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Current standard of SBRT for early-stage NSCLC

Epidemiology, history, and development of SBRT as 
standard of care

Lung cancer is among the most frequent malignancies and 
the leading cause of cancer-related deaths worldwide (1), 
with non-small cell lung cancer (NSCLC) accounting for 
approximately 5% of all cancer-related mortality. Around 
16% of patients with NSCLC are diagnosed at early stages, 
which are characterized by a small primary tumor and 
lack of lymph node metastases (stages T1-2, N0) (2). This 
proportion of early stage NSCLC is expected to increase in 

health care systems with implementation of CT-based lung 
cancer screening (3,4).

Early-stage (ES) NSCLC has traditionally been 
managed by lobectomy and systematic  hi lar  and 
mediastinal lymph node dissection. An overall survival 
of 60–92% at 5 years (5) indicates this tumor stage as 
a curable disease. A significant number of patients is 
however medically inoperable due to their comorbidities 
and this proportion of inoperable or high-risk patients is 
growing due to an aging population (6). For this group 
of patients, traditional treatment options have been best 
supportive care, limited/extra-anatomical resection, and 
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radiotherapy. Conventionally fractionated external beam 
radiotherapy (EBRT) with total irradiation doses of 60– 
66 Gy had been an established curative treatment option 
for such medically inoperable patients. However, several 
studies reported a dose-response relationship for radiation 
doses beyond this range, with improved local tumor 
control and survival for higher radiation doses (7). 

Stereotactic body radiation therapy (SBRT) is defined as a 
form of EBRT that accurately delivers a high dose of radiation 
to an extracranial target in a single or few fraction(s) (8).  
Developed in the early 1990s (9), SBRT was further adapted 
and advanced by multiple groups and is nowadays a well-
established and guideline-recommended component of 
modern radiotherapy. In some publications, SBRT is referred 
to as stereotactic ablative radiation therapy (SABR).

Multiple, methodologically and technically diverse 
studies on SBRT in early-stage NSCLC have consistently 
shown favorable outcomes in terms of high local control 
rates (74–100%), preserved quality of life, and low 
treatment-related toxicity (10-21). Recent randomized 
clinical trials (RCTs) comparing EBRT and SBRT have 
shown comparable results in terms of progression-free 
(PFS) (17,20) and improved overall survival (OS) (20) 
in favor of SBRT. Today, SBRT is established as the 
gold standard for medically inoperable patients with 
ES NSCLC (22-27), with increasing use, due to aging 
populations in many societies. Figure 1 illustrates an 
exmple of ES NSCLC treated at our institution. 

Guideline perspective of SBRT for ES NSCLC 

Clinical practice guidelines
International guidelines (22-24,27) recommend treating 
node-negative ES NSCLC with surgical lobectomy, 
if pulmonary and cardiac comorbidities allow it. In 
patients considered medically inoperable based on an 
interdisciplinary discussion, as well as in those unwilling 
to undergo surgery, SBRT is the treatment of choice. The 
European Society for Radiotherapy and Oncology (ESTRO) 
Advisory Committee in Radiation Oncology Practice 
(ACROP) consensus guidelines also suggest a minimum 
performance status of ECOG 3 and a minimal estimated 
life expectancy of one year for SBRT patient selection (24).

For assessment of patient operability, guidelines agree 
on a multidisciplinary patient assessment. Pre-treatment 
evaluation before SBRT or surgery includes (but is not 
limited to) pulmonary function testing, bronchoscopy, 
mediastinal lymph node evaluation, PET/CT staging  

(22-25) while some also recommend cranial MRI in stages 
IB (optional) to IIA (23). While SBRT is the treatment 
of choice in inoperable patients according to the above-
mentioned guidelines, there is no commonly accepted 
definition of patient inoperability. The perioperative 
risk can be estimated using validated systems especially 
considering cardio-pulmonary function—however, none 
have yet been prospectively validated in NSCLC patients. 

Pre-SBRT biopsy confirmation is strongly recommended 
but not a prerequisite for patients unwilling to undergo 
invasive biopsy or patients with an excessively high 
periprocedural risk (23-25). The challenge of clinically 
diagnosed ES NSCLC will be discussed later in this article.

The main failure pattern after treatment of ES NSCLC 
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Figure 1 Patient case. Figure shows a patient treated at our 
institution with 3×13.5 Gy@65% ILD. (A) Pre-treatment; (B) 
treatment plan; (C) 1 year post-treatment.
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is distant, with about 20–30% (28,29) of the patients 
developing metastatic disease during follow-up. Some 
guidelines, therefore, recommend the evaluation of 
adjuvant chemotherapy after SBRT in patients with high-
risk features, such as poor tumor differentiation, vascular 
invasion, pleural involvement, and unknown lymph node 
status (25) while others do not (23).

Follow-up after SBRT should consist of clinical visits 
and CT imaging every 3-6 months for at least two years. 
Distinguishing between post-therapeutic fibrosis and 
persistent or recurrent NSCLC is as pivotal as complex. 
For CT-based follow-up imaging, high-risk features, 
such as bulging margin, craniocaudal extension, and 
linear margin disappearance have been identified to more 
accurately differentiate between vital tumor and progressive 
fibrosis (30,31). FDG-PET/CT scans are not routinely 
recommended but should be used in patients where 
differentiation between post-SBRT fibrosis and tumor 
recurrence is otherwise difficult (23,24,32).

Guidelines do not routinely endorse SBRT as primary 
treatment in patients deemed to be at a “standard operable-
risk”, despite concerns regarding surgical mortality and 
morbidity. Literature has demonstrated 3 year-OS rates 
of 76–86% (15,32-36) after SBRT in selected cohorts of 
operable patients unwilling to undergo surgery. A meta-
analysis of 4850 patients within 40 SBRT studies and 7,071 
patients within 23 surgical studies in ES NSCLC reported 
no significant difference in OS or disease-free survival (DFS) 
when adjusting for age and comorbidities (37). Another meta-
analysis of 23 studies reported improved outcome in terms 
of overall- and cancer-free-survival after surgery compared 
to SBRT in both the matched and unmatched group (38). 
All retrospective and cross-study comparisons suffer from 
insufficient matching of surgical and SBRT patient cohorts 
because relevant prognostic factors are frequently unavailable 
for the matching process. Additionally, such studies have been 
shown to be prone to interpretation bias (39). Randomized 
prospective trials are therefore needed to properly address 
this important clinical question.

Medical physics practice guidelines 
In order to describe the technical requirements of treatment 
units for safe and effective SBRT of ES NSCLC, six 
national and international guidelines, recommendations, 
and an expert review group consensus were reviewed 
(22,24,40-42).

The ESTRO ACROP consensus has been released 
with the key aspects on SBRT treatment delivery for 

ES NSCLC, discussing in detail the minimum machine 
performance (22). The ASTRO guideline provides a 
detailed overview about the clinical part only (24) whereas 
the listed American Association of Physicists in Medicine 
(AAPM) reports cover the technical requirements for SRS/
SBRT in general (22,24,40-43). The Deutsche Gesellschaft 
für Medizinische Physik (DGMP) expert review gives a fair 
overview of technical specifications necessary for SBRT/
SRS treatments in general (42).

There is a strong agreement in implementing an end-
to-end test during the commissioning phase of the linear 
accelerator, not only to check the accuracy and reliability 
of the system before a first SBRT treatment, but also to 
conduct regular machine quality assurance (QA) checks 
to guarantee a stable performance of the treatment unit 
afterwards. End-to-end tests are powerful tools in QA 
protocols to ensure the reliability of the entire treatment 
chain through sufficient imaging protocols for the planning 
CT, image reconstruction, data transfer, treatment planning 
system performance, motion management, and irradiation 
of dummy treatment plans on QA phantoms and comparing 
calculated with measured data. Most importantly, the 
equipment specific QA has to be extended and pass stricter 
criteria than standard IMRT QA protocols (43).

Teaching of the medical staff involved in SBRT 
treatment, continuous training, credentialing, setting 
up standard operating procedures and clinical protocols 
are all essential and indispensable to be conducted and 
implemented before and while providing SBRT treatments 
in general (22,24,40-44).

Despite the fact that dedicated SBRT treatment devices 
such as the CyberKnife® or Vero® are compelling and well 
established technologies in radiation therapy, their added 
value in comparison to standard linear accelerators (linacs) 
is uncertain (22). For most of the radiation oncology 
centers, standard linacs represent the most accessible, 
affordable, and efficient treatment units. Most modern 
machines are equipped with necessary SBRT quality 
requirements: high-resolution multi-leaf collimators (MLC) 
<10 mm, volumetric image-guided radiation therapy (IGRT) 
technology, and 4D-CT. They can therefore be used for 
standard and more sophisticated treatment techniques such 
as SBRT for ES NSCLC (22).

Current challenges in SBRT for ES NSCLC 

Patients with centrally/ultra-centrally located NSCLC
SBRT in ES NSCLC is a well-tolerated and efficient 
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treatment with high rates of local control when applied 
to peripherally located lesions. However, as high ablative 
doses are needed in order to achieve optimal tumor control, 
SBRT in tumors located close to critical structures (such as 
major bronchi, esophagus, large vessels, and brachial plexus) 
is potentially associated with a higher risk of organs at risk 
(OAR) damage. Although commonly used in literature as 
well as in clinical practice, there is no uniformly accepted 
definition of the terms “central” or “ultracentral”.

Timmerman et al. initially reported “excessive toxicity” 
in patients with central tumors treated with 3 fractions of 
20–23 Gy. Tumor location was the strongest predictive 
factor for toxicity, with up to 11-fold increased risk of 
grade 3 or higher toxicities (45). Those results led to the 
development of the first “no-fly” zone definition, adapted 
by the RTOG 0236 trial and still in use by the ASTRO 
guideline (24), which defined central tumor location as 
“2 cm in all directions around the proximal bronchial tree  
(PBT)” (45).

The RTOG 0813 trial tumors (46) was designed to 
evaluate SBRT outcomes in centrally located NSCLC and 
added to the RTOG 0236 definition as follows “the zone 
[…] of RTOG 0236, with the addition of tumors which are 
immediately adjacent to mediastinal or pericardial pleura (PTV 
touching the pleura)” (46). The International Association for 
the Study of Lung Cancer (IASLC) has a broader definition 
for central tumor location “within 2 cm in all directions of 
any mediastinal critical structure, including the bronchial tree, 
esophagus, heart, brachial plexus, major vessels, spinal cord, 
phrenic nerve, and recurrent laryngeal nerve” (32). While 
patients with centrally located ES NSCLC are at a higher 
risk of toxicity from SBRT, surgery in this population is also 
associated with worse outcomes (47).

The term “ultracentral” has been established more 
recently and is also lacking a uniform definition. It often 
refers to tumors directly abutting or invading the PBT 
or esophagus (24). All definitions have in common that 
anatomical location and not radiotherapy doses to critical 
organs at risk are the basis for risk stratification.

A 2013 systematic review (48) analyzed findings of 20 
trials, including 315 ES NSCLC tumors out of a total of 
563 centrally located lung tumors. They reported SBRT-
related mortality of 2.7% and grade 3 or higher toxicities at 
9%. The OS did not differ between central and peripheral 
tumors, but the heterogeneity of treatment delivery did not 
allow the determination of an optimal dose/fractionation 
regime. Since then, several single-center-studies have been 
published, mostly (12,32,49-51), but not exclusively (52,53), 

reporting central tumor location as a predictor for increased 
toxicity. 

The RTOG 0813 trial—a seamless phase I/II trial—
evaluated fractionation schedules of 5 fractions every two 
to three days up to a total dose ranging from 50–60 Gy, 
escalating in 0.5 Gy per fraction steps. With a median 
follow-up of 37.9 months, they reported a maximal tolerated 
dose of 5×12.0 Gy/fx, with an accompanying probability 
of 7.2% dose-limiting toxicity. Local control at 2 years 
in the 11.5 Gy/fx and 12.0 Gy/fx cohorts was 89.4% and 
87.9%, respectively, while OS was reported at 67.9% and 
72.7% and therefore comparable to outcomes of peripheral 
tumors (46). However, there were relevant numbers of 
adverse events with a total of 13 out of 70 patients (19%) 
experiencing toxicity graded 3 and higher, while grade 5 
toxicity was reported for 6 patients.

The treatment of central NSCLC in inoperable patients 
or those unwilling to undergo surgery has been evaluated 
prospectively within the multicentric EORTC LungTech 
trial (54,55). Endpoints include treatment efficiency and 
toxicity. They defined central tumor location as “ located 
within 2 cm or touching the zone of the proximal bronchial tree 
or immediately adjacent to the mediastinal or pericardial pleura, 
with a PTV expected to touch or include the pleura” (54). The 
study closed early due to slow recruitment: Two potentially 
treatment related deaths were observed after inclusion of 39 
patients.

The Nordic HILUS trial, a phase-II-multicenter trial 
on SBRT to central tumors, included primary NSCLC as 
well as metastatic disease. They defined central location 
as tumors located within “≤1 cm from the proximal bronchial 
tree”. Forty-two out of 74 patients had tumors located close 
to the main bronchus (arm A) while 31 patients had tumors 
located close to a lobar bronchus (arm B). Toxicity graded 3 
or higher was reported in 28% of patients, while 9% (a total 
of seven patients, six patients in arm A and one patient in 
arm B) experienced grade 5 toxicity (lethal hemoptysis and 
pneumonitis) (12,21).

Recent data on ultracentral tumors show comparable 
rates of local control, but with sometimes substantial 
toxicity rates (56-58). While the possibility of potentially 
fatal toxicity in high-risk cohorts remains present, 
literature reports reasonable outcomes, particularly with 
protracted fractionation schedules. International guidelines 
therefore recommend SBRT in patients with central ES 
NSCLC using risk-adapted fractionation regimes (22,24), 
however an optimal fractionation schedule has not been 
recommended. An ongoing multicentric phase I dose 

https://www.sciencedirect.com/topics/medicine-and-dentistry/brachial-plexus
https://www.sciencedirect.com/topics/medicine-and-dentistry/phrenic-nerve
https://www.sciencedirect.com/topics/medicine-and-dentistry/recurrent-laryngeal-nerve
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Figure 2 Centrally located NSCLC. Color Coding: pink = esophagus, orange = trachea, green = main bronchus, yellow = internal target 
volume (ITV), red = planning target volume (PTV).

escalation study, the SUNSET trial, is currently evaluating 
maximal tolerated dose in this setting in order to identify a 
safe and efficient fractionation regime, starting out at 60 Gy 
in 8 daily fractions (59) (Table 1, Figure 2).

Patients without histopathological confirmation of 
cancer
Obtaining histologic confirmation of solid pulmonary 
nodules or masses by biopsy is highly recommended in 
all practice guidelines (22-25,68). However, a relevant 
proportion of patients has been undergoing SBRT without 
biopsy confirmation (55). This is in patients considered 
as being at a too high-risk for performing trans-thoracic 
or trans-bronchial biopsy confirmation. The probability 
of malignancy is then estimated using clinical scores 
considering clinical and imaging factors such as smoking 
status, lesion size and growth rate, CT morphological 
criteria such as spiculae, and FDG- PET activity (69).

Retrospective data on clinically-diagnosed ES NSCLC 
lesions treated with SBRT, as opposed to histologically-
proven ones, showed no significant difference regarding 
OS and local control while similar rates of DFS and distant 
failure between pathologically confirmed and presumed 
NSCLC (70-74) were observed.

A recent prospective observational study of 62 patients 
undergoing SBRT without histologic confirmation of 

malignancy (median follow-up of 55 months) reported a 
3-year OS of 83.3% for all patients and 94.7% for those 
under the age of 74. Local, locoregional, and distant 
failure was reported at rates of 6.4%, 4.8%, and 11.7%, 
respectively. Eight patients experienced toxicity graded 3 
and 4, and there were no grade 5 toxicities (75).

A systematic review and meta-analysis of 11,047 patients 
treated with SBRT in 47 cohorts showed a more favorable 
outcome in terms of DFS and cause-specific survival in 
clinically staged patients compared to biopsy-proven 
ones. Regarding OS, they showed better outcomes for the 
clinically staged patients at 3 years, however 5-year OS did 
not differ significantly (76). 

It is important to note that the treatment of lung lesions 
without prior histological confirmation, whether with 
SBRT or surgery, represents a risk of overtreatment of 
benign lesions. In patients ineligible for, or refusing biopsy, 
SBRT is a guideline-recommended option for suspected 
malignancies (22-25,68).

Patients with coexisting interstitial lung disease
Interstitial lung diseases (ILDs) are a heterogeneous group 
of diffuse parenchymal lung disorders with various patterns 
of inflammation and extents of fibrosis (77,78). Idiopathic 
pulmonary fibrosis (IPF) is the most common form of 
ILD and describes a chronic and progressive condition of 
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fibrosing of lung tissue, with a median survival of 2–3 years  
(77,78). IPF has a poor outcome by itself, but it is also 
associated with increased rates of lung cancer (79) and 
treatment-related toxicity (80) or ineligibility for treatment.

Although normo-fractionated radiotherapy of either 
curative or palliative intent in patients with (sub)clinical 
ILD has traditionally been associated with a relevant risk of 
severe radiation-induced pneumonitis (81-83), retrospective 
studies on the SBRT have shown mixed results. 

While some studies evaluated SBRT in ES NSCLC 
alone (84,85), others evaluated ES NSCLC and metastatic 
lung disease alike (83,86). All except for one (87) reported 
significantly higher rates of radiation pneumonitis in their 
ILD cohorts, with reported incidence of underlying ILD of 
6–16% of patients (84-86,88). The incidence of radiation 
pneumonitis graded ≥2 and ≥3 in ILD patients was reported 
at significantly higher rates of 19–55% and 10–32%, 
respectively in all (84-86) but one (87) study. Grade 5 
radiation pneumonitis was reported at rates of 7.6–20% 
(85,86).Therefore, the risk of severe toxicity and mortality 
after SBRT for ES NSCLC needs to be carefully balanced 
with the risk of the underlying cancer and the pulmonary 
diseases.

Patients with local recurrence after initial SBRT
Management of local recurrence after SBRT is limited by 
thorough patient selection. Surgical resection is barely an 
option in medically inoperable patients, but presents as a 
salvage treatment option in those previously unwilling to 
undergo surgery (89-91). Evidence on repeat SBRT after 
initial SBRT is limited in terms of patient volume and its 
retrospective nature. The largest cohort to date has been 
reported by Ogawa et al. (92), consisting of 31 patients 
(n=23 with NSCLC; n=8 with lung metastasis) with either 
radiologically (n=17) and histologically (n=14) proven local 
recurrence after initial SBRT. The initial SBRT treatments 
were mainly performed with 48–52 Gy in 4 fractions, while 
repeat SBRT doses were mainly either the same or 60 Gy 
in 8 fractions. The reported OS, PFS and local control at 
three years for NSCLC patients was 27%, 40%, and 40%, 
respectively, for central location and 31%, 25%, and 52%, 
respectively, for peripheral location, with no toxicity graded 
3 or higher reported (84). Smaller studies have reported 
comparable results (93-99). The available data suggests 
that salvage SBRT with BED >100 Gy10 appears to be well 
tolerated and safely applicable in carefully selected patients 
with peripheral tumor location; repeat SBRT should be 
evaluated only very carefully in centrally located tumors (95). 

However, as grade 5 toxicity (95,97,100) has been reported 
in this setting and due to the limited availability of data, 
more studies evaluating fractionation and dose constraints 
and normal tissue tolerance are warranted.

Research perspective of SBRT for ES NSCLC

Clinically oriented research

SBRT as neoadjuvant/adjuvant treatment to surgery in 
operable patients 
SBRT in NSCLC is most commonly used as a single 
modality treatment. While many studies aimed to improve 
R0 resection rates in locally advanced NSCLC (101), such 
concepts are at a very early stage for ES NSCLC. The 
MISSILE-NSCLC trial was the first prospective phase II 
trial, which aimed to evaluate complete pathologic response 
(pCR) after neoadjuvant SBRT in ES NSCLC (101). They 
reported a pCR rate of 60% at ten weeks after SBRT, a 
local control rate of 100% at two years, and unchanged 
QoL, while treatment-related toxicity was comparable 
to that of surgery alone (102). The pCR rate appears low 
compared to local control rates after SBRT and has been 
critically discussed. However, it needs to be considered that 
definition of pCR shortly after high-dose is not well defined 
and pCR is well known to increase after follow-up longer 
than 2–3 months.

SBRT instead of surgery in operable patients 
Promising outcomes in inoperable ES NSCLC have 
prompted attempts to implement SBRT in the management 
of medically operable, fit patients. To date, there are no 
published RCT comparing SBRT vs. lobectomy (VATS) 
in medically operable stage I NSCLC patients. Three 
prospective trials comparing SBRT with surgery (STARS, 
ROSEL and Z4099) (32,103) were terminated early due 
to poor accrual, while a feasibility study in the United 
Kingdom showed that a large RCT is not feasible owing to 
the same reason (104). The pooled-analysis of the STARS 
and ROSEL trials however—while limited—reported 
promising results and an advantage of 15% in OS with 
SBRT (60), while two prospective trials (JCOG0403 and 
RTOG 0618) reported high rates of tumor control and low 
treatment-related morbidity (34,35). While retrospective 
data suggests likely equal or superior outcomes with surgery, 
more randomized trials comparing surgical approaches 
to SBRT in the medically operable are warranted. The 
ongoing POSITIVL (105), VALOR (106) and STABLE-
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MATES (107) trials aim to evaluate SBRT vs. complete 
resection (not further specified), lobectomy, and sublobar 
resection respectively in medically operable patients within 
a randomized control trial.

SBRT combined with cytotoxic chemotherapy
Although SBRT can achieve excellent local tumor control, 
overall survival is predominantly limited by regional 
and distant disease progression after SBRT for ES 
NSCLC. Robinson et al. reported 4-year local, regional, 
and distant control after SBRT of 93.6%, 78.1%, and 
54%, respectively (108). This forms the rationale for 
investigating the combination of systemic treatment with 
SBRT, aiming to improve OS.

To date, no randomized prospective studies have 
examined the addition of chemotherapy before or after 
SBRT for ES NSCLC.

A retrospective analysis of the National Cancer Database 
showed that only 3% of analyzed patients received adjuvant 
chemotherapy after SBRT between 2004 and 2014 (109). 
Those patients had a significantly worse OS as compared 
to patients receiving SBRT only (28.0 vs. 36.5 months, 
P=0.001). After propensity-score matching, this difference 
increased further (28.0 vs. 47.7 months, P<0.0001). For 
the subset of patients with tumors greater than 4 cm, no 
statistically significant difference in OS was found, even 
after propensity-score matching. Whether this surprising 
difference is the result of the different treatment protocols 
or of different patient and disease characteristics, which 
were not corrected in the propensity-score matching, 
remains unknown.

These results are in disagreement with the retrospective 
study of Chen et al., which showed an improved OS for 
patients receiving cisplatin-based adjuvant chemotherapy as 
opposed to those receiving SBRT alone (47 vs. 36 months, 
P=0.035) (110). It is however important to note that patients 
were not randomized and that those who did not receive 
chemotherapy were either considered too old (over 75 years 
of age) or had relevant comorbidities. It is therefore likely 
that the two populations were heterogeneous, which could 
explain the lower overall survival in the SBRT-only group.

Verma et al .  also analyzed the National Cancer 
Database, focusing exclusively on tumors greater than  
5 cm treated <10 SBRT fractions (88). When comparing 
patients receiving chemotherapy (before or after SBRT) 
to those receiving SBRT solely, OS was significantly 
greater in the former group (30.6 vs. 23.4 months, 
P=0.027). The role of chemotherapy remained significant 

in multivariate analysis (111). Those results suggest that 
adjuvant chemotherapy after SBRT for ES NSCLC 
may be beneficial, mainly in patients with larger tumors. 
Prospective data are needed to verify this hypothesis.

SBRT combined with immune checkpoint inhibition 
In advanced-stage NSCLC, immunotherapy alone or in 
combination with chemotherapy has achieved significant 
and clinically relevant overall survival improvements in 
comparison with chemotherapy for patients with both 
squamous and non-squamous advanced NSCLC (111,112). 
Despite this background from metastatic NSCL and a 
strong preclinical rational, there are currently no published 
studies combining SBRT with immunotherapy in ES 
NSCLC. 

An abstract from Daly et al. was published in October 
2019, reporting the results of a phase I study that included 
15 patients receiving Atezolizumab, a PD-L1 inhibitor, and 
SBRT (50 Gy in four or five fractions). Patients received 
intravenous Atezolizumab every 21 days over six cycles, 
while SBRT was delivered concurrently at the beginning of 
the third cycle (113). The dose-limiting toxicity was assessed 
for 12 patients and the combination was well tolerated, with 
no grade 4 or 5 events and only one grade 3 event requiring 
interruption of treatment.

Several randomized phase III clinical trials are 
currently ongoing. Amongst them, the PACIFIC-4 
trial (NCT03833154) aims to recruit 706 stage I or II 
(with negative lymph nodes) patients by 2025 (114). 
This double-blind, multi-center trial will investigate the 
benefit in progression-free survival when adding monthly 
Durvalumab (PD-L1 inhibitor) versus placebo for 2 years 
following SBRT. Another phase III study (NCT04214262) 
was started this year to study the influence of Atezolizumab 
(another PD-L1 inhibitor) on OS, when administered 
before and after SBRT (115) (NCT04214262). Beyond 
the different drugs used, this clinical trial differs from the 
aforementioned one in some ways: it is not blinded and uses 
OS as a primary outcome. Results are expected in 2028 after 
the recruitment of 480 patients.

Until the publication of the results from those phase 
III trials, some insight will be gained by the many ongoing 
phase I and II clinical trials also investigating SBRT and 
immunotherapy for ES NSCLC. The largest of them, 
the ASTEROID trial (NCT03446547), is a randomized 
multicenter phase II trial, due to enroll 216 patients with 
T1-2N0M0 NSCLC receiving adjuvant Durvalumab 
after SBRT versus SBRT-only (3 or 4 fractions) (116). A 
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second randomized phase II trial, led by a team from MD 
Anderson, will look into SBRT with or without concurrent 
and adjuvant Nivolumab (117). The recruitment goal is set 
at 140 patients with stage IIA or less.

SBRT combined with targeted therapies
Similar to immunotherapy, the established role of targeted 
therapies in advanced NSCLC has laid the groundwork 
for their evaluation in ES NSCLC. In 2014, Wang and his 
colleagues published the results of a prospective study on 14 
patients with advanced NSCLC (stages IIIB or IV) (118). 
Those patients received 250 mg of Gefitinib (epidermal 
growth factor receptor inhibitor) daily, then concomitant 
SBRT in three fractions, and continued with Gefitinib for 
a year or until disease progression. Those patients showed 
good tolerance of the combined therapy, with few grade 
3 toxicities and no grade 4 or higher adverse events. The 
median follow-up was 15.5 months and the median OS 
was 19.0 months. One-year local control was 83.9%. As of 
today, there are no publications studying the interaction 
of SBRT and targeted therapies in ES NSCLC, and no 
ongoing trials have been reported either.

Technology oriented research

Real-time tumor tracking
With the current technologies available, it is unambiguous 
to compensate for inter- and intrafractional motion of tumor 
and internal organs at risk. The most commonly practiced 
4D motion compensation strategy uses the so-called 
internal target volume concept (ITV) with continuously 
irradiating the target during free breathing (44). The most 
sophisticated concept for reducing (geometrical) safety 
margins is the so-called real-time target tracking (119). The 
process of real-time tumor tracking can be divided into 
three components: continuous or repetitive assessment of 
target motion, prediction models to compensate for time 
delays and non-continuous target monitoring, as well as 
real-time dynamic motion compensation. 

Regular  assessment of  target  motion refers  to 
accommodating respiratory motion by dynamically 
repositioning the radiation beam in order to follow the 
tumor location. Tracking of the tumor location can be 
achieved by radiographically tracking the tumor lesion itself 
or by tracking of a surrogate structure, using the following 
four methods (120): 

• Radiographic imaging of the lesion itself: Well-
defined, natively high-contrasted and conveniently 

located tumor lesions can potentially be detected in 
(kv-)imaging acquired during treatment. 

• Radiographic imaging of implanted fiducial markers: 
the implantation of metal fiducial markers allows 
for detection in kV imaging or fluoroscopy during 
treatment, and while a single marker enhances tumor 
detection, the implantation of multiple markers 
(three or more) and the measurement of distance 
between them accounts for tumor motion as well as 
marker migration. 

• Radiographic imaging of a surrogate structure: 
when continuous imaging of the tumor itself is 
not feasible, the correlation of the tumor position 
and an external respiration signal source such as 
anatomical structures or surface markers can be of 
use. If the relationship between the tumor position 
and the surrogate signal is stationary, measurement 
of the spatial relationship beforehand could be 
sufficient. However as respiratory physiology is 
complex, a constant correlation of displacement is 
not exclusively safe to assume. 

• Non-radiographic tracking of implanted signaling 
devices: Non-radiographic tumor tracking can be 
achieved by implanting signaling devices, that can be 
tracked remotely in three dimensions

Treatment delivery system latencies can have a 
disadvantageous impact during the treatment delivery 
using real-time tumor tracking systems. Prediction models 
might help to reduce the tumor localization error and 
improve gated treatment accuracy (121), while adaptive 
filter algorithms can be used to adjust for nonstationary 
correlation of the empirical tumor motion (120). 

Real-time dynamic motion compensation can be 
achieved using MLC compensation, which adapts the leaves 
opening as the tumor moves. This adaptation is possible 
using real-time information using the Electronic Portal 
Imaging Device (122).

Feasibility of MLC tracking has been shown on Varian, 
Elekta, and Siemens standard linear accelerators (linacs); 
however, it is not yet commercially available (123-128). The 
first report of a lung cancer patient treated with implanted 
electromagnetic transponders and real-time adaptive 
radiotherapy using MLC tracking was published in 2014 in 
a non-commercial framework and on a standard linac (127).

Additionally, markerless lung target tracking was 
performed on a modified programmable platform 
(HexaMotion, ScandiDos) with a Computerized Imaging 
Reference Systems (CIRS) phantom mimicking different 
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breathing patterns on a standard linac (129) passing all 
required QA criteria (119,130,131).

Non-ionizing imaging modalities become more and 
more important to be implemented in combination 
with real-time motion compensation on standard 
linear accelerators. Simulating characteristic tumor 
trajectories in a water tank using a 4D online ultrasound 
MLC tracking technique showed promising results to 
complement the current, commercially available MLC 
tracking techniques with a noninvasive approach (132). 
Nevertheless, the main limitation of online ultrasound 
imaging in general is the speed-of-sound errors in soft 
tissue with different physical properties leading to a 
maximum distance error of several millimeters (133). 
Additionally, MRI-linacs have become commercially 
ava i lable  and integrated MR imaging a l lows for 
continuous tumor tracking during treatment delivery (134) 
(Figure 3). 

Particle therapy
The use of SBRT has grown by a factor of three over the 
past decade and growing numbers of patients with ES 
NSCLC are expected to be treated in the future (135). 
However, traditional photon SBRT has some limitations. As 
outlined above, severe toxicity has been reported in patients 
with central tumor location. Using an SBRT technique 
that minimizes the dose to the OARs is desirable in order 
to reduce radiation-induced toxicity in the primary setting 
or in the setting of re-irradiation (136,137). In this context, 
particle therapy (PT) with protons or carbon ions could 
potentially be advantageous. The unique depth-dose curve 
characteristics of charged particles compared to photons 
can be exploited to improve normal tissue sparing without 
compromising tumor control. In addition to the physical 

dosimetric advantage, carbon ions also have a biological 
advantage over photons due to the higher probability of 
inducing tumor DNA-damage associated with a high linear 
energy transfer.

Several dosimetric studies comparing PT and photon 
based SBRT in ES NSCLC have shown that PT can 
offer comparable or even better coverage than SBRT 
while reducing the dose to the lungs, heart, esophagus, 
and spinal cord (138-143). However, it should be noted 
that the vast majority of the studies comparing dosimetry 
in ES disease have been performed using the passive 
scattering technique for PT. These benefits are likely to 
increase further with the use of pencil beam scanning (PBS) 
owing to the higher dose conformity, as demonstrated in 
dosimetric reports (144-147).

Single-arm phase I/II trials and retrospective data for 
ES disease have shown that proton therapy results in 
lung toxicities no greater than grade 3, the ability of dose 
escalation, and 2-year OS rates of 74–97.8% (148-151). For 
carbon ion radiotherapy, Japanese studies have reported 
OS rates at 3 and 5 years of 75% and 45–50%, respectively 
(152-154). Although these studies are promising, they 
were performed using the passive scattering technique 
and conventionally fractionated or hypofractionated 
schemes that are no longer used in the ES setting. A recent 
retrospective study has investigated the safety and efficacy 
of PT using pencil beam scanning for ES NSCLC (155). 
It has been observed that PBS-based PT is associated with 
PFS, LC, and OS rates at 2-year of 85.5%, 95.2%, and 
90.7%, respectively, with mild acute and late toxicities.

Despite these encouraging results, the optimal clinical 
context for PT is still unclear. There are currently 
no cl inical  data demonstrating a clear benefit  of 
hypofractionated PT over SBRT for ES NSCLC. A meta-

Figure 3 Overview of different tracking methodologies for the detection and compensation of tumor motion. The detection of tumor 
motion with ultrasound and the compensation of tumor motion with MLC and couch tracking was experimentally proven and is not yet 
clinically available. 
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analysis comparing the two modalities suggested that there 
is no statistically significant survival benefit from PT over 
SBRT after the inclusion of operability, but the 3-years LC 
favored PT (156). It should be emphasized that the study 
reported no indication of the inferiority of PT compared to 
SBRT, although almost all PBT patients were treated with 
passive scattering technique and without image guidance. 

To date, there is only one report on phase II randomized 
study comparing SBRT and stereotactic body proton 
therapy in ES NSCLC by MD Anderson (157). The trial 
closed early due to low accrual attributable to the lack 
of volumetric image-guided radiotherapy (IGRT) and 
insurance coverage. Nonetheless, the authors concluded 
that both techniques have acceptable toxicity and lead to 
comparable results. 

In light of these results, further comparisons between 
PT and SBRT in randomized studies that use advanced 
techniques are warranted to define the role of PT in ES 
NSCLC.

FLASH radiotherapy
In the past decades, advances in high-precision radiotherapy 
treatment delivery and image guidance have led to 
significant improvements in the management of lung 
cancers. However, tumor motion during treatment remains 
clinically challenging to address. Recently, FLASH 
radiotherapy has emerged as a technique able to “freeze” 
intra-fraction motion as it involves the ultra-fast delivery 
of treatment at dose rates exceeding by several orders 
of magnitude those currently used in clinical practice. 
Moreover, many pre-clinical studies across different animal 
models have shown that FLASH radiotherapy has the 
potential to markedly improve normal tissue tolerance while 
maintaining tumor control level (the so-called FLASH 
effect) (158-160). In a pioneering study on the FLASH 
effect, Favaudon et al. investigated lung fibrogenesis in 
C57BL/6J mice after bilateral thorax exposure to pulsed, 
ultra-high dose rates (≥40 Gy/s) irradiation with 4.5 MeV 
electron beams given in a single dose (161). Results showed 
that FLASH irradiation protects lungs from radiation-
induced fibrosis at doses known to trigger the development 
of fibrosis in the totality of animals after conventional dose-
rate irradiation (≤0.03 Gy/s). Cutaneous lesions were also 
reduced in severity, without modifying the anti-tumor 
efficiency compared to conventional irradiation. 

To date, most studies investigating the FLASH effect 
have been performed using dedicated electron linear 
accelerators as a source of radiation, thus limiting its 

clinical viability in practice. It was recently shown that 
clinacs can be modified for delivery of FLASH radiotherapy 
with electrons, thus increasing the potential availability of 
FLASH irradiators and facilitating its clinical translation 
(162,163). However, the poor penetration depth of 4.5– 
20 MeV electron beams limits FLASH radiotherapy to 
the treatment of superficial tumors only, or in the intra-
operative radiation therapy (IORT) setting. Whilst US 
researchers are developing the PHASER platform that 
might represent the ideal approach to bring FLASH with 
high-energy X-ray beams into clinic (164), to date, FLASH 
radiotherapy treatment of deep-seated tumors could 
potentially be performed only with proton beams. In fact, 
it has already been shown that modern proton therapy 
systems are potentially able to produce beams at very high 
intensities (165), and it is now being investigated if FLASH 
dose rates can be achieved for clinical proton therapy 
treatments (166).

Radiomics
Cross-sectional imaging is a pillar of modern diagnosis. 
With the steady improvement of imaging quality and 
the increase of imaging availability over the last decades, 
more and more valuable data is available for extraction and 
interpretation. Radiomics is a fast emerging research field, 
yielding to harness imaging features and provide additional 
quantitative information to build prediction models and/
or characterize cancer phenotypes. Radiomics is currently 
evaluated for two purposes: pre-treatment risk assessment 
of ES NSCLC and post-SBRT assessment of radiation-
induced fibrosis versus local tumor recurrence.

A study analyzing a longitudinal 18F-FDG-PET/CT 
dataset of 100 consecutive patients (ES NSCLC) reported 
that an unsupervised machine learning method based 
on 722 radiomics features showed promising outcome 
prediction compared to prediction models based on clinical 
characteristics only (167). Such models would be highly 
desirable for selection of high-risk patients, which might 
benefit the most from treatment intensification.

Post-SBRT fibrotic changes are frequently difficult 
to distinguish from true recurrence after SBRT for ES 
NSCLC: longitudinal CT imaging improves the accuracy 
but might put the patient at an increased risk for further 
disease progression. Early studies have shown promising 
results of using radiomics for post-SBRT follow-up 
imaging. Mattonen et al. reported a study of 45 patients, 
15 with local recurrence matched to 30 without, where 
radiomics was able to accurately predict local recurrence as 
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early as 6 months after SBRT (168).
Despite the promise of Radiomics, its prospective 

evaluation especially in a multi-institutional environment, 
with varying imaging hardware and protocols needs to be 
demonstrated.

Conclusions

The advances in SBRT technology over the last decades 
and the increasing availability of SBRT expertise and 
infrastructures have established SBRT as a safe, effective 
and efficient treatment option for ES NSCLC, which is 
today the standard of care for inoperable patients. While 
treatment of peripheral lesions indisputably results in 
excellent outcome and rare major side effects, centrally 
located lesions are more prone to develop treatment-
related toxicity. The latter can be treated safely using 
adapted dose/fractionation regimes; however, research on 
the optimal relationship between fractionation schedules 
and tumor location is ongoing. In medically operable 
patients, surgical resection remains the preferred treatment, 
although SBRT has been shown to yield comparable results. 
SBRT is therefore a valid alternative for appropriately 
selected patients, however further randomized evidence 
is called for. Onward perspectives in SBRT may include 
the implementation of technological advances as well as 
treatment combinations (e.g., targeted substances) in order 
to further improve outcome and reduce toxicity.
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