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Background: Due to different treatment method and prognosis of different subtypes of lung 
adenocarcinomas appearing as ground-glass nodules (GGNs) on computed tomography (CT) scan, it 
is important to classify invasive adenocarcinomas from non-invasive adenocarcinomas. The purpose of 
this paper is to build and evaluate the performance of deep learning networks on the differentiation the 
invasiveness of lung adenocarcinoma appearing as GGNs.
Methods: This retrospective study included 886 GGNs from 794 pathological confirmed patients with 
lung adenocarcinoma for training and testing the proposed networks. Three deep learning networks, namely 
XimaNet (deep learning-based classification model), XimaSharp (classification and nodule segmentation 
model), and Deep-RadNet (deep learning and radiomics combined classification model, i.e., deep radiomics) 
were built. Three classification tasks, namely task 1: classification of AAH/AIS and MIA, task 2: classification 
of MIA and IAC, and task 3: classification of non-invasive adenocarcinomas and invasive adenocarcinomas 
(AAH/AIS&MIA and IAC) were conducted to evaluate the model performance. The Z-test was used to 
compare the model performance.
Results: The AUC for classification of AAH/AIS with MIA were 0.891, 0.841 and 0.779 for Deep-RadNet, 
XimaNet and XimaSharp respectively. The AUC for classification of MIA with IAC were 0.889, 0.785 and 
0.778 for three networks and AUC for classification of AAH/AIS&MIA with IAC were 0.941, 0.892 and 0.827 
respectively. The performance of deep_RadNet was better than the other two models with the Z-test (P<0.05).
Conclusions: Deep-RadNet with the visual heat map could evaluate the invasiveness of GGNs accurately 
and intuitively, providing a theoretical basis for individualized and accurate medical treatment of patients 
with GGNs.
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Introduction

Lung cancer is the most common cancer and the leading 
cause of cancer-related death (1). With the popularization 
of lung cancer screening with CT, the detection rate of 
pulmonary nodules is getting higher (2). Most of the 
early-stage lung cancers appear as ground glass opacity 
(GGN) on thin section CT. GGNs are classified into two 
categories according to the presence of solid components 
or not, pure ground-glass nodules (pGGNs) and mixed 
ground glass nodules (mGGNs) (3). According to the 
multidisciplinary classification of lung adenocarcinomas by 
the International Association for Lung Cancer Research, 
the American Thoracic Society and the European Society 
of Respiratory Sciences (IASLC/ATS/ERS) in 2011 (4), 
lung adenocarcinoma can be pathologically classified 
into four subtypes, atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA) and invasive adenocarcinoma (IAC). 
AAH and AIS is regarded as pre-invasive lesions. 

Different subtypes of adenocarcinoma vary the clinical 
management strategies, survival rates, surgical approaches 
and postoperative therapeutic protocols. Pre-invasive lesions 
and MIAs often have good biological behavior, long-term 
unchanged or slow growth, and can be clinically followed 
up to select the best surgical timepoint, reducing the 
overtreatment (5,6). In contrast, IAC needs timely surgical 
treatment. The disease-free survival rate after surgery for 
patients with AAH/AIS/MIA can be close to 100%, which 
is significantly higher than that of IAC (38–86%, P<0.001), 
which depends mainly on different subtypes of IAC (7,8). 
Due to the high survival rate of MIA, pre-invasive lesions 
and MIA is defined as the ‘non-invasive’ adenocarcinoma. 
For the ‘non-invasive’ adenocarcinoma, sub-lobar resection 
is usually used to achieve the radical effect, and sub-
lobar resection can retain more lung function, reduce 
postoperative complications and shorten recovery time (9). 
While for patients with IAC, lobectomy and mediastinal 
lymph node dissection are performed; moreover, if the 
postoperative adjuvant treatment is applied for those, the 
survival rate may be improved, which is of great significance 
for the individualization of treatment (10,11). Therefore, 
evaluation of invasiveness of lung nodules is important to 
select the appropriate clinical-decision strategy.

Although intraoperative freezing plays a great role for the 
evaluation of the invasiveness of lung nodules, it is limited 
due to a variety of reasons, such as uneven diagnostic levels, 
clinical experience of pathologists, frozen materials and 

technical conditions during surgery, inaccurate localization 
of the lesions, inaccurate material selection, too small 
lesions, and the complications (12,13). Therefore, it is 
more necessary to judge the invasiveness of GGNs before 
surgery, CT as a non-invasive method plays a great role 
in the preoperative evaluation the invasiveness of GGNs. 
Unfortunately, it has been a great challenge to distinguish 
the different histological invasiveness with traditional 
CT morphological findings. Currently, morphological 
findings are most commonly used to differentiate invasive 
from non-invasive adenocarcinoma in clinical work, 
such as proportion of solid component volume, non-
smooth margin, lobulation and nodule size. Considerable 
overlapping in CT morphological features among various 
histological subtypes have been reported (14,15). It is 
difficult to differentiate histological invasiveness with the 
morphological features alone. 

With the arrival of the era of big data, many studies have 
focused on radiomics and pathological subtypes of lung 
adenocarcinomas. Although the accuracy of radiomics is 
higher than that of traditional morphological signs (16), 
the conventional radiomic methods are tedious and time-
consuming. In recent years, artificial intelligence (AI) is 
an emerging concept in computer science research. Deep 
neural networks (DNN) has achieved broad application 
in many domains, especially in the analysis of medical 
images, including images of skin lesions, pneumonia, and 
clinical pathological images (17,18). Deep learning has 
better performance in many clinical aspects than traditional 
qualitative analysis tools. As yet, few studies assess the 
performance of a model combining a deep convolutional 
neural network and a hand-crafted radiomics signature 
to differentiate the histological invasiveness of lung 
adenocarcinomas manifesting as GGNs. The study aims 
to build three deep learning models, then compare the 
performance of the models on the invasiveness classification 
of GGNs based on chest CT. Besides, the performance 
of our models was compared with quantitative analysis of 
maximum nodule diameters. The authors have completed 
the STROBE reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-20-370).

Methods

Study population

From January 2012 to March 2018, 794 patients with lung 
adenocarcinoma showing GGNs were enrolled in this 
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retrospective study. The included patients were those with 
(I) no previous therapy history before CT examination; 
(II) lung adenocarcinoma confirmed by surgical resection 
and histopathological diagnosis; (III) tumor less than 3cm 
in diameter on thin-slice (0.625–1 mm) CT images. The 
exclusion criteria were as follows: (I) marked artifacts 
on CT images; (II) history of preoperative treatment; 
(III) incomplete clinical information or DICOM images; 
(IV) history of other malignant tumors; (V) lung cancer 
associated with cystic airspaces. The patients were divided 
into three categories of pre-invasive lesions, MIA and IAC 
according to pathological examination results. Moreover, 
“non-invasive” adenocarcinoma and IAC were also made 
a binary classification. Three different classification tasks 
were considered: (I) classification of AAH/AIS with MIA; (II) 
classification of MIA with IAC; (III) classification of AAH/
AIS&MIA with IAC. All procedures performed in this 
study were in accordance with the Declaration of Helsinki 
(as revised in 2013) and approved by the Ethics Committee 
of the Changzheng Hospital, Second Military Medical 
University (No. 2018SL049). Because of the retrospective 
nature of the research, the requirement for informed 
consent was waived. 

All patients underwent non-enhanced CT scanning with 
one of the five scanners in our hospital, as described in our 
previous study (19). All patients took the supine position 
and adopted the whole lung scan at the end of inspiration. 
Multi-planner reconstruction (MPR) was used for images 
reconstruction with thin-slice (≤1 mm) images. The 
demographic data including age and gender were derived 
from medical records. All patients were diagnosed with the 
same manner of histopathological diagnosis after surgical 
resection. The pathological subtypes of each GGNs were 
categorized according to the IASLC/ATS/ERS classification 

of lung adenocarcinoma in 2011 (4). 

Dataset preprocess

GGNs were divided with the ratio of 0.7:0.15:0.15 for 
all training dataset, validation dataset and the test dataset 
(Table 1). However, the number of IAC patients exceed 
the sum number of AAHs and AISs. This imbalanced data 
distribution may have a direct effect on the performance of 
the deep neural networks. In order to alleviate such effect, 
AAH and AIS were regarded as the one category. 

Nodule labeling and segmentation

The segmentation of volume of interest (VOI) of each 
nodule was delineated manually and independently by 
experienced thoracic radiologist with lung window settings 
(window width 1,500 HU, window level 450 HU) using 
self-developed software from Shanghai Aitrox Information 
Technology Co., Ltd. The GGNs largest transverse cross-
sectional diameter was measured in the lung window as the 
maximum nodule diameter. Large vessels and bronchi were 
excluded manually from each VOI. VOIs were marked with 
specific labels (AAH, AIS, MIA, and IAC) according to the 
pathological reports. 

Building three deep-learning models 

3D Image Patch generation and radiomic feature 
extraction
The two end-to-end networks, XimaNet and XimaSharp, 
directly take 3D image patches as input. To generate the 
3D image patches, we firstly resampled the image spacing 
to 1 mm per pixel in all three dimensions, and normalized 
the CT value in each pixel to [−1, 1]. To keep the redundant 
image information around the tumor lesion, which could 
be meaningful for lung nodule invasiveness classification, 
we did not directly crop the lesion according to its 
corresponding mask. Instead, we calculated the maximal 
diameter of the lesion in all three dimensions. We cropped 
a 3D image patch around the lesion with twice the maximal 
diameter in all three dimensions and resized it to 64×64×64 
pixels. Especially, if the maximal diameter is smaller than 
32 pixels, we directly cropped a 64×64×64 3D image patch 
around the lesion without resizing.

In contrast, the non-end-to-end network, deep-
RadNet, takes selected radiomic features instead of image 

Table 1 Number of nodules for training, validation and testing

Group Training Validation Testing Total

AAH 95 20 20 135

AIS 128 28 28 184

MIA 145 31 31 207

IAC 252 54 54 360

Total 620 133 133 886

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma 
in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive 
adenocarcinoma.
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patches as input. We used the radiomic extracting tool 
PyRadiomics (20) (https://pyradiomics.readthedocs.io/en/
latest/) to extract the radiomic features from the Region 
of Interest (ROI) on the images, which was labelled by 
corresponding masks. From the 1,743 extracted radiomic 
features, we selected the ones most relevant to the lung 
nodule invasiveness by: (I) excluding 5% abnormal samples 
with isolation forest (IF) algorithm (21); (II) deleting the 
features with low variance; (III) calculating the z-scores 
for each feature among all samples (mean normalization); 
(IV) reducing the feature numbers by automatic relevance 
determination (ARD) (22) and least absolute shrinkage 
and selection operator (LASSO) (23) with 10-fold cross 
validation. Finally, a number of 27 radiomic features were 

selected during the selection process.

Buliding the XimaNet and XimaSharp architecture
The XimaNet design was inspired by the ResNet (24) 
structure. The network structure was shown in Figure 1A. 
It took 64×64×64 pixel image patches as input, and the 
image patches were batch normalized, went through 64 
convolutional layers and batch normalized again. Then the 
patches went through 6 building block modules, whose 
structure was shown in Figure 1B. The stride of the first 
building block was 1, and the rest building blocks had 
stride =2 for down-sampling. The building blocks exported 
a 2×2×2 pixel feature map, which was passed through 
a module consisting of batch normalization (BN) (25) 

Figure 1 The structure and building block of XimaNet. (A) Structure of XimaNet. Convolutional neural network (CNN) algorithm 
development for classification, 3D patches with size of 64×64×64 pixel were used as input. They were first fed into a BN-convolution-BN 
module with 64 kernels. These feature maps then went through 6 building blocks followed by a GAP module. (B) Structure of building 
block of XimaNet. The first building block used a convolution with stride of 1 while the other building blocks used stride of 2 for down 
sampling.
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and rectified linear unit (ReLU) (26). Then the feature 
map went through global average pooling (GAP) and 
dense layers to output three predicted probability values 
corresponding to AAH/AIS, MIA and IAC respectively. 
The final prediction was the category with the maximal 
predicted probability. During the training process, we 
applied data augmentation by flipping the images on x-axis 
only, y-axis only and both axes simultaneously. This DL 
network was trained based on TensorFlow 1.10.0 (27) and 
Keras 2.2.4 with Python 2.7, on a workstation equipped 
with 2 NVIDIA 1080Ti GPUs. 

The XimaSharp network was inspired by DenseSharp 
network (28). It was a multitask network for simultaneous 
classification and segmentation. The basic structure of 
XimaSharp was similar to XimaNet, but we up-sampled the 
2×2×2 pixel feature map exported by the building blocks 
to feature maps of 4×4×4, 8×8×8, 16×16×16, 32×32×32 
and 64×64×64 pixels and added them to the feature maps 
exported by each building block of the corresponding size. 
In the end, we exported a segmentation mask with the size 
of 64×64×64 pixels and evaluated the model performance 
by calculating both the classification and segmentation 
loss. The XimaSharp model was trained under the same 
environment to XimaNet.

Building deep-RadNet architecture
The deep-RadNet took the 27 selected radiomic features 
as input. We used three fully connected layers before the 
model exported the final prediction. Similar to the output 
of XimaNet, the prediction was also three probability 
values corresponding to AAH/AIS, MIA, and IAC, and 
the category with the maximal probability was the final 

prediction. The structure of deep-RadNet was shown in 
Figure 2.

Training of models for classification of GGNs

We applied the cross-entropy function as the loss function 
for XimaNet and deep-RadNet. The formula is shown 
below: 

( ) 1, logc c
cls cls cls cls

n c cls

l t t
n

γ γ= − ∑∑ [1]

In which tcls is the ground truth label, ycls is the 
prediction result from our model, n is the sample number, 
and c is a class. For our classification and segmentation 
multitask model XimaSharp, the loss function consists of 
both classification loss and segmentation loss. The formula 
is shown below:

ljoint = lcls + λlseg                                                                                                                   

 
[2]

The parameter λ indicates the weight for segmentation 
loss. In our case, it is set as 0.2 as an empirical value. lsegis 
the dice loss for segmentation whose formula is shown 
below:

( ) 21, seg seg
seg seg seg

n seg seg

t
l t

n t
γ

γ
γ
×

= −
+

∑∑∑ ∑
[3]

In which tseg is the manually labelled ground truth mask 
and yseg is the mask predicted by the model, and n is the 
total number of the samples. In the training process, we 
used Adam optimizer (29). The learning rate was set to 
0.01, and the decay rate was set to 0.334. The dropout was 
set to 0.5 in the first building block, and 0.3 in all the other 
blocks. The models were trained for 80 epochs. For the 
deep-RadNet, we used the same cross entropy loss function 
as the one for XimaNet. The optimizer was Adam, and the 
learning rate was set to 2×10−4. The decay was set to 1×10−6. 
The model was trained for 80 epochs.

Evaluation of model performance

The input for XimaNet and XimaSharp was a 64×64×64 
pixel image patch. XimaNet was used to predict the 
classification of AAH/AIS, MIA and IAC, while XimaSharp 
was used to predict the invasiveness degree as well as lesion 
segmentation mask. F1-score was used to assess the accuracy 
of the three-category classification mode. The maximum 
value of F1 score was 1 and the minimum value was 0. The 

Figure 2 The structure of fully connected layer network in Deep-
RadNet. The numbers below each layer is the number of neurons. 

Input: 27   Dense: 64 Dense: 32   Dense: 16  Output: 3
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“weighted average F1-score” was performed to reduce the 
effect of imbalanced data. The “weighted average F1-score” 
is a transformation of F1-score which is calculated from 
various kinds of F1 weighted calculation. The formulas are 
shown below:

F1 2Precision Recallscore =
Precision+ Recall

×
[4]

1weighted average F1 score =  n F1 score
n

− ×∑ [5]

We also used the Matthews correlation coefficient (MCC) 
for model evaluation, which was insensitive to unbalanced 
data. The formula for MCC is shown below:

MCC  TP TN FP FN
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

× − ×
= [6]

To understand the “black boxes” of the deep learning 
model, heat maps were generated by Grad-CAM to 
visualize the most indicative region for the invasiveness 
of GGNs. Grad-CAM was a gradient related distribution 
map which could visualize the significance of the region the 
algorithm focused on.

Statistical analysis

All statistical analysis were performed in Matlab (version 
2019a; MathWorks, Narick, Mass). Receiver operating 
characteristic curves (ROCs) as well as areas under receiver 
operating characteristic curves (AUCs) were used to assess 
overall classification performance of the three models. 

Then, Z test was applied to evaluate the difference of 
performance among models. Bootstrapping (1,000 boot-
strap samples) was used to calculate 95% CIs and the 
associated P values. P<0.05 was considered a statistically 
significant difference. The performance by the size of 
GGNs was evaluated by t test. The optimal cut-off diameter 
for GNNs classification was calculated by searching in the 
dataset to maximize accuracy. Double tail distribution and 
double sample equal variance hypothesis were selected for 
parameters for tails and type, and P values were calculated 
under the optimal cut-off size. 

Results

A total of 794 patients with 886 lung nodules were 
evaluated. The patient characteristics were illustrated in 
Supplementary file. We evaluated the performance in 
three classification tasks of the three DNNs: XimaNet, 
XimaSharp and deep-RadNet. Evaluation metrics 
included accuracy, “weighted average F1-score” and 
Matthews correlation coefficient (MCC), the classification 
performance was shown in Table 2. Table 2 showed deep-
RadNet presented with the highest accuracy, “weighted 
average F1-score” and MCC in comparison with other two 
models in all the three classification tasks. The AUC for 
Deep-RadNet was 0.891, 0.889, 0.941for the AAH/AIS 
and MIA classification, the MIA and IAC classification, and 
AAH/AIS/MIA and IAC classification, respectively, which 
were higher than those of other two models (Figure 3). 

The results showed that nodule size was a significant 
differentiator of non-invasive nodules from invasive 
nodules (P=0.04, accuracy =0.701, include AAH, 1 cm; 
P=0.01, accuracy =0.72, exclude AAH, 2 cm). The accuracy 
indicated that the classification ability of deep_RadNet was 
beyond that of the lesion size to differentiate histological 
invasiveness by the optimal cut-off diameter. 

Moreover,  the Z-test  was used to compare the 
performance among 3 models. P values of the Z-test was 
0.021(P<0.05) between deep_RadNet and XimaNet, 0.019 
(P<0.05) between deep_RadNet and XimaSharp and 0.98 
(P>0.05) between XimaNet and XimaSharp, which indicated 
that the deep_RadNet revealed the best performance. 

Discussion

The invasiveness of GGNs is associated with disease 
prognosis, choice of therapeutic approach, and reduction 
of overtreatment. This study showed deep learning system 

Table 2 Classification performance of three network models

Group Network Accuracy F1AVG MCC

AAH/AIS vs. MIA XimaNet 0.701 0.632 0.391

XimaSharp 0.663 0.614 0.376

Deep-RadNet 0.746 0.709 0.452

MIA vs. IAC XimaNet 0.657 0.645 0.388

XimaSharp 0.635 0.617 0.371

Deep-RadNet 0.754 0.693 0.447

(AAH/AIS/MIA) vs. 
IAC

XimaNet 0.755 0.677 0.431

XimaSharp 0.735 0.662 0.428

Deep-RadNet 0.837 0.771 0.513

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma 
in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive 
adenocarcinoma.
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combined with the radiomics features could conveniently 
and automatically obtain the best performance in predicting 
the invasiveness of lung adenocarcinoma manifesting as 
GGNs, in comparison with other two models. To the 

best of our knowledge, this study was the first to present 
a XimaSharp model to detect and segment GGNs 
automatically, and a Deep-RadNet model to evaluate the 
invasiveness of GGNs accurately. 

Figure 3 The ROCs and AUCs of classification tasks. (A) Receiver operating characteristic curve (ROC) of AAH/AIS versus MIA. (B) ROC 
of MIA versus IAC. (C) The ROC of AAH/AIS&MIA versus IA.

Figure 4 The figure illustrated the results for algorithm learning and automatic segmentation. The first to last columns were lung nodule 
examples selected from AAH, AIS, MIA and IAC respectively. (A) The first row showed the original CT images of tumor area. (B) The 
second row showed the heat maps of the corresponding tumor area. Grad-CAM method was used to visualize the region of interest learned 
by XimaNet. The color bar on the most right illustrated the attention degree the algorithm paid on. (C) The third row was the segmentation 
result predicted by XimaSharp (red circle areas were the automatic segmentation result and blue circle areas were the ground truth).
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There are reports claiming that the optimal cut-off 
diameter is helpful for evaluating the degree of invasiveness 
of lung adenocarcinoma. There is no consensus among 
different studies in that distinguishing the invasiveness 
degree referring to the sizes of GGNs merely. Lee et al. 
reported that 14 mm was the optimal cut-off value to 
differentiate pre/minimally invasive from IAC, and the 
sensitivity of 67% and a specificity of 74% (14). Lim et al. 
suggested that the total tumor size of 10 mm could act as 
a direct criterion to distinguish pre-invasive and IAC (30). 
Our study showed that the AUC values of lesion size in 
differentiating non-invasive nodules form invasive nodules 
were 70.1% with the cutoff value of 10 mm. The optimal 
cut-off value was 2cm for differentiating non-invasive 
adenocarcinoma from IAC when the AAH was excluded. 
The differences can be explained by two reasons. The first 
reason is that the AAH has not been included in some 
research. The second is that the definition of nodule size is 
not uniform. Therefore, the doctor judged the invasiveness 
of pulmonary nodules by the optimal cut-off value remains 
controversial.

It has been reported that the solid components in 
the GGN plays a great role in the differentiation of 
invasiveness. The solid components on CT cannot 
evaluated accurately, due to the different pathological 
features with the similar solid component on CT images. 
Solid component may be the proliferation of fibroblasts 
and/or the invasive components of tumor cells, indicating 
a benign scar or collapse of the alveolar wall or tumor (31). 
Besides, there are lots of overlapping in the morphological 
characteristics of non-invasive nodules and invasive ones. 
Therefore, it is limited to differentiate the invasiveness 
degree by some morphological characteristic of GGNs. 

For the traditional deep learning method, it was 
difficult to extract features in the training process of the 
classification model. In contrast, traditional radiomics 
method extracts interpretative features from medical images 
based on prior medical knowledge combined with image 
processing methods. After feature extraction, features 
that contributed most to the prediction were selected and 
fed into the traditional statistical model for classification 
results. The critical idea of our Deep-RadNet model was 
to choose features that contributed most to the prediction 
results and fed them into deep learning neural network 
for training, which may improve the prediction accuracy 
and lead to better clinical interpretability comparing to a 
traditional radiomics model. We explored the possibility 
to combine radiomics and deep learning network for lung 

nodule invasiveness classification tasks, and showed the best 
performance. 

We also attempted to explore a deep learning model for 
lung nodule segmentation tasks, just as shown in Figure 
4. The heatmap demonstrated that the most meaningful 
region for differentiating the degree of invasiveness was the 
solid component inside the tumor. This finding highlighted 
the importance of this region, which may indicate the most 
invasive tumor components and assist radiologists in making 
accurate judgments of invasiveness of GGNs.

This study has some limitations. First is the limited data 
accessibility due to a single-center study, which may lead to 
more selection bias and compromise in the generalization 
ability of our classifier. However, five independent scanners 
in our hospital were used and all the three models were 
found to be reproducible in the validation and training 
groups. Second, our models depended on either the pre-
defined radiomic features or image features automatically 
extracted by deep learning algorithm for the classification, 
while some traditional morphological characteristics such 
as spiculation and lobulation were not considered. In the 
future studies, such information should be combined with 
radiomic features for building a more accurate lung-nodule 
invasiveness prediction model. Also, considering the recent 
progress in lung nodule diagnosis with contrast enhanced 
CT (32), we could extend to contrast enhanced CT 
images and investigate its performance for the invasiveness 
classification of GGNs.

Conclusions

In conclusion, the deep learning model integrating the 
radiomics features of GGNs with the visual heat map 
could evaluate the invasiveness of GGNs accurately and 
intuitively, which is convenient for clinicians, showing great 
potential to improve the efficiency of lung cancer screening 
and providing a theoretical basis for individualized and 
accurate medical treatment of patients with GGNs.
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