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Introduction

Programmed death-ligand 1 (PD-L1) expressed in tumor 
cells remains the only predictive biomarker used in daily 
clinical practice for patients with advanced non-small cell 
lung cancer (NSCLC). However, the tumoral heterogeneity 
of PD-L1 expression represents a bias that raises challenges 

for widespread use of this biomarker. Tumor mutational 
burden (TMB), defined as the number of somatic mutations 
contributing to the tumor’s immunogenicity, has also been 
reported as a potential predictive biomarker. However, 
one of the major limitations for the use of biomarkers in 
NSCLC is the paucity of tumor tissue from biopsies (1), 
which severely limits the number and type of tests that 
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can be performed, and alternative biomarkers and ways of 
evaluating biomarkers are actively being sought. Liquid 
biopsies, mainly dedicated to the analysis of circulating 
tumor DNA (ctDNA), are a novel non-invasive tool for 
genomic profiling and assessment of tumor heterogeneity 
in NSCLC (1). In this review we provide an overview 
of available biomarkers in NSCLC in tissue and liquid 
biopsies. We focus on tumor-related biomarkers, notably 
PD-L1 and TMB, and also investigate biomarkers 
related to the tumor microenvironment (TME), notably 
tumor infiltrating lymphocytes (TILs), and host-derived 
biomarkers including circulating immune cells, soluble 
markers and the gut microbiome. 

Tumor-related biomarkers

PD-L1

The increasing comprehension of the PD-1/PD-L1 axis 
has been a major step in the development of tumoral 
immunotherapy. As more PD-(L)1 inhibitors are developed, 
the research focus has moved to identifying biomarkers 
for the activation of this axis, both in tumoral cells as 
well as immune cells and subsequently on any circulating 
counterparts (Figures 1,2).

Tissue PD-L1
The development of immune checkpoint inhibitor (ICI) 
targeting PD-(L)1 in NSCLC has been closely followed 
by the assessment of potential predictive biomarkers. 
PD-L1 expression on tumor cells as determined by 
immunohistochemistry represents the most valuable and 
unique predictive biomarker in daily clinical practice. 
Response rates (RR) and outcome in terms of overall 
survival (OS) increase with higher PD-L1 expression (2-4). 
However various pitfalls remain, several of which have been 
thoroughly explored, notably PD-L1 tumoral expression, 
with technical issues related to the development of different 
monoclonal antibodies used for testing (5), differences in the 
choice of cut-off threshold, as well as a range of biological 
issues; these include the fact that PD-L1 is differentially 
expressed with inconsistent predictive values across tumor 
types (6) and furthermore that expression may be modulated 
during treatment (7). Moreover, the predictive value may 
depend on the mechanism of PD-L1 induction. Oncogenic-
addicted NSCLC may cause an intrinsic elevation of PD-L1 
expression and can be associated with a worse prognosis (8).  
On the other hand, extrinsic induction of PD-L1 by INF-γ 

produced by lymphocytes seems to be associated with a 
favorable predictive value (9). 

In the first-line treatment setting of advanced NSCLC 
patients, PD-L1 expression by immunohistochemistry 
on tumor cells has been widely used to select and stratify 
patients considered most likely to obtain benefit from ICI. 
However, not all pivotal trials have achieved a survival 
benefit with ICI compared with standard platinum-based 
chemotherapy (10-14). In contrast to nivolumab, which did 
not report an OS benefit (10,11), atezolizumab (14) and 
pembrolizumab (12,13) did, especially in tumors with high 
PD-L1 expression (12-14). These latter observations lead 
to FDA approval of pembrolizumab in tumors with PD-L1 
≥1% and atezolizumab in tumors with PD-L1 expression 
≥50% in tumor cells, whereas the EMA only approved 
pembrolizumab as monotherapy in the first-line setting 
in tumors with PD-L1 expression ≥50%. However, with 
the availability of more recent first-line data reporting the 
efficacy of ICI plus chemotherapy combination therapy 
compared with chemotherapy alone, the predictive value 
of PD-L1 expression appears diminished. These studies 
demonstrated that all patients derived a survival benefit 
with the combination compared to chemotherapy alone, 
regardless of PD-L1 expression and histologic subtype 
(15-17). This led to FDA/EMA approval for ICI plus 
chemotherapy regardless of the level of PD-L1 expression. 
In the CheckMate 227 trial, nivolumab plus ipilimumab 
reported improvement in OS compared with chemotherapy 
in PD-L1 negative tumors [17.2 versus 12.2 months, HRT 
0.64, 95% confidence interval (CI): 0.51–0.81], however, 
efficacy of the combination in this subset of patients was 
only an exploratory analysis (18).

In PACIFIC trial, although durvalumab improved PFS 
and OS in PD-L1 ≥1% tumors, in 148 patients with PD-L1 
<1% tumors durvalumab neither improved PFS (HR 0.73; 
95% CI: 0.48–1.11) nor OS (HR: 1.14, 95% CI: 0.71–1.84). 
Of note, efficacy of durvalumab in PD-L1 negative tumors 
was an exploratory post-hoc analysis requested by EMA 
and the enrollment in the trial was not restricted to any 
threshold level for PD-L1 expression, and PD-L1 status 
was not mandatory for inclusion (19).

Soluble PD-L1 
Surface molecules can assume two forms of expression, 
membrane-bound protein and a soluble form generated 
after proteolytic cleavage, such as is the case for the 
immune checkpoint molecules PD-1, PD-L1 and CTLA-
4. Elevated serum concentrations of the soluble forms 
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Biomarker Method of detection Tissue type Association with positive predictive value Level of evidence* and results

Tumor-related PD-L1 pathway Tissue PD-L1 Immunohistochemistry Tumor Positive PD-L1 tumor expression Concordant results

Soluble PD-L1 ELISA chemiluminescence Blood Conflicting results Conflicting results

Antigen recognition MSI-MDRD Immunohistochemistry Tumor Mismatch repair deficiency: hypermutator phenotypes Concordant results

TMB Tumoral TMB WES; NGS (Foundation One CDx™ and MSK-IMPACT) Tumor High mutational rate (tTMB≥175 mut/exome) Conflicting results

Blood TMB WES; NGS Blood High mutational rate Conflicting results

Tumor-specific genotype Direct sequencing; NGS Tumor Absence of EGFR, ALK or ROS1 mutations Conflicting results

Others CTC Enrichment (CellSearch®) and detection (IF staining) Blood Low baseline CTC count Results to be validated 

ctDNA Multiplex targeted NGS; digital droplet PCR; RNASeq; 
SNP array

Blood Undetectable ctDNA levels at week 8 of treatment; early 
decrease in ctDNA burden at 1 month of treatment

Concordant results

Epigenetic Bisulfite conversion of genomic DNA, whole-genome 
amplification and array-based capture and scoring of 
CpG loci 

Tumor EPIMMUNE signature Results to be validated 

Tumor/host interaction: 
microenvironment

TILs Immunohistochemistry; flow cytometry Tumor CD3+CD8+ infiltration; TILs density>5% Concordant results

B cells and TILs Immunohistochemistry; flow cytometry Tumor TLS presence Results to be validated

Host-related Gene expression signature Microarray analysis Tumor IFN-γ gene signature Concordant results 

Circulating immune 
cells

CD3+ T cells Complete blood count; flow cytometry Blood Expansion of PD-1+ CD8 T cells during treatment; low 
baseline proportion of CD28-CD57+KLRG1+ CD8 T cells

Results to be validated 

Neutrophils and MDSC Complete blood count; flow cytometry Blood Low baseline proportion of circulating M-MDSCs; low 
baseline dNLR

Results to be validated

Soluble systemic 
immune or 
inflammatory 
markers

LDH Spectrophotometry Blood Low baseline LDH levels Conflicting results 

CRP Immunoturbidimetry Blood Low baseline CRP levels Results to be validated

Albumin Immunoturbidimetry Blood High baseline albumin levels Results to be validated

Cytokines ELISA chemiluminescence Blood Early decrease of IL-8 during treatment; increase of 
TNF-α and IFN-γ during treatment

Results to be validated

Microbiota Bacterial 16S ribosomal RNA gene sequencing Gut microbiota High gut diversity at baseline
Akkermansia enrichment

Results to be validated

Prospective study 1 Concordant results A

Retrospective study with independent cohorts 2 Conflicting results B

Retrospective study without a control group 3 Results to be validated in further studies C

Figure 1 Main biomarkers of clinical outcomes in NSCLC patients treated by anti-PD-(L)1 antibody and technical requirements. *, level of evidence color code; yellow: prospective study; Red: retrospective study with independent cohorts; Blue: retrospective study without control. ALK, anaplastic 
lymphoma kinase; CRP, C-reactive protein; CTC, circulating tumor cells; (ct)DNA, (circulating tumor) deoxyribonucleic acid; dNLR, derived neutrophil-to lymphocyte ratio; EGFR, epidermal growth factor receptor; ELISA, enzyme-linked immunoassay; IF, immunofluorescence; IFN-γ, interferon 
gamma; IL, interleukin; LDH, lactate dehydrogenase; MDSC, myeloid-derived suppressive cells; NGS, next-generation sequencing; RNA, ribonucleic acid; TILs, tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; (t)TMB, (tumoral) tumor mutational burden; TNF-α, tumor necrosis factor 
alpha; WES, whole exome sequencing. 
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of these three molecules (sPD-1, sPD-L, and sCTLA-4, 
respectively) were initially associated with autoimmune 
diseases (20) and are now being explored as predictive 
biomarkers in cancer (21). 

In cultured cell lines, sPD-1 is produced by effector 
T cells and myeloid cells (22) and production of the 
soluble form is related to PD-L1 expression levels (23). 
Nevertheless, a correlation was not described between 
tumor PD-L1 expression (immunohistochemistry analysis 
on tumoral cells) and sPD-L1 levels (ELISA analysis) in 
patients with non-thoracic malignancies such as diffuse 
large B-cell lymphomas and renal cell carcinomas (24). 
These results hints at the preponderant role of the TME, 

including immune non-malignant cells, in sPD-L1 
production (24,25). 

In advanced NSCLC patients, higher sPD-L1 or sPD-L2 
expression was reported compared to healthy controls, 
and high sPD-L1 expression significantly correlated with 
worse prognosis (26-28), as has been reported in other 
malignancies (29,30). In a recent study, the role of baseline 
and dynamic evolution of sPD-1 and sPD-L1 after two 
cycles of nivolumab were assayed in 51 advanced NSCLC 
patients (31). Positivity was defined as a plasma level 
above the lower limit of quantification (0.156 ng/mL). A 
composite criteria (sCombo) was defined by sPD-L1 and/or 
sPD-1 positivity. Score positivity at baseline was associated 

Figure 2 Main biomarkers of clinical outcomes in NSCLC patients treated by anti-PD-(L)1 antibody. CRP, C-reactive protein; CTC, 
circulating tumor cells; (ct)DNA, (circulating tumor) deoxyribonucleic acid; IFN-γ, interferon gamma; LDH, lactate dehydrogenase; 
MDSC, myeloid-derived suppressive cells; TILS, tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; (t)TMB, (tumoral) 
tumor mutational burden.
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with shorter median progression-free survival [PFS; 78 days, 
95% CI: 55–109 versus 658 days, 95% CI: 222–not reached; 
hazard ratio (HR) 4.12, 95% CI: 1.95–8.71; P=0.0002] 
and OS (HR 3.99, 95% CI: 1.63–9.80; P=0.003). In 
multivariate analyses, score positivity remained significantly 
associated with shorter PFS (HR 2.66, 95% CI: 1.17–6.08; 
P=0.02). Results from another NSCLC cohort treated 
with nivolumab support the negative prognostic impact of 
sPD-L1 plasma level at baseline under ICI (32). However, 
contradictory results have been published regarding the 
predictive value of dynamic sPD-L1 expression (25,31). 
Several splicing variants have been described of sPD-L1, 
some of them lacking transmembrane domain. These 
variants may act as “decoys” of PD-L1 antibody in vitro and 
in animal model and may participate to PD-L1 antibody 
resistance (33). 

Other potential sources of PD-L1 include exosomes 
which are small membrane vesicles (diameter, 50–100 
nm) with an endocytic origin, released by many cell types 
including T cells and dendritic cells. Tumor-derived 
exosomes contain substantial amounts of biologically active 
proteins, including immune checkpoint proteins (34). In 
patients with lung cancer, the amount of PD-L1 in these 
vesicles can impair immune functions. Adding patient PD-
L1+ exosomes to autologous lymphocytes can reduce in 
vitro cytokine production and induce T lymphocyte CD8+ 
apoptosis (34). In a mouse xenograft model, exosomal PD-
L1 promoted a tumor immune escape mechanism that was 
abolished by PD1/PD-L1 blockers. Baseline exosomal PD-
L1 may also be used as a prognostic factor (35).

These results highlight that the PD-1/PD-L1 axis remains 
a cornerstone of PD(L)1 inhibition biomarkers. To date, 
PD-L1 expressed by tumoral cells on a biopsy remains the 
only biomarker used in clinical practice in the context of 
administering ICI therapies. Nevertheless, it does not fully 
explain the sensitivity and resistance mechanisms to ICI, in 
particular for combination therapy. Circulating PD-L1 offers 
additional information, but prospective validation is warranted.

MMRD and TMB 

Another major aspect of ICI response prediction is the 
ability of the immune system to detect specific tumoral 
antigens. ICI have met with success in tumor types with 
high mutational load including NSCLC, melanoma and 
tumors associated with DNA mismatch repair (MMR), 
suggesting the potential of mutational burden as a 
response biomarker. This led to the assessment of tumoral 

antigenicity, mainly via TMB evaluation in both tissue and 
blood samples (Figures 1,2).

MSI and MMRD tumors
DNA MMR is a system of recognition and repair of 
mutations arising during DNA replication. Mismatch repair 
deficiency (MMRD) has been associated with hypermutator 
phenotypes such as microsatellite instability (MSI) (36). 
This instability can lead to an increased TMB and high 
mutational load (36). Consequently, MSI and MMRD 
tumors are highly immunogenic and this has been used as 
a predictive biomarker for ICI outcome in clinical trials. 
These trials have consistently reported a highly favorable 
RR in several MSI-high (MSI-H) and MMRD tumor types 
(37,38), leading to the first therapeutic agnostic approvals 
by the FDA in patients with unresectable or metastatic 
MSI-H or MMRD solid tumors, independent of the tumor 
localization. Nevertheless, this condition is rare in lung 
cancer (<1%) (39). Some deleterious alterations of POLE, 
POLD1 and MSH2 genes have been found in patients 
with high TMB responding to ICI (40), however mutation 
signatures in lung cancer have been shown to be mostly 
associated with smoking habits (41).

Recently, DNA damage response and repair (DDR) 
gene alterations were reported in tumoral tissues of 50% 
of a cohort of NSCLC patients (42). Median TMB was 
significantly higher in the DDR-positive group compared 
to the DDR-negative group (12.1 versus 7.6 mut/Mb, 
P<0.001), and DDR-positive tumors had a significantly 
higher RR (30.3% versus 17.2%, P=0.01), longer median 
PFS (5.4 versus 2.2 months, HR: 0.58, 95% CI: 0.45–0.76, 
P<0.001), and longer median OS (18.8 versus 9.9 months, 
HR: 0.57, 95% CI: 0.42–0.77, P<0.001) with PD-(L)1 
therapy, after adjusting for PD-L1, TMB, performance 
status, tobacco use, and line of therapy.

Tumoral tissue and blood-based TMB
Recent data suggest  that  TMB could be another 
predictor of ICI efficacy. TMB is calculated as the 
total number of non-synonymous somatic mutations 
of the genomics coding area. These mutations can 
lead to neoantigen formation and contribute to the 
immunogenicity of the tumor. The type of mutation 
may also contribute to the resulting antigenicity (43),  
with insertions and deletions leading to more antigen 
formation than non-synonymous single nucleotide variants. 
The TMB can be evaluated with various techniques (Whole 
exosome sequencing, Whole Genome Sequencing, Next 



2942 Duchemann et al. Biomarkers for immunotherapy in NSCLC

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(6):2937-2954 | http://dx.doi.org/10.21037/tlcr-20-839

Generation Sequencing), with different thresholds, and can 
be performed using tumor tissue (tTMB) or blood (bTMB). 
Data on their predictive value are conflicting, particularly 
in terms of ICI combinations and ICI chemotherapy 
combinations. 

Tumoral TMB
The first-line trial CheckMate 026 compared nivolumab 
monotherapy versus chemotherapy in PD-L1 ≥5% 
NSCLC. In exploratory subgroup analyses according to 
TMB, higher RR and longer PFS were reported with 
nivolumab compared with chemotherapy in tumors 
with high TMB (RR: 47% versus 28%; PFS: 9.7 versus  
5.8  months) (10). Of note, no difference in OS was found 
(18.3 versus 18.8 months). Following these results, the 
TMB was used prospectively as a biomarker for PFS as 
one of the two coprimary endpoints in the CheckMate 227 
study. This study compared the combination of nivolumab 
and ipilimumab to platinum-based chemotherapy (44) in 
the first-line setting in advanced NSCLC. In the group of 
patients with ≥10 mut/Mb (high tTMB; N=299, 17% of the 
randomized population), the combination arm reported a 
significant benefit compared with chemotherapy in PFS (7.2 
versus 5.5 months, HR 0.58, 75% CI: 0.41–0.81) as well 
as an improvement in RR (45.3% versus 26.9%) (44). The 
coprimary endpoint of the study (OS in PD-L1 ≥1%) was 
also met, with improved OS for the combination compared 
to chemotherapy (17.2 versus 12.2 months, HR 0.62; 95% 
CI: 0.48–0.78), leading to FDA approval of the nivolumab 
plus ipilimumab combination in the first-line setting in 
advanced NSCLC patients with PD-L1 ≥1%. However, this 
HR benefit was subsequently shown to occur regardless of 
PD-L1 expression (PD-L1 ≥1%; HR 0.79, 95% CI: 0.65–
0.96; and in PD-L1 <1%; HR 0.62, 95% CI: 0.49–0.79), 
or TMB level (high: HR 0.68, 95% CI: 0.51–0.91; or low: 
HR 0.75, 95% CI: 0.59–0.94). Consequently, these results 
do not support tTMB as a predictive biomarker for ICI 
combination (11). 

Similarly the efficacy of pembrolizumab plus platinum-
based chemotherapy versus chemotherapy alone in the first-
line setting for metastatic NSCLC, occurred regardless 
of tTMB status assessed by whole exome sequencing, and 
defining high tTMB as ≥175 mut/exome (45). Therefore, 
randomized controlled trials have so far failed to show a 
survival benefit when stratifying patients by tTMB and 
these data do not currently support the prognostic or 
predictive value of tTMB in NSCLC patients. 

Blood-based TMB 
First-line tTMB can be challenging to obtain, and use 
of blood-based TMB (bTMB) is increasing, with several 
studies suggesting its predictive role. The OAK and 
POPLAR studies comparing ICI versus chemotherapy in 
the second-line setting (46), used several bTMB cutoff 
points ≥10, ≥16, and ≥20 mut/Mb, and blood-based 
approaches (measured by the Foundation Medicine assay) to 
assess TMB. Both studies reported an inverse relationship 
between TMB and OS HR, suggesting that bTMB may 
predict benefit of atezolizumab as second-line therapy in 
NSCLC (47).

In the first-line setting, the MYSTIC trial assessed the 
efficacy of a durvalumab plus tremelimumab combination 
or durvalumab monotherapy compared with platinum-
based chemotherapy in a PD-L1 expressing population 
(PDL-1 ≥25%). This study did not meet any of the three 
primary endpoints: PFS and OS for the immunotherapy 
combination compared to chemotherapy and OS for 
durvalumab compared to chemotherapy. However in a 
retrospective exploratory analysis, patients with high bTMB 
[≥16 mut/Mb (48) or ≥20 mut/Mb] derived a survival 
benefit with combined durvalumab plus tremelimumab 
compared with chemotherapy (49). Similarly, the non-
randomized phase II B-F1RST study evaluated bTMB as a 
predictive biomarker for atezolizumab according to a cut-
off of 16 mut/Mb. Atezolizumab achieved longer PFS (5.0 
versus 3.5 months, HR 0.80, 90% CI: 0.54–1.18) and OS 
(23.9 versus 13.4 months, HR 0.66, 90% CI: 0.40–1.10) 
in tumors with bTMB ≥16 mut/Mb versus <16 mut/Mb, 
respectively. These results suggest a clinical benefit, albeit 
not statistically significant, of atezolizumab in tumors with 
high bTMB (50). The ongoing phase III BFAST trial 
evaluating different ICIs according to bTMB in metastatic 
NSCLC (NCT03178552) is designed to address this 
question. 

Similarly, in another retrospective study with 66 
advanced NSLCL, first-line treatment with pembrolizumab 
either alone or in combination with chemotherapy achieved 
longer PFS in patients with bTMB ≥16 mut/Mb than in 
those with bTMB <16 mut/Mb (14.1 versus 4.7 months; 
HR 0.30, 95% CI: 0.16–0.60; P<0.001). Median OS for 
patients with bTMB ≥16 mut/Mb was not reached versus 
8.8 months for patients with bTMB <16 mut/Mb (HR 0.48, 
95% CI: 0.22–1.03; P=0.061). However, the predictive role 
of bTMB did not apply for patients with co-mutations in 
STK11/KEAP1/PTEN and ERBB2 (51). 
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On the other hand, the phase III NEPTUNE trial 
(NCT02542293) comparing durvalumab and tremelimumab 
versus platinum-based chemotherapy in the first-line 
treatment did not met the OS endpoint in patients with a 
high bTMB (≥20 mut/Mb) (52). 

To date, the prognostic and predictive value of tTMB 
or bTMB remains a challenge, mainly due to the absence 
of uniform standards for the cut-off point for defining 
high TMB, sample type and the technical platform used to 
evaluate it. Data from prospective trials are warranted to 
more accurately identify the predictive and/or prognostic 
value of TMB for benefit. 

Specific tumor mutations and circulating DNA

Along with TMB, the tumoral genome has further potential 
to be used as a predictive marker. Specific tumor genotypes 
such as oncogene addicted or LKB1/STK11 mutated tumors 
have been hypothesized to be associated with primary 
resistance ICI. Moreover, direct evaluation of tumoral cell 
DNA and circulating DNA have also been investigated as 
possible circulating biomarkers (Figures 1,2).

Tumor-specific genotype

Some genomic alterations have been correlated with 
lack of efficacy of ICI. In a multicentric international 
retrospective cohort of 551 oncogenic addicted NSCLC 
patients (IMMUNOTARGET), objective RRs according 
to driver alterations following anti-PD(L)-1 treatment 
were KRAS 26%, BRAF 24% ROS1 17%, MET 16%, 
EGFR 12%, HER2 7%, RET 6%, and ALK 0% (8). Median 
PFS in the overall cohort was 2.8 months. However, in 
another retrospective study (N=107), the RRs were 26% for 
BRAF-V600, 33% for BRAF-nonV600, 27% HER2, 38% 
MET and 38% RET-altered, similar to outcomes reported 
in wild-type NSCLC patients (53). 

Somatic mutations and co-mutations have also been 
associated with specific type of TME and ICI resistance, 
such as is the case for inactivating LKB1/STK11 genomic 
alterations. These alterations are present in ~25% of KRAS-
mutant adenocarcinomas and are frequently associated 
with a “cold”, non-T cell-inflamed microenvironment 
with a paucity of infiltrating CD3+, CD4+ and CD8+ 
T cells and low tumor cell expression of PD-L1. KEAP1 
is also associated with a cold micro-environment in 
particular when it is associated with a PTEN mutation (54).  
Furthermore, co-mutations in either LKB1/STK11 or 

KEAP1 were associated with worse clinical outcomes with 
chemoimmunotherapy using pemetrexed-carboplatin (or 
cisplatin) plus the anti-PD-1 antibody pembrolizumab in 
non-squamous NSCLC (55). Similarly, in the MYSTIC 
trial, the occurrence of LKB1/STK11 or KEAP1 mutations 
correlated with poorer PFS and OS across treatment arms 
compared with wild-type counterparts (56). In contrast, 
an exploratory analysis of the phase III KEYNOTE 042 
trial (pembrolizumab versus chemotherapy in the first-
line setting of PD-L1 ≥1% advanced NSCLC patients) 
the occurrence of KEAP1 or LKB1/STK11 mutation (34% 
of the whole population) did not affect the efficacy of 
pembrolizumab (RR 31%, OS 18 months) (57). However, 
the sample size of this study is too small to impact daily 
clinical practice with ICI as monotherapy as the standard 
treatment in this population with these co-mutations, and 
further formal analyses are warranted.

Circulating tumor cells (CTC) and circulating-tumor 
DNA

To overcome the difficulties associated with obtaining tissue, 
non-invasive methods have been developed in the search for 
ICI biomarkers, including analysis of CTC and ctDNA in 
NSCLC. CTC and ctDNA have been used for assessing PD-
L1 status (58,59) and as dynamic biomarkers of ICI efficacy 
(59-61). In NSCLC patients, obtaining ctDNA clearance 
at one (62) or two months (63) after ICI initiation has been 
found to correlate with a prolonged duration of response. 
In contrast, an increase in ctDNA >20% at 6 weeks after 
nivolumab was associated with a worse outcome (63). PD-L1 
can be assessed on CTCs, however sensitivity ranges from 
45% (59) to 93% (58) of samples. To date, no prospective 
trial has confirmed PD-L1 expression on CTCs as a 
predictive biomarker of ICI efficacy (58,59,64-66). On the 
contrary, some studies suggest that high PD-L1 expression 
on CTCs at baseline was associated with a poor outcome in 
patients treated with anti-PD(L)1 (58). Moreover, PD-L1+ 
CTC increases at progression, possibly predicting resistance 
to ICI (65). Finally, logistically, cost and turnaround time 
of these analyses are critical and may limit the clinical 
applicability of CTC analyses.

Epigenetic biomarkers

DNA methylation is an epigenetic chemical “flag” which 
is critical for several cellular activities and is often altered 
in human diseases including cancer. A DNA methylation 
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profile signature was generated in a discovery cohort of 34 
NSCLC patients treated with ICI (EPIMMUNE) (67). 
This signature was associated with an improved outcome 
(PFS, P=0.0067; OS, P=0.0012), and was confirmed in an 
EPIMMUNE validation cohort with 47 patients. This 
methylation involves forkhead box P1 (FOXP1), and the 
unmethylated status of this single gene was confirmed as a 
predictive positive biomarker for PFS (HR 0.415, P=0.006) 
and OS (HR 0.409, 95% CI: 0.22–0.78; P=0.009) in a third 
cohort. The EPIMMUNE-positive signature was not 
associated with PD-L1 expression, the presence of CD8+ 
cells, or mutational load. Moreover, this study associated 
the signature status with tumoral inflammatory infiltration.

Tumor-host interaction: Micro-environment 
biomarkers

The TME is composed of immune cells, fibroblasts, and 
vascular and lymphatic tissues surrounding the tumoral 
cells. This microenvironment is constantly evolving, de-
pendent on signaling molecules, with the cancer cells 
promoting immune evasion on the one hand and the host 
controlling tumoral proliferation on the other (68,69). Wit-
hin the TME, several kinds of host immune cells can be re-
cruited from adaptative cells (such as B and T lymphocytes) 
and innate immunity (such as polymorphonuclear leuko-
cytes and Natural killer). The functional orientation of the 
immune population has been described as being dependent 
on the local immune contexture (70). It has been associated 
with patient outcomes in multiple tumor types and has been 
explored for its predictive potential when using ICI. Despite 
being more difficult to assess in clinical practice, mainly due 
to a lack of access to sufficient tissue samples, understanding 
the microenvironment is likely to be critical to deciphering 
the mechanism of immunotherapy (71) (Figures 1,2).

TILs

TILs have been correlated with improved survival in several 
cancer types including NSCLC (72). High levels of TILs, 
in particular CD8-positive TILs, correlate with improved 
survival probably reflecting a greater immune tumoral 
recognition by the immune system (73). This inflamed, 
‘hot tumor’ phenotype, may have predictive value during 
ICI treatment (74). Exploratory studies have confirmed the 
potential interest of CD8+ infiltrate as a biomarker in several 
conditions. The immune infiltrate and PD-L1 tumoral 

expression was associated with response to nivolumab in 
65 advanced lung cancer patients (75). In another study 
enrolling 98 patients with advanced NSCLC, TIL density 
>5% correlated with PFS (HR 0.31, CI: 0.14–0.68, P=0.004) 
and higher objective RR (OR =3.5, 95% CI, 1.06–11.7, 
P=0.04) in a multivariate analysis (76). The nature of the 
T cell infiltrate may also predict therapeutic outcome with 
ICI. Anagnostou et al. described the oligoclonal expansion 
of pre-existing intratumoral T-cell clones in patients with 
tumoral response to ICI (61). Functionality and specific 
TIL phenotypes have been associated with response, such 
as high CD3 expression, T cell low granzyme B and low 
Ki-67 levels, proposed to be a “dormant” phenotype and 
associated with a better outcome (77).

B cells and tertiary lymphoid structures (TLS)

Recent studies suggest a role for B cells when localized to 
tumor compartments called TLS. TLS are aggregates of 
immune cells in response to immunological stimuli in the 
presence of B cells (78). TLS, like TILs, are considered 
to be a predictor of increased survival (79). This role may 
be related to B cell activation, antibody cell death, and 
cooperation with T cells. Apparition of TLS during 
treatment in various tumor types appears to be associated 
with favorable evolution during ICI treatment (80-82), 
although this is yet to be evaluated in lung cancer. 

Several other microenvironment parameters including 
hypoxia, angiogenesis and the extracellular matrix are 
under exploration. To be successful, these parameters must 
be correlated with biological or radiological surrogates 
and may be candidates to be combined with existing 
biomarkers (71).

Gene expression signature

Multiple-gene signatures may have prognostic value in 
NSCLC (83). Nevertheless, limited data exist about the 
predictive role of immune gene signatures in NSCLC 
tumors treated with ICI. These signatures are mostly 
related to IFNg signaling. In several malignancies, the 
baseline IFNg mRNA signature had predictive role for 
RR and PFS with pembrolizumab (84). In NSCLC, PD-1 
gene expression along with a 12-gene signature tracking 
CD8, CD4 T-cell, natural killer cells, and IFN activation 
was associated with nonprogressive disease and PFS (85). 
In the POPLAR trial comparing docetaxel to atezolizumab 

https://www-sciencedirect-com.proxy.insermbiblio.inist.fr/topics/medicine-and-dentistry/fibroblast
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in second-line advanced NSCLC patients, tumors with 
high expression of the T-effector-associated and IFN-
γ-associated gene signature demonstrated improved OS 
(HR, 0.43; 95% CI, 0.24–0.77) (86). In another study in 
17 patients with NSCLC treated with nivolumab, mRNA 
expression levels (divided in tertile, high if superior to the 1st 
tertile) were explored in tumoral samples. The only mRNA 
associated with PFS was IFNg (5.1 versus 2.0 months, 
HR 6.66; 95% CI: 1.2–36.8, P=0.0297, for high and low 
expression respectively) (87).

Host related biomarkers: functional status of the 
immune system 

Circulating immune cells 

Circulating blood cells populations, including immune 
cells subpopulations may reflect host immune system 
functionality (Figures 1,2). Baseline and on-treatment 
variations in these populations have frequently been 
associated with cancer outcomes. Different techniques 
are available, some robust and clinically validated such 
as complete blood counts (CBC) and others more 
specific with subpopulation analysis using flow cytometry 
immunophenotyping. One strength of using fresh immune 
cell whole blood real-time monitoring, is that it allows more 
reliable data to be obtained for some brittle immune cell 
populations. Comparative studies with frozen peripheral 
blood mononuclear cells (PBMC) and fresh whole blood 
identified that some populations could be detected with 
the same sensitivity, while others may not be consistently 
determined from frozen PBMC. For example, for some 
memory T cell populations (using CD45RA and/or CD62L 
and/or CCR7 staining), regulatory T cells (Treg) seemed 
to be underestimated in PBMCs, with a large variability 
of 20% to 30%. In addition, neutrophils, the main 
subpopulation of leucocytes, cannot be recovered from 
frozen PBMCs (88).

Blood CD3+ T lymphocytes 

Lymphocyte functional status, e.g., activation, senescence 
or polarization can be studied on circulating T lymphocytes 
and some populations have been investigated as biomarkers 
with ICI treatment. In NSCLC patients, PD-1+ T cells 
are more frequent than in healthy controls (27,89) and 
are associated with a worse clinical outcome. In a study by 
Zheng et al. including 42 NSCLC patients, median OS and 

PFS were shorter in patients with high expression of PD-
1+CD4+ circulating T cells (89). In another study, other 
checkpoint inhibitor molecules including PD-1, PD-L1 
and PD-L2 on PBMC correlated with a worse prognosis. 
Among 70 patients who did not receive ICI, PD-L1 
expression on CD8+ and PD-1 expression on CD4+ T cells 
were associated with poor outcome (27). 

Evolution and proliferation of these populations can 
also be used for predicting ICI efficacy. Kamphorst et al. 
reported the dynamic evolution of immune checkpoints 
on T cells in a cohort of 29 NSCLC patients treated with 
ICI. An increase in proliferation of circulating PD-1+ CD8+ 
T cells within four weeks after treatment initiation was 
associated with better outcome (90). The phenotype of 
these cells has been elucidated with an effector phenotype 
(HLA-DR+, CD38+, Bcl-2low), associated with expression of 
co-stimulatory molecules (CD28, CD27, ICOS) as well as 
high expression of CTLA-4. Early proliferation of PD-1+ 
CD8 T cells after PD-1 infusion was observed in more than 
three-quarters (78.5%) of patients who experienced clinical 
benefit versus only 21.5% of patients with progressive 
disease (90). 

Another study associated the proliferative response of 
peripheral PD-1+CD8+ T cells after 1 week of anti-PD-1 
therapy with a positive outcome in patients with NSCLC (91). 
Ki-67D7/D0 was tested as a predictive biomarker in patients 
with NSCLC (N=79) or thymic epithelial tumors (N=31). 
These T cells were found to have proliferated seven days 
after ICI with a reduction after three weeks (91). The cut-off 
was optimized to 2.8 for Ki-67D7/D0 with a higher probability 
of clinical benefit in patients with Ki-67D7/D0 ≥2.8 than in 
patients with Ki-67D7/D0 <2.8 (P<0.001). The same trend was 
found with PFS, which was 8.7 months (95% CI: 4.3–13.2 
months) in patients with Ki-67D7/D0 ≥2.8 and 3.9 months (95% 
CI: 1.2–6.6 months) in those with Ki-67D7/D0 <2.8 (P=0.027), 
without modification of its predictive value when adding a 
score using tumoral PD-L1 expression (91). 

T cell differentiation phenotypes have also been explored 
as a biomarker for ICI treatment. Patients with metastatic 
NSCLC express more memory effectors and fewer naïve T 
cells than control patients (92). In a cohort of 22 NSCLC 
patients, central memory (CM) to effector memory (EM) T 
cell ratio (TCM/TEM) was correlated with response during 
ICI treatment (92), as well as with longer PFS. It was also 
associated with high PD-L1 expression in the tumor and an 
increased inflammatory signature. In another cohort (N=51), 
the level of baseline functional CD4+ memory T cells, in 
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particular those with low co-expression of PD-1/LAG-3, 
were associated with response under ICI (93). 

Immunosenescence is another phenotype related 
to chronic antigenic stimulation. T cell senescence 
reflects a terminal differentiation status of a T cell with 
low proliferative activity, an oligoclonal T cell receptor 
repertoire, and reduced capacity to recognize antigenic 
diversity (94). Senescent and exhausted T-cells share some 
characteristics, however senescent cells conserved their 
cytotoxic potential (95). Blood senescent T cells, defined 
as CD3+CD8+CD28negCD57+KLRG1+, have recently been 
studied in patients with advanced NSCLC treated with 
ICI (96). Senescent populations were more frequent in 
NSCLC patients and in patients receiving chemotherapy 
compared to treatment-naïve patients (97). In a recent 
preliminary study, 43 ICI treated patients were evaluated 
for T cell senescence. Patients presenting a high proportion 
of senescent CD8+ T cells had significantly lower RR (31% 
versus 0%, P=0.03), disease control rate (81% versus 29%, 
P=0.002), PFS [7.3 months, 95% CI: 2.7–non reached 
(NR) versus 1.8 months, 95% CI: 1.3–NR; P=0.02] and OS 
(NR, 95% CI: 6.04–NR, versus 2.6 months, 95% CI: 1.9–
NR; P=0.01). Interestingly senescent CD8+ T cells were 
not associated with clinical outcome in a cohort of patients 
treated with chemotherapy. 

CD3+ cells are major but heterogenous effectors of 
antitumoral immunity. Deciphering T cell subpopulations 
such as senescent, central memory or activated PD1+ 

may provide a better understanding of immunotherapy 
mechanisms and predictive tools, however this requires 
confirmation in independent cohorts. 

Circulating neutrophils and myeloid-derived 
suppressive cells (MDSC) 
An association between neutrophils and poor prognosis 
has been suspected in several cancer types for some time. 
Recent literature indicates that tumors may play a role 
in early differentiation of neutrophils by creating various 
phenotypic and functional polarization states able to 
influence tumor development. In solid tumors, neutrophils 
can be found both in the TME and the blood, and are 
generally associated with a poor prognosis (98). Neutrophils 
dominate the NSCLC immune landscape with a mostly 
immune suppressive role (99). Recently we demonstrated 
that some circulating innate immune markers including 
neutrophils were related to prognosis in advanced NSCLC 
patients (100). Neutrophils increase may be mostly related 

to granulocyte colony-stimulating factor production by the 
tumor (101). Several ratios have been evaluated as potential 
biomarkers, including neutrophil to lymphocyte ratio 
(NLR; neutrophils/lymphocytes) and derived neutrophil 
to lymphocyte ratio [dNLR: (neutrophils)/(leucocytes-
neutrophils)] (98). In a large meta-analysis including over 
40,000 patients, NLR >4 was associated with worse OS, 
cancer-specific survival, PFS and disease-free survival in all 
types and stage of cancers (102). However, the threshold of 
these ratios has not been homogenously determined across 
published reports and these studies were mainly conducted 
in the pre-ICI area. 

We previously evaluated the combined dNLR and lactate 
dehydrogenase (LDH) level as the lung immune prognostic 
index (LIPI) in advanced NSCLC patients treated with 
immunotherapy. Patients with high baseline dNLR (>3) 
and LDH (above the upper limit of normal) were associated 
with worse prognosis for ICI treatment (N=466), but 
not with chemotherapy (N=152) (103). Nonetheless, the 
prognostic value of NLR and LIPI in NSCLC patients 
treated with ICI remains uncertain. In two recent pooled 
cohorts from clinical trials enrolling 1,489 (104) and 2,440 
patients (105), treated with ICI or chemotherapy, a good 
LIPI score was associated with better OS both in patients 
receiving ICIs and in those receiving chemotherapy. 
Questions remain over differences in the magnitude of the 
benefit for patients treated with immunotherapy (106),  
and the role of the LIPI score warrants evaluation in 
prospective trial. Dynamic evolution of the LIPI score 
during treatment with ICI has also been correlated as a 
prognostic factor (107). 

Other immunoregulatory cells can be recruited during 
chronic inflammatory processes such as MDSC. This cell 
population is more frequent in patients with lung cancer 
than in healthy volunteers (108) and has been associated 
with worse prognosis (109). It is a heterogeneous population 
and can be mainly divided into two groups, neutrophil-like 
(g-MDSC or PMN-MDSC) and monocyte-like (M-MDSC) 
(108,110-112). Increased levels of M-MDSCs have been 
correlated with worse PFS following chemotherapy (3 
versus 9 months, P<0.01) (113) and RR (P=0.02) (114). 
Concerning ICI treatment,  a recent study in two 
prospective cohorts including 63 patients evaluated the role 
of Lox-1+ PMN-MDSC and Treg cells (115). No difference 
between responders and progressors was found at baseline, 
however after a single nivolumab administration, Lox-
1+ PMN-MDSC diminished in responding patients. An 
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inverse correlation was observed for Tregs. The elevation of 
the Treg to Lox-1+PMN-MDSCs ratio (TRM ratio, cutoff 
0.39) was associated with longer median PFS (103 versus 
35 days; P=0.0079) than in patients with low TRM. We 
consider that PMN-MDSC proliferation and recruitment 
in non-responders after anti–PD-1 therapy might impair its 
efficacy (115). 
 

Soluble systemic markers: LDH, CRP, albumin and other 
inflammatory proteins

Systemic nonspecific inflammation or metabolic shifts 
may be involved in immune-resistance mechanisms during 
cancer development. Some generic blood tests, many of 
which are validated in daily practice, have been investigated 
as potential inflammatory biomarkers in cancer patients. 
Glucose metabolism is impaired in cancer cells with 
predominant glycolysis despite aerobic conditions (known 
as the Warburg effect). This allows rapid proliferation but 
requires upregulation of most enzymes involved in the 
glycolytic pathway, including LDH. LDH elevations had 
already been associated with an adverse prognosis in several 
studies before the emergence of ICI, in several types of 
solid tumors (116), including thoracic malignancies (117). 
The question of the predictive role of LDH during ICI 
treatment has previously been evoked; in a meta-analysis 
with advanced NSCLC patients treated with ICI, high pre-
treatment LDH levels (above the upper limit of normal) 
were significantly correlated with shorter PFS (HR 1.62, 
95% CI: 1.26–2.08, P<0.001) and OS (HR 2.38, 95% CI: 
1.37–4.12, P=0.002) (118).

Systemic inflammation and nutritional status biomarkers 
have been investigated regarding ICI efficacy, likely with 
less specificity but wide availability in routine practice. 
Retrospective studies have shown that C-reactive protein 
(CRP) elevation has been associated with worst prognosis in 
NSCLC and other malignancies (119,120). Consistently, in 
the non-randomized prospective B-F1RST trial evaluating 
atezolizumab monotherapy in advanced NSCLC, a 
decrease in serum CRP over six weeks was associated with 
PFS and OS benefits (50). Poor nutritional status with 
decreased albumin has been correlated with poor response 
to ICI, again in a retrospective study (121). Concerning 
cytokines, several interleukins have been associated with 
the disease course. In NSCLC, the dynamic evolution of 
IL-8 during ICI treatment was reported as a biomarker, 
with a benefit for patients with early decreases of IL-8 
levels (122). In others studies, an increase of tumor necrosis 

factor and INF-γ during ICI therapy correlated with better  
outcome (25,123). 

Gut microbiome 

The gut microbiome has been the subject of considerable 
interest during the last decade. It is suspected of playing a 
critical role in the maturation and education of the immune 
system at the basal state as well as during carcinogenesis 
with an inflammation induced by bacteria. Most studies 
have been conducted in metastatic melanoma patients with 
reports of enrichment of a given bacterial subpopulation 
[e.g., Bifidobacterium (124), or Ruminococcaceae (125)] or 
higher diversity (125) associated with response. In NSCLC 
patients under ICI, responders to nivolumab had higher 
gut diversity at baseline with a stable composition during 
treatment (126). Evolution under ICI has been correlated 
with specific microbiota compositions; a study in 60 
NSCLC patients showed an enrichment of Akkermansia 
muciniphila at cancer diagnosis on responders (69%) 
compared to 34% on responders, and correlation with 
TH1 cytokine polarization (127). Microbiota diversity can 
also be affected the by antibiotics and may have an impact 
on ICI therapy (128). While these results are interesting, 
confirmation in a prospective trial is currently ongoing.

Conclusions 

To date, most PD(L)1 inhibition strategies in NSCLC 
have been based on PD-L1 expression on tumor cells. 
Other promising biomarkers such as TMB have not been 
adopted in routine clinical use, mainly due to the difficulty 
of differentiating between their prognostic versus their 
predictive value as well as technical or logistical global 
coherence in terms of methodology and thresholds. Several 
host-related or microenvironment-based biomarkers 
have recently been uncovered and deserve validation in 
independent cohorts in particular tumoral epigenetic 
signature and circulating immune cells subpopulation. All 
these biomarkers provide insight into the complexity of the 
antitumoral immune response. In the next few years, the 
challenge will likely be how to combine these predictive 
factors to accurately predict the response to ICI and 
personalize the choice of combination therapy. 
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