Table 2 Univariate and multivariate analysis of disease-free survival for patients in training cohort

Variables
Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Age (≥65 vs. <65) 2.506 (1.414–4.442) 0.002 1.893 (1.061–3.379) 0.031

Gender (Male vs. Female) 2.120 (1.176–3.819) 0.012 1.568 (0.850–2.890) 0.150

Smoking status (Yes vs. No) 1.602 (0.894–2.871) 0.113 NA NA

p-TNM stage (IB vs. IA) 4.243 (2.109–8.535) <0.001 2.109 (1.039–4.338) 0.043

Operation type (Lobe vs. Sub-lobe) 0.966 (0.300–3.115) 0.954 NA NA

Histologic subtype 0.001 0.010

LPA 1.000 (Reference) 1.000 (Reference)

APA/PPA 4.720 (1.839–12.118) 0.001 2.703 (1.039–7.035) 0.042

MPA/SPA 7.854 (2.682–22.998) 0.002 5.300 (1.782–15.767) 0.003

Pathologic tumor size 1.763 (1.266–2.455) <0.001 1.097 (0.779–1.545) 0.596

Radiomics signature 11.528 (4.890–27.178) <0.001 7.794 (3.185–19.078) <0.001

HR, hazard ratio; CI, confidence interval; LPA, lepidic predominant adenocarcinoma; APA, acinar predominant adenocarcinoma; 
PPA, papillary predominant adenocarcinoma; MPA, micropapillary pattern-predominant adenocarcinoma; SPA, solid predominant  
adenocarcinoma. 

ACT benefit analysis based on the radiomics nomogram

The adoption of ACT (n=129/243) did not show survival 
benefit in all patients with stage IB lung adenocarcinoma 
( P = 0 . 1 1 ,  F i g u re  S 3 ) .  T h e  p o l y n o m i a l  e q u a t i o n 
(Supplementary material V) extracted from the radiomics 
nomogram was used to calculate the total risk point for all 
stage IB patients and divided them into low- and high-point 
groups with its optimal cutoff value. Compared with the 
patients in the low-group, the high-point group accounted 
for more patients with older age, male, micropapillary and 
solid predominant adenocarcinoma, larger tumor size and 
higher radiomics signature (P<0.05, Table 3). Interestingly, 
while patients with a low risk point (risk point <8.788) 
defined by the radiomics nomogram showed no survival 
difference with or without ACT (P=0.7; Figure 4A), patients 
with high point (total point ≥8.788) obtained a favorable 
response to ACT (P=0.04; Figure 4B). These results 
indicated that the integrated radiomics nomogram had great 
potential to successfully select these high-risk patients with 
stage IB lung adenocarcinoma who were suitable candidates 
for ACT.

Discussion

Patients with stage I lung adenocarcinoma have substantial 

risks for recurrence even after complete resection, and 
whether ACT could provide survival benefit remains 
controversial. Postoperative DFS evaluation is vital for 
guiding a patient’s individualized follow-up strategies 
and subsequent treatment option. In this research, 
the constructed radiomics signature could successfully 
categorize stage I adenocarcinoma patients into high- and 
low-risk groups with significant different in DFS and the 
integrated radiomics nomogram could identify the suitable 
patients benefit from ACT. Furthermore, the genomic 
studies revealed the correlations between radiomics 
signature and tumor metabolic changes and immune system.

The analysis of medical images has gradually evolved 
from subjective operator-dependent criteria to a more 
objective and quantitative evaluation (22,23). Radiomics 
could provide additional information in oncologic practice 
related to benign and malignant nodules differentiation (24), 
mutation types identification (10), subtype classification (25)  
and treatment response assessment (26). As for prognostic 
prediction based on lung CT, Lee et al. (27) found that 
two radiomics features of 339 patients were independent 
prognostic factor of lung adenocarcinoma survival. 
However, this method of describing gross lesions with 
few single features required further improvement as it 
might cause an underestimation of the application of 
radiomics (28). Hence, in radiomics analysis, a multi-
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feature-based radiomics signature has significantly greater 
prognostic accuracy than that of each selected feature alone, 
considering the interactions between different features 
(12,13,29). In our study, eight-feature-consisted radiomics 
signature based on multicenter cohorts of 475 patients 
reached a favorable performance for survival assessment of 
stage I lung adenocarcinoma.

A s  f o r  t h e  a d m i n i s t r a t i o n  o f  A C T  i n  l u n g 
adenocarcinoma, current guidelines do not recommend its 
adoption in stage IA disease but remain more ambiguous 

in stage IB disease (30,31). Our data supported that the 
adoption of ACT in all stage IB patients without selection 
could not bring survival benefit (P=0.11). Numerous studies 
have demonstrated that stage IB patients with older age 
are associated with greater recurrence risk (8,32,33). The 
histologic features of lung adenocarcinoma, especially the 
micropapillary and solid predominant patterns, remained 
independent predictor for evaluating tumor recurrence and 
ACT survival benefits (3,34-36). Our study is consistent 
with these studies. Moreover, we add to these findings by 

Figure 3 A prediction performance analysis of patients with stage I lung adenocarcinoma. (A) The nomogram for predicting 3- and 5-year 
DFS after surgery; (B) plots depict the calibration of the nomogram in terms of agreement between predicted and observed 3- and 5-year 
DFS. Performance of the validation cohort was shown on the plot relative to the 45-degree line, which represented perfect prediction; (C) 
decision curve analysis for the comparison of prognostic factors. The y-axis measures the net benefit.
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demonstrating that the radiomics nomogram integrating 
the proposed imaging signature with these clinicopathologic 
predictors is more clinically relevant because accurate 
survival prediction allows for good identification of patients 
who derive therapeutic benefit from ACT. The radiomics 
signature provides the incremental value for guiding the 
adoption of ACT in patients with stage IB disease that 
complemented clinicopathologic factors (37). 

With respect to elaborating the underlying mechanism 
that drives biological process ultimately reflected in imaging 
phenotypes, series studies published by Aert et al. (38-40)  
have found that some biological pathways related to 
lung cancer prognosis, including mitosis, cell cycle and 
transcription, can be captured by imaging biomarkers. Our 
study used a GSEA in an external cohort to reveal how 
imaging biomarkers can be connected to postoperative 

prognosis, suggesting that different tumor metabolism and 
immune system change may result in different survival 
outcomes. Cancers have much more complex metabolic 
pathways to support tumor cell growth and proliferation (41).  
The radiomics features for constituting the signature can 
correlate with these metabolic pathways and immune 
system editing, which allows for tumor development and 
progression, and thereby worsening the prognosis (40,42). 

Some limitations existed in our study besides for those 
commonly associated with retrospective studies. First, 
despite the constructed signature has been verified a 
favorable performance in identifying high-risk patients 
for recurrence and suitable candidates for ACT benefit 
on an independent validation cohort, multicenter datasets 
were still necessary for validating its robustness and 
generalization. Second, the task of ROIs delineation was 

Table 3 The Clinicopathological features of 243 patients with resected stage IB lung adenocarcinoma in the low- and high-risk groups defined by 
the radiomics nomogram

Characteristic Low-group, N=129, n (%) High-group, N=114, n (%) P value

Age, years <0.001

<65 102 (79.1) 62 (54.4)

≥65 27 (20.9) 52 (45.6)

Gender 0.004

Female 86 (66.7) 55 (48.2)

Male 43 (33.3) 59 (51.8)

Smoking 0.467

No 97 (75.2) 81 (71.1)

Yes 32 (24.8) 33 (28.9)

Surgery types 0.225

Lobectomy 125 (96.9) 107 (93.9)

Sub-lobar resection 4 (3.1) 7 (6.1)

Histologic subtype <0.001

LPA 55 (42.6) 17 (14.9)

APA 48 (37.2) 51 (44.7)

PPA 25 (19.4) 20 (17.5)

SPA 0 (0.0) 18 (15.8)

MPA 1 (0.8) 8 (7.0)

Pathologic tumor size, mm, mean ± SD 21.9±7.8 24.8±8.9 0.007

Radiomics signature, mean± SD 0.789±0.336 1.373±0.297 <0.001

SD, standard deviation; LPA, lepidic predominant adenocarcinoma; APA, acinar predominant adenocarcinoma; PPA, papillary predominant 
adenocarcinoma; MPA, micropapillary pattern-predominant adenocarcinoma; SPA, solid predominant adenocarcinoma.
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Figure 4 The Benefit analysis of adjuvant chemotherapy (ACT) in different subgroups. (A) Patients in the low-risk groups defined by the 
nomogram showed no survival difference between with and without ACT; (B) patients in the high-risk groups defined by the nomogram 
could obtain survival benefits from ACT.

completed in a manual method which was commonly 
considered as a gold criterion for images processing at 
present (43). However, the exploitation of a more efficient 
and perfectly accurate method for lesion segmentation will 
be an important direction in the field of future radiomics 
research. Third, only adenocarcinoma patients were 
enrolled in this study. Due to its enormous proportion 
in lung cancer and the heterogeneity in tumor behavior, 
a homogeneous study cohort only including lung 
adenocarcinoma patients may be better for the model 
analysis of radiomics.

In conclusion, our results suggest that the developed 
radiomics signature may successfully categorize stage I 
adenocarcinoma patients into high- and low-risk groups of 
disease recurrence, and the integrated radiomics nomogram 
may further identify the suitable patients benefit from 
ACT. Moreover, we evaluated the biological basis of 
the proposed signature and found to be correlated with 
different characteristic metabolic changes and immune 
system. These findings may potentially facilitate the clinical 
impact in guiding pertinent therapeutic administration and 
improved survival outcomes of patients with stage I lung 
adenocarcinoma.
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Supplementary

Table S1 Radiomic nomograms for prognosis prediction of lung adenocarcinoma in the literatures

Literature Year Patient
Sample 

size
Variates included in nomogram

Huang et al. (13) 2016 Early stage (I and II) NSCLC 282 Radiomic signature, age, clinical stage, histologic grade, gender

Desseroit et al. (44) 2016 Stage I–IIIb NSCLC 116 Overall stage, selected radiomics features (metabolic volume, 
PET entropy, CT zone percentage)

Wang et al. (45) 2019 Advanced NSCLC 118 Radiomics signature, age, lymph node, lymphocyte2, NLR1 

Yang et al. (46) 2019 Stage I–IIIb NSCLC 371 Radiomics signature, age, sex, T stage, N stage

Akinci D’Antonoli et al. (47) 2020 stage Ia–IIb NSCLC 124 Radiomics signature, overall stage

Supplementary material I. CT Image acquisition protocol

All patients in our study underwent by a non-enhanced contrast CT scans by a Somatom Definition AS (Siemens Medical 
Systems, Germany) or Brilliance 40 (Philips Medical Systems, Netherlands). The parameters of above two scanners were 
listed as follows respectively: a. tube energy as 120 kVp, tube current as 130mA, rotation time as 0.5 s, detector collimation 
as 64 × 0.625 mm2; b. tube energy as 120 kV, tube current as 200 mA, rotation time as 0.75 s, detector collimation as  
32 × 1.25 mm2. The images were reconstructed at 1.0 mm slice thickness and 0.7 mm increment by the standard soft kernel 
(Siemens B31 filter, Siemens Medical Solutions, Forchheim, Germany) and sharp reconstruction kernel (C filter, Philips, 
Cleveland, OH). 

Supplementary material II. Extracted radiomics feature 

The quantified image features were classified into three categories: (I) intensity(n=18): these features quantify the density 
characteristics of tumor region using first order histogram statistics of all voxel intensities, (II) shape (n=14): shape features 
describe the 3D geometric properties of the tumor, and (III) texture (n=75): these features were computed to analyze the 
spatial distribution of voxel intensities and then describe the intratumor heterogeneity. Texture features are derived from gray 
level co-occurrence matrix (GLCM) (n=24), run length matrices (GLRLM) (n=16), gray level size zone matrix (GLSZM) 
(n=16), neighboring gray tone difference matrix (NGTDM) (n=5) and gray level dependence matrix (GLDM) (n=14) (18).

Supplementary material III. Packages used in R programming

LASSO Cox regression was performed using the “glmnet” package. The waterfall plots were obtained by the “RColorBrewer” 
package. Survival analysis was performed with the “survival” package. Time-dependent receiver operating characteristic (ROC) 
analysis was achieved by the “pROC” package. Nomograms and calibration plots were generated with the “rms” package. 
Comparisons between C-indexes were performed with the “survcomp” package. Decision curve analysis was performed with 
the “RMDA” package. The equations extraction from a nomogram was performed with the “nomogramEX” package.

Supplementary material IV. Calculation formula for radiomics signature

Radiomics score = 0.038309518 × First Order_ Maximum + 0.521437365 × First Order_ Minimum + 0.119876232 × GLCM_
Idn + 0.336529265 × GLCM_Joint energy + 0.321377301 × GLRLM_Long run low gray level emphasis + 0.378193705 × 
GLSZM_Gray level variance + 0.108937141 × NGTDM_Coarseness + 0.337786524 × GLDM_Large dependence emphasis.

Supplementary material V. The polynomial equation extracted from the radiomics nomogram

Total point = 0.0 × 0 (Age <65) + 1.210228 × 1 (Age >=65) + 0.0 × 0 (Pathological stage: IA) + 1.896196 × 1 (Pathological stage 
IB) + 0.0 × 0 (Histologic subtype: LPA) + 2.496489 × 1 (Histologic subtype: APA & PPA) + 3.092025 × 1 (Histologic subtype: 
MPA & SPA + 4.545455 * Radiomics signature.



Table S2 Extracted radiomics features

Intensity Shape
Texture

GLCM GLRLM GLSZM NGTDM GLDM

10 Percentile Elongation Autocorrelation Gray level nonuniformity Gray level nonuniformity Busyness Busyness

90Percentile Flatness Cluster  
Prominence

Gray level nonuniformity 
normalized

Gray level nonuniformity  
normalized

Coarseness Coarseness

Energy Least axis length Cluster Shade Gray level variance Gray level variance Complexity Complexity

Entropy Major axis length Cluster Tendency High gray level run  
emphasis

High gray level zone  
emphasis

Contrast Contrast

Interquartile 
range

Maximum 2D 
diameter column

Contrast Long run emphasis Large area emphasis Strength Strength

Kurtosis Maximum 2D 
diameter row

Correlation Long run high gray  
level emphasis

Large area high gray  
level emphasis

Dependence  
entropy

Maximum Maximum 2D 
diameter slice

Difference  
Average

Long run low gray  
level emphasis

Large area low gray  
level emphasis

Dependence  
nonuniformity

Mean absolute 
deviation

Maximum 3D 
diameter

Difference  
Entropy

Low gray level run  
emphasis

Low gray level zone  
emphasis

Dependence  
nonuniformity  

normalized

Mean Mesh volume Difference  
Variance

Run entropy Size zone nonuniformity Dependence  
variance

Median Minor axis length Id Run length  
nonuniformity

Size zone nonuniformity  
normalized

Gray level  
nonuniformity

Minimum Sphericity Idm Run length  
nonuniformity normalized

Small area emphasis Gray level variance

Range Surface area Idmn Run percentage Small area high gray  
level emphasis

High gray level  
emphasis

Robust mean 
absolute  
deviation

Surface volume 
ratio

Idn Run variance Small area low gray  
level emphasis

Large dependence 
emphasis

Root mean 
squared

Voxel volume Imc1 Short run emphasis Zone entropy Large dependence 
high gray level  

emphasis

Skewness Imc2 Short run high gray  
level emphasis

Zone percentage Large dependence 
low gray level  

emphasis

Total energy Inverse variance Short run low gray  
level emphasis

Zone variance Low gray level  
emphasis

Uniformity Joint average Small dependence 
emphasis

Variance Joint energy Small dependence 
high gray level  

emphasis

Joint entropy Small dependence 
low gray level  

emphasis

MCC

Maximum  
probability

Sum average

Sum entropy

Sum squares



Figure S1 Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (A) LASSO 
coefficient profiles of the radiomics features. As the tuning parameter (λ) increased using 5-fold cross-validation, more coefficients tended to 
approach 0 and the optimal non-zero coefficients generated, which yielded a set of the optimal radiomics features; (B) the partial likelihood 
deviance from the LASSO regression cross-validation procedure was plotted against log(λ).
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Figure S2 Kaplan-Meier survival analysis for all 475 patients with stage I lung adenocarcinoma according to the eight-feature-based radiomics signature stratified by 
clinicopathological risk factors.
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Figure S3 The Benefit Analysis of adjuvant chemotherapy (ACT) in All Patients with Stage IB Adenocarcinoma. These patients showed no 
survival difference between with and without ACT.


	20-TLCR-19-577（含附录）
	20-TLCR-19-577附录

