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Introduction

Lung cancer is the leading cause of cancer-related mortality 
worldwide and non-small cell lung cancer (NSCLC) 
accounts for almost 85% of all lung cancer cases (1). In 
the last decade the identification of various oncogenes 
(see Figure 1), development of targeted therapies and 
more recently immunotherapies have refined and indeed 
transformed therapeutic algorithms for NSCLC. Genotype-
directed treatments targeting oncogene-addicted NSCLC, 
including EGFR (5-8) and BRAF V600E mutations (9)  
or ALK (10-12), ROS1 (13) and RET (14) oncogenic 
rearrangements, have demonstrated high response rates 
and prolonged survival resulting in their adoption as 
front line therapies. By contrast, immunotherapies when 

used as single agents are ineffective in the majority of 
patients, although offer long term benefits in some patient 
subgroups—particularly when used in combinations with 
chemotherapy. 

While the efficacy of targeted therapies is contingent 
on the target being detectable within the tumour, 
pred ic t i ve  marker s  for  immunotherapy  a re  l e s s 
reliable. Several studies have indicated that PD-L1 
expression, tumour-infiltrating lymphocytes (TILs), 
tumour mutational burden (TMB), neoantigens and 
DNA mismatch repair (MMR) deficiency may serve as 
potential predictive biomarkers for immune checkpoint 
inhibitor (ICI) effectiveness. The main biomarker that 
has emerged as clinically useful is tumour cell PD-
L1 expression as assessed by immunohistochemistry. 
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Figure 1 Single oncogenic drivers in metastatic lung adenocarcinoma. Oncogenic driver alterations in advanced NSCLC (including 
treatment-naive patients and patients who had previously received anticancer therapies). Data adapted from Skoulidis et al. (2), based on 
next-generation sequencing of predefined panels from patients treated at the Memorial Sloan Kettering Cancer Center [n=860; MSK-
IMPACT panel (Jordan et al.) (3)] and samples referred to Foundation Medicine [n=4,402; FoundationOne panel (Frampton et al.) (4)] 
(n=5,262 patients with advanced/metastatic NSCLC in total). The increased prevalence of EGFR mutations in the metastatic dataset may 
partially reflect referral bias.
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However, even in patients with high expression of PD-
L1, about 50% of patients do not respond to single agent 
ICI and some patients negative for PD-L1 experience 
strong and durable responses. Such diversity of response 
cannot be purely explained by tumour heterogeneity 
suggesting that other factors, either within the tumour, 
the host, or both must be at play. Oncogene addicted 
tumours collectively represent a broad set of tumours and 
the role of immunotherapy from existing trials may not 
be broadly generalizable. Phase three data in this setting 
for oncogene addicted tumours is unfortunately limited, 
given that many trials excluded these patients, and when 
included they represent small subsets depending on the 
type of oncogenic driver.

In this article, we review the clinical data available 
regarding outcome of oncogene addicted NSCLC patients 
treated with ICIs and the primary preclinical evidence 
concerning immunologic characteristics in oncogene-
driven NSCLC, which seems to be critical in unravelling 
the potential benefit of these agents in this specific patient 
population. 

Epidermal growth factor receptor (EGFR) 
mutations

Current practice and the limitations of TKIs

Actionable EGFR mutations vary in their incidence from 
15% up to 65% of lung adenocarcinomas with the higher 
incidence occurring in East Asian populations (15) and are 
associated with improved response rates to tyrosine kinase 
inhibitor (TKI) therapy (16). Most treatment algorithms 
mandate initial testing for EGFR to guide first line therapy 
given the efficacy and low toxicity of TKIs compared to 
chemotherapy (17-23). Inevitably, however, resistance to 
TKIs develops and chemotherapy is currently the main 
subsequent treatment employed after failure of TKI 
options.

Rationale for immunotherapy 

The interest in immunotherapy was supported by pre-
clinical studies demonstrating that PD-L1 expression 
by EGFR-mutant tumours increased as a mechanism of 
immune evasion (24) and that PD-L1 overexpression by 
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tumour cells occurred through the ERK1/2-c-jun pathway 
by activating mutant EGFR (25). Discordant treatment 
effects have however been seen in vitro with erlotinib 
reducing PD-L1 expression in one study (26) and gefitinib 
increasing PD-L1 in serial biopsies in a clinical setting (27). 
To add to a lack of consistency, Gainor and colleagues 
found in their retrospective analysis that PD-L1 expression 
was low prior to TKI exposure (16%) and at acquired 
resistance (29%) (28). Similarly, Offin and colleagues 
reported TMB increased with resistance, but that the 
overall levels were still low (29). Whilst the presence of 
an actionable EGFR mutation is associated with increased 
TKI response rates there is a lack of a robust marker for 
immunotherapy agents (30) and PD-L1 and TMB may not 
be informative in this context. 

Further evidence from a retrospective series has also 
suggested EGFR TKI resistance results in increased TMB 
which has supported the current practice of sequencing 
TKIs prior to immunotherapy (29). The lack of benefit 
from immunotherapy has been hypothesised to be due to 
several factors. Pre-clinical studies suggest a “cold” and 
more immunosuppressive tumour microenvironment 
with reduced tumour infiltrating lymphocytes and T cell 
infiltration exists in EGFR-mutant lung cancers (31,32) 
as well as CD73 overexpression with associated reduced 
interferon gamma signature and increased adenosine 
production which has been associated with a more resistant 
immunophenotype (33,34). EGFR mutated tumours also 
have a mutational signature with decreased production 
of neoantigens and less clonal expansion (30,35). This 
represents an important clinical finding as high TMB 
correlates with improved progression free survival (PFS), 
objective response rate (ORR) and duration of response 
to immunotherapy (27). Although TMB increases with 
subsequent therapies, it is more likely that the neoantigen 
increase and neoepitopes that are generated are polyclonal 
and therefore less immunogenic.

Single agent immunotherapy 

Patients with EGFR mutations performed poorly in initial 
phase three studies comparing immunotherapy to docetaxel 
(36-38). In the CheckMate 057, Keynote 010, OAK and 
POPLAR studies, cohorts with EGFR mutations were 82, 
86, 85 and 18 patients respectively. A small subset of the 
total trial population, but with universally poorer outcomes. 
This finding was supported in a retrospective review and a 

metanalysis which yielded poor response rates and lack of 
overall survival (OS) benefit (HR 1.11; 95% CI, 0.80–1.53) 
when compared to chemotherapy (28,39).

In a small initial study, Lisberg et al. assessed the role of 
pembrolizumab as first line treatment prior to EGFR TKI 
and reported no objective responses in 10 patients even 
within a PD-L1 enriched cohort (PD-L1 ≥50%) of seven 
patients. The study was discontinued due to futility (40,41). 

Combination approaches

TKI + immunotherapy 
In order to improve response rates to immunotherapy 
numerous early phase studies have employed combination 
approaches with TKIs, however several safety concerns 
have been flagged by this approach and few trials have 
progressed beyond phase one. Yang and colleagues looked 
at standard dosing erlotinib or gefitinib in combination with 
pembrolizumab every two weeks in EGFR-mutant patients 
enrolled in cohorts E and F of KEYNOTE-021. Enrolment 
in the gefitinib cohort was however suspended after 71.4% 
(5/7) of patients developed grade three or four aspartate 
aminotransferase (AST)/alanine aminotransferase (ALT) 
elevations deeming the combination not feasible. The 
erlotinib cohort (n=12) however was deemed feasible with 
no grade four toxicities (42). Despite being more tolerable 
than the gefitinib combination the ORR was 41.7% which 
is lower than what historical controls have demonstrated 
with erlotinib in the first line setting (30). An early phase 
trial by Creelan et al. also demonstrated significant toxicity 
of gefitinib in combination with durvalumab (43). A further 
phase one study evaluating erlotinib with nivolumab in a 
cohort of 20 patients demonstrated a similar adverse event 
profile and low ORR of 15% (44). Further safety signals 
were raised in the TATTON trial where the combination 
of osimertinib and durvalumab in a TKI naïve population 
saw a 38% rate of interstitial lung disease (45). A planned 
phase III study by Yang et al. (CAUREL study) with a 
similar osimertinib and durvalumab arm had recruitment 
terminated early secondary to these findings limiting 
comparisons between the two groups (46). In contrast 
to the aforementioned studies a phase I study evaluating 
the combination of atezolizumab and erlotinib yielded a 
response rate of 75% (n=20) and more manageable safety 
profile (47). 

Overall these early studies (see Table 1) demonstrated that 
combination TKI plus immunotherapy approaches were 
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not associated with any consistent benefit but potentially 
increased toxicities in EGFR-mutant NSCLC. 

Chemotherapy + immunotherapy
Although several combination chemotherapy plus 
immunotherapy studies excluded EGFR-mutant tumours, 
the IMPOWER150 study was an exception after the 
protocol was amended to include patients who had failed 
prior TKIs. The trial enrolled 1,202 patients overall with 
equal randomisation to one of three arms: atezolizumab/
carboplatin/paclitaxel (arm A), atezolizumab/carboplatin/
paclitaxel/bevacizumab (arm B) and carboplatin/paclitaxel/
bevacizumab (arm C). 

The exploratory analysis included 124 patients with 
EGFR mutation positive tumours [approximately 10% of 
in the intention-to-treat (ITT) population] of which 91 
had sensitising mutations and 78 had progressed on prior 
TKIs. Forty-five, 34 and 45 patients were allocated to 
arms A, B and C respectively. There was a trend towards 
median OS improvement in arm B (NE) versus arm C (18.7 
months) with a HR of 0.61 (95% CI, 0.29–1.28) as well 
as in median PFS (10.2 vs. 6.9 months; HR 0.61; 95% CI, 
0.36–1.03). The ORR was 36%, 71% and 42% in groups A, 

B and C respectively. No trend for OS was noted between 
arm A and C suggesting bevacizumab was an important 
component of these arms (48,49). Safety results were 
similar between the EGFR-mutant and ITT populations. 
While these results are promising, the small numbers 
were underpowered to establish a benefit or determine a 
difference between the treatment regimens for this cohort. 
A further factor limiting clinical applicability is that only 
10 patients were previously treated with osimertinib, an 
established standard of care in either the first or second 
line T790M setting.

The addition of bevacizumab is thought to have 
an immunomodulatory effect in this setting and in 
melanoma has been found to increase circulating CD8+ 
T cells and decrease interleukin-6 and in combination 
with chemotherapy may assist in changing the tumour 
microenvironment from “cold” to “hot” (30,50). There is 
evidence for intertwining roles of the VEGF and EGFR 
pathways with downstream EGFR activity having been 
reported to increase VEGF expression and inhibition of 
VEGF pathways being associated with reduced EGFR 
activity (51). A strength of IMPOWER150 was that it 
looked at the addition of VEGF inhibition and thus this 

Table 1 Early phase studies for immunotherapy in EGFR mutated lung cancers

Author, phase Intervention
N = number of 

participants
Response 
rates %

Toxicity 

EGFR positive

Yang et al. [2019], 
phase I/II

TKI: erlotinib; gefitinib arm 
closed due to toxicity; ICI: 
Pembrolizumab 

12 41.7 No G4 events; G3 AE 33%; ALT increased G1/2 25%; 
AST increased G1/2 25%; gefitinib arm closed due to 
G3/4 hepatotoxicity in 71.4% patients 

Creelan et al. 
[2019], phase I

TKI: Gefitinib; ICI: 
Durvalumab

56 63 70%; combination therapy was associated with high 
discontinuation rate due to hepatotoxicity (>50%) 

Gettinger et al. 
[2018], phase I

TKI: Erlotinib; ICI: 
Nivolumab 

20 15 G3 events - 25% [5]
• Raised AST [1]
• Raised ALT [1]
• Diarrhoea [2]
• Weight loss [1] 

Ahn et al. [2016], 
TATTON, Phase Ib

TKI: Osimertinib; ICI: 
Durvalumab 

44 38 38% interstitial lung disease like events 

Rudin et al. [2018], 
Phase Ib 

TKI: Erlotinib; ICI: 
Atezolizumab 

28 75 G3 AE in 43% 
• ALT rise 2
• Pyrexia 2
• Rash 2
• Diarrhoea 2 

TKI, tyrosine kinase inhibitor, ICI, immune checkpoint inhibitor; G3, grade 3; G4, grade 4; AE, adverse event.
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relationship. The absence of a survival benefit in the ACP 
group supports this therapeutic pathway but it needs to be 
further explored. 

The approach of combining chemotherapy with 
immunotherapy will also be looked at in an additional 
up and coming phase three trial, Keynote-789, where 
pembrolizumab is added to platinum doublet chemotherapy 
post failure on first line TKI and in the ABC-Lung phase 
two study investigating the combination of atezolizumab 
and bevacizumab with chemotherapy. 

Immunotherapy combinations 
While PDL-1 and CTLA4 represent two independent 
pathways that can be targeted by immune checkpoint 
inhibition and targeting them in combination has been 
shown to have synergistic responses, the major lung 
studies investigating this, Checkmate-227 and MYSTIC, 
excluded EGFR mutant patients (52). The Illuminate 
and Checkmate-772 studies will investigate durvalumab/
tremelimumab and nivolumab/ipilimumab respectively in 
this context. 

Summary

For EGFR-mutant tumours it  is  clear that single 
agent immunotherapy and TKI combinations with 
immunotherapy do not offer any benefit for the majority 
of patients. Combination strategies are the most promising 
approach, however, the only prospective data comes from 
an underpowered subset analysis suggesting chemotherapy 
plus bevacizumab and atezolizumab was superior to 
chemotherapy and bevacizumab alone. Results from further 
clinical trials specifically powered to address this question 
are eagerly awaited. 

Anaplastic lymphoma kinase (ALK) 
rearrangements 

Current practice and the limitations of TKIs 

ALK  gene  fus ions  a re  present  in  3–7% of  lung 
adenocarcinomas and serve as an important oncogene (53).  
Crizotinib was quickly identified as an effective agent 
in targeting ALK rearranged tumours in the PROFILE 
1007 study (10) with the registrational PROFILE 1014 
study demonstrating a superior response rate (74% vs. 
45%) as well as PFS (10.9 vs. 7.0 months) for crizotinib 
over chemotherapy (54). As with EGFR-mutant tumours 

resistance inevitably develops and further approved 
therapies such as ceritinib and alectinib have been developed 
with success in extending the median time to progression 
with a recent update in the ALEX study confirming median 
PFS times of 34.8 months with alectinib compared with 
10.9 months with crizotinib (11). 

Similarly to EGFR mutant NSCLC, the role of 
immunotherapy in ALK rearranged lung cancers initially 
suggested potential benefit.  

Combination approaches 

TKI + immunotherapy 
An early phase study by Spigel et al. looking at the 
combination of nivolumab plus crizotinib as a first line 
treatment in ALK rearranged patients was notable for 38% 
(n=5) developing severe hepatotoxicity which resulted in 
closure of the cohort (55). After the interim safety review 
two patients developed severe hepatoxicity and died. Of 
those who were evaluable five patients (38%) had partial 
response, two (15%) had stable disease and three (23%) 
progressed (56). The phase Ib JAVELIN 101 trial had an 
ALK positive cohort treated with avelumab and lorlatinib in 
combination after progression on initial ALK TKI (57). In 
contrast to the study performed by Spigel et al. there were 
no dose limiting toxicities with an ORR 46.4% (55,57). The 
combination of alectinib and atezolizumab has also been 
evaluated (58). ORR was 81% and duration of response 
21.7 months which is still below that of the reported 
duration of response to single agent alectinib in ALEX (11). 
Felip and colleagues have also looked at the combination 
of nivolumab and ceritinib in 36 ALK rearranged patients 
where 25% experienced at least a grade three elevation 
in ALT and 22% in GGT (59). A safety signal resulted 
in a protocol amendment resulting in sequential therapy. 
Recently, the ATLANTIC trial also reported on a cohort 
of 15 patients (out of a total 111) with ALK rearrangements 
who received third line or later durvalumab; none of whom 
had an objective response (60). Table 2 summarises the main 
results from these early phase studies. 

Chemotherapy + immunotherapy
As with EGFR-mutant lung cancer there are numerous 
theories as to why ALK rearranged tumours have had 
disappointing responses to immune checkpoint blockade 
but the underlying reasons remain unclear. The lack of a 
smoking phenotype and low TMB have been proposed. It is 
for these reasons in addition to a lack of safety signals that 
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Table 2 Early phase studies for immunotherapy in ALK rearranged lung cancers

Author, phase Intervention 
N = number of 

participants
Response rates % Toxicity

ALK positive 

Spigel et al. [2018], 
Phase I/II 

TKI: Crizotinib, ICI: 
Nivolumab 

13 38 38% developed severe hepatoxicity leading 
to discontinuation of this combination;  
2 patients died from their hepatotoxicity

Shaw et al. [2018], 
JAVELIN 101

TKI: Lorlatinib; ICI: 
Avelumab 

28 46.4 54%; high triglycerides 14.3%; GGT 
increase 10.7% 

Kim et al. [2018] TKI: Alectinib; ICI: 
Atezolizumab 

21 81 G3 62%; Rash/ALT rise/Pneumonitis 

Felip et al. [2020], 
Phase Ib

TKI: Ceritinib, ICI: 
Nivolumab 

36 First line 450 mg: 83;  
300 mg: 60; Second line  
450 mg: 50; 300 mg: 25 

ALT rise 25%; GGT rise 22%; Amylase 14% 

TKI, tyrosine kinase inhibitor; ICI, immune checkpoint inhibitor; G3, grade 3; G4, grade 4.

have made it difficult for combination immunotherapy and 
TKI approaches to proceed beyond the early phase setting. 

The IMPOWER150 study, post protocol amendment, 
also allowed ALK positive patients to be recruited. 
The addition of atezolizumab to the combination of 
bevacizumab, carboplatin and paclitaxel improved PFS and 
OS in the ITT population. However, these cohorts only 
included 13 ALK positive patients in the quadruplet cohort 
and 21 in the control. The data for EGFR and ALK were 
combined as discussed above, making it difficult to interpret 
the specific benefit in the ALK population although it 
remains an FDA approved treatment option for both 
populations. 

Summary 

For ALK rearranged NSCLC little benefit has been 
seen with immunotherapy and TKI combinations. 
Chemotherapy and immunotherapy combinations represent 
a promising approach however application of clinical trials 
is often limited by the exclusion of these patients or small 
cohorts, as was the case for IMPOWER150. 

KRAS mutations

KRAS is the most common proto-oncogene associated with 
NSCLC in western populations. It has a heterogeneous 
distribution according to ethnic origin; having been 
described in 26.1% of lung adenocarcinomas and 6.4% 
of squamous cell carcinomas in Western countries and in 

11.2% and 1.8% of lung cancer cases in Asia respectively 
(2,61,62). Traditionally it has been associated with  
smoking (63)  and cons idered  a  poor  prognost ic  
biomarker (64); however, current data indicates a limited 
effect on OS in patients with early-stage NSCLC (65). 
The most frequent oncogenic KRAS mutations in NSCLC 
are missense substitutions occurring at codons 12 and 13: 
G12C (40%), G12V (20%), and G12D (20%) (66). 

KRAS-mutant NSCLC: not a single disease 

Growing preclinical and clinical evidence suggests that 
KRAS-mutant NSCLC might not be a unique entity, and 
translational studies have unravelled some of the main 
determinants of this biological diversity. Perhaps this 
heterogeneity is related to the unfavourable outcomes seen 
when targeting this pathway in the past. Only recently, a 
type-specific G12C KRAS inhibitor has shown for the first 
time some clinically meaningful efficacy for patients with 
KRAS-mutant NSCLC (67).

Unlike other oncogene-driven lung cancers, KRAS-
mutant lung tumours frequently appear with other major 
genetic co-mutations. Skoulidis et al. identified three 
robust expression based clusters in such malignancies: 
‘KL’ subgroup, with STK11 and KEAP co-mutations, ‘KP’ 
subgroup, with TP53 co-mutations, and ‘KC’ subgroup, 
with CDKN2A/B inactivation plus low thyroid transcription 
factor-1 (TTF-1) (68). ‘KC’ tumours showed enrichment of 
gene expression signatures reflecting both upper and lower 
gastrointestinal neoplastic processes and wild-type TP53 
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transcriptional activity. ‘KP’ subgroup was characterised by 
active inflammation with high levels of PD-L1 expression. 
‘KL’ tumours were mostly immune inert tumours, with 
moderate T-cell inflammation and weak PD-L1 expression. 
Furthermore, co-occurring STK11 and KEAP1 mutations 
with KRAS appeared to be associated with worse OS (68,69). 
Hence, the presence of major co-occurring genetic events 
might also predict distinct therapeutic vulnerabilities in 
addition to their prognostic significance.

Rationale for immunotherapy 

There is preclinical rationale supporting immunotherapy 
use in KRAS-mutant NSCLC. PD-L1 expression appears 
to be intrinsically rather than adaptively elevated, via 
activation of downstream KRAS signalling pathways 
(70,71). Besides its relation with KRAS-mutant NSCLC, 
tobacco smoke induces PD-L1 expression and renders 
the exposed cells able to evade the immune system and 
promote lung carcinogenesis (72), and smoking-associated 
lung cancers have a high mutational burden and abundant 
T-cell infiltration (73). Huynh et al. described up to 50% of 
KRAS-mutant NSCLC with some PD-L1 expression which 
was correlated both with smoking history and high T-cell 
infiltration (74). Nevertheless, it is important to consider the 
previously mentioned heterogeneity. KRAS-mutant NSCLCs 
display different immune profiles and could consequently 
have varying levels of sensitivity to immunotherapy (68). 
In the case of KRAS-TP53 co-mutated tumours, a higher 
mutational burden and genomic instability could explain, at 
least partially, the T-cell-inflamed microenvironment and 
the adaptive immune-resistant phenotype (68,75). KRAS-
STK11 co-mutant subgroups have been associated with high 
hypoxia-inducible factor 1 (HIF1α), which leads to impaired 
T-cell function (76). In a retrospective pooled analysis, 
including three independent subgroups (n=174) and a subset 
of patients with KRAS-mutant lung adenocarcinomas 
(n=44) all treated with ICIs, patients with KRAS-STK11 
co-mutations demonstrated a significantly lower ORR, 
PFS and OS than patients with KRAS-TP53 tumours (77); 
furthermore, STK11 was associated with resistance to PD-1 
blockade in PD-L1 positive NSCLC, regardless of KRAS 
mutational status (77). This data suggests that despite ICIs 
being one of the most promising biological therapies for 
KRAS-mutant NSCLC, they do not benefit all patients 
equally. A potential means of predicting immunoresistance 
in these patients may involve consideration of the 
heterogeneity of KRAS-mutant tumours, particularly the 

presence of significant co-mutations. 

Clinical evidence

The current clinical evidence to support treatment 
in  NSCLC based so le ly  on a  KRAS mutat ion i s 
confounding. In an extensive retrospective registry 
in NSCLC with common driver mutations treated 
with ICIs, almost half of patients had KRAS mutations 
(N=271 of 551), with an overall cohort best response 
of 19%, and median PFS of 2.8 months (mainly driven 
by the large KRAS-subgroup) (78) (Table 3). When 
using prospective data, in an unplanned subgroup 
analysis of trials comparing ICIs such as nivolumab 
or atezolizumab with chemotherapy in second-line 
treatment for NSCLC, it was suggested that KRAS 
mutations were more sensitive to ICIs compared with 
wild-type and that ICIs as second or third-line therapy 
in KRAS-mutant NSCLC improved OS (36,38,79). For 
instance, in the CheckMate-057 trial, KRAS-mutant 
subsets (n=62) were among the molecular subgroups to 
achieve the most significant OS benefits with nivolumab 
(HR 0.52; 95% CI, 0.29–0.95) (36). A meta-analysis (80) 
including these trials investigated the predictive role of 
KRAS-mutations in 519 patients with previously treated 
NSCLC, resulting in a greater benefit in the KRAS-
mutant subgroup (HR, 0.65; 95% CI, 0.44–0.97; P=0.03). 
Individually, these studies were not powered to address 
this question, and KRAS-mutation status was known 
only in a small fraction of cases, undermining the clinical 
validity of this finding. Furthermore, using prospective 
‘real-world’ observational patient data, two studies have 
concluded that KRAS mutation status did not confer 
significant differences in ORR, PFS and OS (81,82). 
A summary of these studies can be found in Table 3. In  
Figure 2 we also provide an example of a patient with 
metastatic NSCLC who had a KRAS G12C mutation and 
TP53 co-mutation with complete response post three 
cycles of immunotherapy. 

Summary

Immunotherapy is one of the most promising new 
therapies in KRAS-mutant NSCLC, but recent data 
suggests variable efficacy of immunotherapy according to 
the presence of other co-mutations. The targetability of 
KRAS G12C mutation also adds further complexity when 
considering which patients are most likely to benefit from 
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Table 3 Retrospective studies of ICIs in KRAS and BRAF mutant NSCLC

Authors (year), 
country

Intervention Type of mutation N

Objective 
response rate 
(%)/disease 

control rate (%)

Median 
progression free 
survival (months)

Median 
overall 
survival 
(months)

KRAS-mutant 

Mazieres et al. 
[2019], Global

Various ICIs (94% Nivolumab) Total =271 26/49 2.5 13.5

G12C =100 5.5 15.6

Non-G12C/D =171 3.1 10

Passiglia et al. 
[2019], Italy

Nivolumab Total =206 20/47 4 11.2

Jeanson et al. 
[2019], France 

Various ICIs (88% Nivolumab) Total =162 18.7/48.4 3.1 14.3

G12C =69

Non-G12C/D =93

BRAF-mutant 

Guisier et al.  
[2020], France

Nivolumab (N=35); Pembrolizumab 
(N=8); others (N=1)

Total =44

V600E =26 26/60.9 5.3 22.5

Non-V600E =18 35/52.9 4.9 12

Dudnik et al. [2018], 
Israel

Nivolumab (N=11); Pembrolizumab 
(N=10); Atezolizumab (N=1)

Total =22 28

V600E =12 25 3.7 Not reached

Non-V600E =9 33 4.1 Not reached

Offin et al.  
[2019], USA

Various ICIs: Nivolumab (N=30); 
Pembrolizumab (N=7); Nivolumab/

Ipilimumab (N=6); Atezolizumab 
(N=3)

Total =46

V600E =10 10 1.4 26

Non-V600E =36 22 3.2 24

Mazieres et al. 
[2019], Global

Various ICIs (94% nivolumab) Total =46 24/54 3.1 13.6

V600E =17 1.8 8.2

Non-V600E =18 3.1 17.2

ICI, immune checkpoint inhibitor.

targeted therapies compared to ICIs. Given the biological 
heterogeneity of KRAS-mutant NSCLC, treatment 
will likely need to be individualized and may require 
combinations of treatment, many of which are currently 
under investigation.

BRAF mutations

BRAF mutations result in persistent activation of 
downstream cell signalling through the MAPK pathway 
and lead to unchecked cell growth and proliferation (83). 
The most common variant responsible for this process is 
a BRAF point mutation V600E and has been described 

with variable frequency in melanoma, colorectal cancer, 
papillary thyroid cancer, among others malignancies (84). 
BRAF mutations are uncommon in NSCLC, occurring 
in 1–5% of cases (85-88). Large clinicopathologic studies 
show some variability relating to the specific clinical 
characteristics associated with BRAF mutations (85-88).  
Overall, studies suggest slightly increased frequency in 
females. Smoking and its link with BRAF status has varied 
among studies, however in Caucasians with a positive 
smoking history there is also an association with sarcomatoid 
histology and both non-V600E and V600E BRAF mutations 
(85-87). Across all studies, the main consistent finding was 
poor ORR, PFS and disease-free survival (DFS) in patients 
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Figure 2 A 72-year-old old male, heavy smoker (40 pack-years). Metastatic non-small cell lung cancer: PD-L1 90%, KRAS G12C mutation 
and TP53 co-mutation. Commenced on pembrolizumab 200 mg 3-weekly. Positron emission tomography (PET): (A) baseline PET prior 
staring therapy shows primary tumour on the upper right lobe and extensive hepatic, retroperitoneal and right kidney metastases. (B) 
PET CT after three cycles of pembrolizumab showing almost complete metabolic response. (C) PET CT after 36 months of starting 
pembrolizumab which shows an ongoing complete response. 

B CA

with a BRAF V600E mutation treated with chemotherapy 
when compared with non-V600E mutants (86-88).

Current practice and the limitations of TKIs 

Like melanoma, BRAF V600E NSCLC has emerged 
as an important target for drug therapy with BRAF  
inhibitors (89). Since resistance invariably develops with 
BRAF inhibition alone, via the development of bypass 
pathways such as redirection of cell signalling via MEK 
1/2 kinases, adding a MEK inhibitor improved clinical 
outcomes in both melanoma and NSCLC (89). 

The data supporting the use of a BRAF inhibitor with 
or without MEK inhibition in BRAF positive NSCLC has 
been adopted from a small number of positive phase two 
studies. In a phase two, multi-cohort, non-randomized, 
open-label study, 78 previously treated BRAF V600 
mutation-positive NSCLC patients received dabrafenib; 

responses were observed in 33%, the median PFS was  
5.5 months (95% CI, 3.4–7.3) and median OS 12.7 months 
(95% CI, 7.3–16.9) (90). A second cohort of the same study 
evaluated the combination of dabrafenib/trametinib with an 
ORR of 63% and median PFS of 9.7 months when compared 
to single-agent dabrafenib (91). The median OS was also 12.7 
months in the dabrafenib monotherapy cohort versus 18.2 
months in the dabrafenib/trametinib cohort (91). Vemurafenib 
was tested in another multi-tumour phase two study where 
responses were seen in 42%, the median PFS was 7.3 months 
(95% CI, 3.5–10.8) and median OS had not been reached (92). 

Immunotherapy in BRAF-mutant NSCLC

Evidence to support immunotherapy in BRAF mutated 
NSCLC comes only from retrospective evidence. 
A retrospective review included 39 BRAF-mutated 
NSCLC patients, stratified by PD-L1 status, TMB and 
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microsatellite instability (MSI), but not all patients were 
tested for each of these markers. Twenty-two received 
an ICI: 57% of the V600E group and 55% of the non-
V600E group. ORR was 25% and 33% and median PFS 
3.7 and 4.1 months respectively. PD-L1 status and BRAF 
mutation type did not alter the outcome, and the study 
suggested that BRAF-mutated NSCLC was more likely 
to have high expression of PD-L1; a point to interpret 
with caution given the low number of cases (27,93). 
Another retrospective study addressing the efficacy of 
ICIs in Japanese patients with oncogenic driver mutations, 
reported only five cases with a BRAF mutated NSCLC, 
with no responses observed (94). The most substantial 
report comes from a recent publication by Guisier et al. 
of a retrospective review from several centres in France. 
They detected 44 patients with BRAF mutations receiving 
ICIs (V600: 26, non-V600: 18). The ORR, median PFS, 
OS, and 12-month OS for BRAF V600E and BRAF 
non-V600E were 26% and 35%, 5.3 and 4.9, 22 and 12 
months, 53% and 44% respectively (95). Less than half of 
the patients had a PD-L1 status assessment and thus no 
conclusions were drawn. A brief summary of these reports 
is available in Table 3. 

Summary

Overall based on the current literature it seems that, in 
contrast to other oncogene addicted NSCLCs, ICIs seem 
to have some activity in those with a BRAF mutation. 
This activity is similar to that observed in patients with 
pretreated unselected NSCLC in randomised controlled 
trials or observational studies and seems to be irrespective 
of PD-L1 status or BRAF mutation type. However, BRAF 
mutations can occur in heavy smokers and also in non-
smokers and it is likely that the best responses are driven 
by the smoking phenotype although current data are 
limited. 

Other oncogene addicted tumours 

c-ROS oncogene 1 (ROS1) rearrangements/Human 
epidermal growth factor receptor 2 (HER2)/RET/MET

Since discovery in 2007 ROS1 rearrangements have 
become another important target in NSCLC and are 
identified in 1–2% of patients (96). The recently published 
Immunotarget trial (78) was a retrospective study evaluating 
single agent immune checkpoint inhibition in advanced 
NSCLC across numerous oncogenic alterations. They 

reviewed 551 patients and evaluated their molecular 
alterations: KRAS (n=271), EGFR (n=125), BRAF (n=43), 
MET (n=36), HER2 (n=29), ALK (n=23), RET (n=16), ROS1 
(n=7) and multiple drivers (n=1). They then evaluated 
clinicopathologic characteristics and outcomes for immune 
checkpoint blockade. In the overall cohort the best response 
with immunotherapy was 19% with a median PFS of  
2.8 months. Most of this benefit appeared to be driven 
by the KRAS cohort. For the rarer oncogenic addicted 
tumours, which expectedly had small numbers, this study 
represents the limited data evaluating ICI use in this setting. 
For HER2-mutant tumours a median PFS of 2.5 months 
(95% CI, 1.8–3.5) was noted and 2.1 months (95% CI, 1.3–
4.7) for RET rearranged NSCLC. Only seven patients had 
ROS1 rearrangements and a median PFS was not reported. 

Findings for tumours with MET alterations [median PFS 
3.4 months (95% CI, 1.7–6.2)] were in keeping with a study 
by Sabari et al. (97) which demonstrated only a modest 
benefit to immune checkpoint inhibition with an ORR of 
17% and median PFS 1.9 months (95% CI, 1.7–2.7) in a 
cohort of 24 patients who had received prior chemotherapy. 
Sabari and colleagues also evaluated PD-L1 expression in 
their study but found no correlation to treatment response. 
TMB was also found to be low in these patients. These 
response rates sit well below the reported 32% ORR and  
7.3 months median PFS seen with crizotinib in the 
PROFILE 1001 study (98) and newer TKIs such as 
capmatinib, tepotinib and savolitinib are also reporting high 
responses for this population (99-101).

Overall response rates appear to be very modest 
to immunotherapy in these rarer oncogene addicted 
tumours with most benefit being derived by the KRAS 
cohort. The approach for the rare patients with multiple 
alterations such as additional TP53 or PIK3Ca mutations 
is uncertain and requires further research (102). Pursuing 
other systemic therapies or TKIs for these tumours is 
recommended and ongoing trials are required to review 
whether combination approaches (such as the addition of 
immunotherapy to chemotherapy) may improve outcomes 
for these patients.

Conclusions

Oncogene addicted tumours while heterogeneous, 
collectively account for over 40% of non-squamous 
NSCLCs. It is important to note that most single agent 
and combination immunotherapy trials that have been 
reported to date excluded specific oncogene addicted 
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NSCLCs such as ALK and EGFR; however, it is likely that 
other oncogene driven tumours were not tested for but 
included in the non-smoker subsets. Trials that focused on 
these tumours have largely been negative. However, of key 
importance is that the use of chemotherapy in combination 
with immunotherapy may provide benefits to this approach 
not seen with single agent ICIs. 

Whilst it is clear for most non-smoking related 
oncogene addicted tumours that immunotherapy should 
only be used in combination, the actual data underpinning 
this approach remains limited. It is more likely that 
these tumours develop immunoevasion abilities through 
mechanisms which PD-1/CTLA4 blockade does not 
abrogate. It is clear that a better understanding of these 
pathways is needed in order to develop robust markers and 
targets for therapies so that the immunotherapy benefits 
seen in some smoking associated NSCLC can also be 
realised in this patient group.

Best evidence to date supports the use of TKI therapy 
prior to immunotherapy or chemotherapy in oncogene 
addicted tumours and clinical trials should always be 
considered for this population of patients. Combination 
approaches with chemotherapy and immunotherapy in 
EGFR positive or ALK rearranged tumours post TKI 
exhaustion appears to be most promising as suggested by 
the IMpower150 data. The role of biopsy in progressing 
disease has largely been limited to the identification of 
T790M in EGFR mutant disease as a method of accessing 
osimertinib, however, in the era of precision medicine 
with the ongoing development and evolution of targeted 
therapies and as we develop a greater understanding of the 
mechanisms of resistance to TKI therapy this is may very 
well change in the future.
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