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Background: Aberrant epigenetic modifications play a key role in lung tumorigenesis. In our study, 
we aimed to explore the clinical implications of baseline circulating tumor DNA (ctDNA) somatic and 
methylation profiles in patients with lung squamous cell carcinoma (LUSC).
Methods: A total of 26 patients with LUSC of various stages were included in this study. Somatic mutations 
and methylation levels were profiled from the plasma-derived ctDNA obtained at the time of diagnosis 
using unique molecular identifier (UMI)-based targeted sequencing and bisulfite sequencing, respectively. 
The correlation between baseline ctDNA mutation and methylation profile, and overall survival (OS), were 
analyzed.
Results: Somatic mutations were detected in 80.8% (20/26) of the patients. Patients harboring somatic 
mutations with maximum allelic fraction (maxAF) of >5% had significantly shorter OS compared to those 
with maxAF ≤5% (7.1 vs. 54.6 months; P=0.020). ctDNA methylation level was found to be strongly 
correlated with maxAF (Pearson correlation =0.934; P<0.001). Consistent with maxAF, higher methylation 
levels were also associated with poorer OS (hazard ratio =2.377; 95% CI: 1.283–4.405; P=0.006). Moreover, 
a total of 1,956 ctDNA methylation blocks were differentially methylated in patients with maxAF >0 
(P<0.05). Least absolute shrinkage and selection operator (LASSO) regression analysis revealed a significant 
correlation between methylation signatures from 5 methylation blocks and OS (hazard ratio =183.20, 95% 
CI: 2.74–12,243.32; P=0.015). These 5 methylation blocks could serve as an alternative to maxAF and can be 
explored as prognostic biomarkers.
Conclusions: Our study identified several ctDNA methylation blocks that can potentially predict the 
prognosis of LUSC at the time of diagnosis.
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Introduction

Lung cancer remains the leading cause of cancer-
related death worldwide, including China (1-4). Among 
the non-small cell lung cancer (NSCLC) histological 
subtypes, lung squamous cell carcinoma (LUSC) is one 
of the most prevalent, accounting for approximately 
15–30% of all lung cancers diagnosed in China (1,5-9).  
Histologically,  LUSC is an epithelial  malignancy 
characterized by keratinization and/or intercellular 
bridges and demonstrates positivity for squamous 
differentiation markers using immunohistochemistry (7). 
LUSC is strongly associated with exposure to tobacco 
and is predominantly diagnosed in males (1,8-10). The 
5-year survival rate of LUSC is approximately 18% (1), 
with survival outcomes remaining unchanged over the 
last decade. The tumor-node-metastasis (TNM) staging 
system remains as the primary guide for the treatment and 
prognostication for NSCLC, including LUSC (11,12). 
As the standard of care, patients with early-stage LUSC 
are managed with surgery and adjuvant chemotherapy, 
with or without radiotherapy (13). Meanwhile, patients 
with advanced-stage LUSC are treated with cytotoxic 
chemotherapy as a first-line treatment, particularly with 
platinum-based doublet, and are recommended to undergo 
molecular testing for actionable mutations (13). However, 
due to the low frequency of actionable mutations typically 
found in lung adenocarcinoma, such as EGFR and ALK 
(14-16), the use of targeted therapy remains limited among 
patients with advanced LUSC. Late diagnosis and the lack 
of actionable mutations are major contributors to the poor 
prognosis of LUSC. Numerous efforts have been invested 
in identifying molecular factors with either prognostic or 
predictive value in LUSC; however, no biomarker has been 
validated for use in standard clinical practice (10,17,18). 
Thus, there is an urgent need to identify prognostic and 
predictive biomarkers to improve outcomes of patients 
with LUSC.

DNA methylation is a major epigenetic modification 
by which methyl groups are added to critical regions of 
DNA for the precise control of gene expression. The key 
biological processes under epigenetic control include the cell 
cycle, DNA repair, cell proliferation, and apoptosis, which 
are critical pathways involved in tumor development and 
progression (19,20). Aberrant DNA methylation, including 
genome-wide hypomethylation of repetitive elements and 
CpG-poor regions, and regional hypermethylation of CpG 

islands at gene promoters, has been implicated in the early 
stages of carcinogenesis in various solid tumors including 
LUSC (18,20-27). Numerous studies have explored the 
potential of epigenetic deregulation as a biomarker of early 
detection, cancer surveillance/disease monitoring, and 
prognosis of various human cancers (26,28-30).

Liquid  b iopsy  samples  are  now being used  as 
minimally-invasive alternative sources of tumor DNA 
for next-generation sequencing (NGS)-based genomic 
testing (31-34). The advances in molecular detection 
using liquid biopsy samples are particularly advantageous 
for patients who have tumors that are inaccessible or 
have a limited volume of tumor biopsy specimen. The 
presence of circulating tumor DNA (ctDNA) derived from 
blood samples, the most commonly used liquid biopsy 
specimen, is associated with minimal residual disease 
from resected early-stage lung cancer and serves as an 
early biomarker for cancer recurrence (29,34). With the 
possibility of longitudinal sampling, considerable attention 
has been invested towards exploring the utility of ctDNA 
methylation profiling for the early detection of cancer 
recurrence or relapse (30,33,35-43). Numerous genes have 
been identified to be differentially methylated in blood 
samples of patients with early-stage lung cancer, including 
SHOX2, RASSF1A, and p16, which could potentially serve 
as predictive biomarkers (30,33,35-42). As compared to 
lung adenocarcinoma, DNA hypermethylation of SHOX2 
was highest in small cell and LUSC tumor tissue samples, 
indicating that methylation status is distinct among 
lung cancer histologies (40). However, investigations on 
ctDNA methylation patterns that enable the prediction 
of prognosis at the time of diagnosis were performed 
on lung cancer patients in general and independent 
investigation on LUSC is very limited. In our study, we 
aimed to identify differential methylation signatures in 
certain genomic CpG regions from blood samples at initial 
diagnosis that are associated with survival, and potentially 
predict survival outcomes in Chinese patients with LUSC. 
We present the following article in accordance with the 
REMARK reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-20-1070).

Methods

Patients

A total of 26 consecutive patients with stage IA–IV lung 
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cancer with confirmed squamous cell histology diagnosed 
at our institution between March 2017 and September 2019 
were prospectively included in this study. Clinical staging 
and histology were evaluated according to the eighth 
edition of the American Joint Committee on Cancer (11) 
and the 2015 World Health Organization classification of 
lung tumors (7), respectively. The main study inclusion 
criteria are as follows: (I) pathologically-confirmed 
squamous cell carcinoma; (II) provided consent to submit 
blood samples at diagnosis; (III) provided written informed 
consent to participate in the study. The main exclusion 
criteria are as follows: (I) non-squamous cell lung cancer 
histology; (II) history of other malignant tumors within the 
last 5 years; (III) failure to obtain blood samples prior to 
receiving treatment; (IV) refusal or withdrawal of consent. 
Baseline clinicopathological information was collected, 
including age at diagnosis, gender, smoking status, and 
treatment information, and is summarized in Table S1. 
The cohort was comprised of a majority of males (88.5%; 
23/26), with a median age of 63 years (range, 38–78 years). 
All patients received therapeutic management based on 
their clinical stages following the guidelines of the National 
Comprehensive Cancer Network and the decision of the 
physician-in-charge. Baseline blood samples were obtained 
from each patient at the time of initial visit/diagnosis. 
The study was approved by our Institutional Review 
Board (approval number: NCC1576) and performed in 
compliance with the ethical standards of the institutional 
and/or national research committee. This study was also 
carried out in accordance with the Declaration of Helsinki 
(as revised in 2013). All patients provided written informed 
consent before inclusion in the study.

DNA isolation

DNA isolation and subsequent NGS library preparation 
were performed at Burning Rock Biotech, a College of 
American Pathologists (CAP)-accredited and Clinical 
Laboratory  Improvement  Amendments  (CLIA)-
certified clinical laboratory. In brief, circulating cell-
free DNA (cfDNA) was isolated from plasma samples 
using QIAamp Circulating Nucleic Acid kit, according 
to the manufacturer’s standard protocol (Qiagen, Hilden, 
Germany). cfDNA quantity and quality were estimated 
using the Bioanalyzer 2100 instrument and high sensitivity 
DNA assay kit (Agilent Technologies, CA, USA). A 

minimum of 50 ng DNA was required for the NGS library 
construction.

Unique molecular identifier (UMI)-based targeted 
sequencing and data analysis

Targeted sequencing was performed as described 
previously (44). The cfDNA fragments were ligated with 
adapters containing UMIs. Target capture was performed 
using a panel consisting of 168 cancer-related genes 
(Burning Rock Biotech), spanning 273 kilobases of the 
human genome. The UMI-tagged indexed samples were 
subsequently sequenced on an Illumina NovaSeq 6000 
(Illumina, San Diego, CA, USA) using 2×150 base pair 
(bp) cycles and a target sequencing depth of 30,000×. 
Sequencing data were analyzed using bioinformatics 
pipelines optimized to accurately distinguish between 
somatic mutations and sequencing artifacts.

Bisulfite targeted sequencing and data analysis

Whole-genome bisulfite sequencing library preparation 
was performed using the brELSA (Burning Rock Biotech) 
as described previously (35). Briefly, purified cfDNA were 
treated with sodium bisulfite (EZ-96 DNA Methylation-
Lightning MagPrep, Zymo Research, Orange, CA, USA). 
The converted fragments underwent two series of ligation 
with appropriate adapters, amplification, and purification 
to obtain the whole-genome bisulfite sequencing library. 
Target enrichment was performed using custom-designed 
lung-cancer methylation profiling RNA baits covering 
80,672 CpG sites, spanning 1.05 megabases of the human 
genome. The target libraries were finally quantified by 
real-time PCR (Kapa Biosciences, Wilmington, MA, USA) 
and sequenced on a NovaSeq 6000 (Illumina, San Diego, 
CA, USA) using 2×150 bp cycles. Bisulfite sequencing 
data analysis was performed using an optimized pipeline. 
Custom adapter sequences and low-quality bases were 
removed using Trimmomatic (v.0.32). Sequence alignment 
of paired-end reads to CtoT- and GtoA-transformed hg19 
genome was performed using BWA-meth (v.0.2.2) (45). 
PCR duplicates from aligned sequences were marked with 
Samblaster (v.0.1.20) (46). Sambamba (v.0.4.7) (47) was 
then used to remove the sequencing reads with either low 
mapping quality (MAPQ <20) or improper pairing. To 
eliminate potential double-counting of methylation calls, 
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overlapping reads from paired-read sequences were clipped 
and merged using in-house scripts.

Analysis of methylation patterns

Methylation levels in this study were analyzed and 
represented as scores to reflect methylation features of 
the sample. Using the methods described previously (35), 
the 80,672 CpG sites included in the panel were grouped 
into 8,312 methylation blocks to account for linkage 
disequilibrium. Methylation blocks were defined as the 
genomic region between the neighboring CpG sites with the 
r2 value calculated based on our modified correlation matrix. 
In brief, Pearson’s correlation analysis was performed to 
calculate the difference among the methylation frequencies 
of each pair of CpG sites, normalized by the difference 
in genomic distance and methylation level. Methylation 
frequencies for the entire set of methylation blocks were 
calculated as the ratio between the total number of Cs at all 
CpG sites within a methylation block, and the total number 
of C+Ts at the same methylation block. 

Methylation pattern value (MPV1) was defined as the 
differential methylation pattern of CpG sites in a certain 
genomic region with an interval of 0–1 within a methylation 
block, and is represented by the following formula in Eq. [1]:
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Wherein: n refers to the number of sequencing reads for 
the multiple CpG sites that cover the methylation block; Li 
refers to the number of CpG sites within the methylation 
block that is covered by the i-th sequencing read; mi refers 
to the number of methylation blocks with consecutively 
methylated CpG sites which appeared in the i-th sequencing 
read; lij indicates the number of methylated CpG sites per 
methylation block.

Since each of the 8,312 methylation blocks had their 
individual MPV1 score, a methylation score was also 
calculated per patient sample using Eq. [2].
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Wherein: n  refers to the number of methylated 
blocks; Ti refers to the value corresponding to the i-th 
methylation block estimated for the patient circulating 
tumor DNA (ctDNA) sample; Hi refers to the value 
corresponding to the i-th methylation block estimated for 
a group of asymptomatic healthy samples, methylation 

data were derived from ctDNA mutation profiling of 198 
asymptomatic healthy patients; N indicates the number of 
asymptomatic healthy patients included in the analysis; Hij 
refers to the value corresponding to the i-th methylation 
block for j-th sample from the asymptomatic healthy 
patients; 

lH  refers to the mean value corresponding to the 
i-th methylation block for the remaining samples from the 
asymptomatic healthy patients.

Statistical analysis

Statistical analysis was performed using the R statistics 
package (R version 3.4.0; R: The R-Project for Statistical 
Computing, Vienna, Austria). Statistical significance was 
defined as P values <0.05. Differences between groups 
were calculated using a two-tailed Student’s t-test, as 
appropriate. Overall survival (OS) was defined from the 
date of diagnosis until death or the last day of follow-
up. OS values corresponding to the last day of follow-
up for patients who are still alive were censored and were 
indicated by tick marks in the survival curves. The data 
cut-off was October 1, 2019 with a median follow-up of 
6 months (ranging from 1 month to 34 months). Survival 
differences between patients with certain maximum allelic 
fraction (maxAF) percentages were estimated using the 
Kaplan-Meier method and compared using the log-rank 
test. Univariate Cox proportional-hazards model was used 
to estimate the correlation between molecular features and 
survival outcome. Least absolute shrinkage and selection 
operator (LASSO) was implemented using the glmnet 
package to perform a regression analysis for identifying the 
smallest possible methylation block set that correlated with 
maxAF.

Results

Molecular profile of the cohort

To understand the baseline somatic mutation profile of 
the patients, targeted sequencing analysis was performed 
using blood samples obtained at the initial visit. Among the 
26 patients with adequate baseline samples, the mutation 
detection rate was 80.8% [20/26], with the remaining 6 
patients found to be wild-type for genes included in the 
panel. The most frequently mutated gene in the cohort was 
TP53, with a mutation rate of 73.0% [19/26]. Among the 
classic lung cancer driver mutations, PIK3CA (n=3), EGFR 
amplification (n=2), EGFR exon 19 deletion (n=1), KRAS 
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Q61R (n=1), and MET amplification (n=1) were identified 
from our cohort. The mutation profile of the cohort is 
illustrated in Figure S1.

Correlation between maxAF and survival outcome

The maxAF represented the somatic mutation detected 
from the patient, and was defined as the highest allelic 
fraction observed among all the mutations detected from 
their blood sample, regardless of gene or mutation site. 
The median maxAF of the cohort was 2.06%, ranging 
between 0 and 52.86%. Among the 26 evaluable patients, 
65.5% [17/26] of the patients had a maxAF of ≤5%, while 
the remaining 9 patients had a maxAF >5%. Patients with a 
maxAF >5% had significantly shorter OS compared to those 
with a maxAF ≤5% (P=0.020, Figure 1). The median OS for 
patients with a maxAF >5% was 7.1 months, while patients 
with a maxAF ≤5% had a median OS of 54.6 months.

Cox regression analysis further revealed an association 
between OS outcomes and maxAF [hazard ratio (HR) 
=54.12; 95% confidence interval (CI): 1.89–1,547.00; 
P=0.020], suggesting that ctDNA somatic mutations, 
represented by maxAF, hold potential as prognostic 
biomarkers for LUSC.

Correlation between methylation features and survival 
outcomes

We further analyzed the methylation profile of our cohort 
at the time of diagnosis to understand their epigenetic 
status at baseline. A strong correlation was found between 
maxAF and differential methylation patterns expressed as 
MPV1 (Pearson’s r=0.934, P<0.001; Figure 2). Consistently, 
Cox regression analysis also revealed an association between 
OS and differential methylation patterns (HR =2.377; 95% 
CI: 1.283–4.405; P=0.006), indicating that the higher the 
methylation levels, the worse the survival outcomes.

Interestingly, in-house methylation data derived from 
251 LUSC patient tissue samples at various stages (stage 
I–IV) revealed that a total of 402 methylation blocks 
correlated with OS. When considering only these 402 
methylation blocks, the ctDNA methylation patterns of our 
cohort at baseline, expressed as MPV1, also demonstrated a 
strong correlation with OS (P=0.027, adjusted with maxAF, 
smoking, and stage).

These data suggest that ctDNA methylation status at 

Figure 1 Kaplan-Meier estimation of the overall survival (OS; 
expressed in days) of our cohort according to their maximum allelic 
fraction (maxAF). Red line represents patients with maxAF >5% 
(n=9), blue line represents patients with maxAF ≤5% (n=17). Tick 
marks at particular time points represent censored patients. The 
risk table below illustrates the number of patients included per 
time point.

Figure 2 Methylation pattern value (MPV1) scores, reflecting 
the circulating tumor DNA (ctDNA) methylation pattern, were 
significantly correlated with maximum allelic fraction (maxAF). 
Dot plot illustrating the correlation. The gray area in the plot 
indicates the 95% upper and lower confidence intervals (CI).
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Table 2 The genes or regions covered by the 5 differentially 
methylated blocks identified by least absolute shrinkage and 
selection operator (LASSO) modeling to be associated with 
prognosis in patients with lung squamous cell carcinoma

Chromosome location Covered regions/genes

1: 50886774-50887060 Exonic region of DMRTA2

1: 91182138-91182661 Promoter region of BARHL2

2: 223162695-223163049 Intronic region of PAX3 to promoter 
region of CCDC140

10: 101287805-101288002 Exonic region of LINC01475

10: 101293828-101293964 Promoter region of LINC01475 to 
intronic region of NKX2-3

Table 1 Maximum allelic fraction (maxAF)-related methylation 
blocks associated with overall survival (OS)

Methylation  
block number

Hazard 
ratio

95% confidence 
intervals

P value

5 183.20 (2.74, 12,243.32) 0.015

11 102.22 (2.41, 4,338.23) 0.016

15 73.63 (2.21, 2,458.37) 0.016

20 62.23 (2.07, 1,931.42) 0.018

the time of diagnosis could serve as a potential prognostic 
biomarker for LUSC.

Identifying maxAF-related methylation signatures

We further used LASSO to identify certain methylation 
blocks that were associated with maxAF and OS. A total of 
1,956 methylation blocks were found to be differentially 
methylated from 21 samples with maxAF >0%, and were 
significantly correlated with maxAF (P<0.05). Using 7-fold 
cross-validation, the lambda.min and lambda.1se of the 

generalized linear model were used to determine the optimal 
methylation signature that was correlated with maxAF. 
Figure 3 illustrates the lambda and the corresponding mean-
squared error (MSE) for various methylation block features 
generated from the LASSO model.

When the lambda of the model equalled lambda.
min yielding the minimum average cross-validated error 
of 3.5E-03, the model which included five methylation 
blocks had an MSE of 4.2E-03 (95% CI: 2.7E-03, 5.7E-3). 
When the lambda equalled lambda.1se, yielding the most 
normalized model whereby the error within 1 standard 
error of the minimum was 2.9E-02, the model which 
included 20 methylation blocks had an MSE of 5.6E-03 
(95% CI: 2.7E-03, 8.5E-3). Using the model constructed 
with five methylation blocks on all of the 26 patient 
samples from the cohort including those with maxAF=0, 
the predicted methylation signature value was significantly 
associated with OS (P=0.015), and the corresponding HR 
was the largest compared to models constructed with 11, 
15, and 20 methylation blocks (Table 1). Table 2 lists the 
genomic position of the five differentially methylated 
blocks associated with prognosis. Table S2 lists the 
genomic position of all the methylation blocks identified 
by LASSO.

Interestingly,  MPV1 corresponding to the f ive 
methylation blocks was higher among the patients 
with maxAF >5% compared to those with maxAF ≤5%  
(Figure 4). Table S3 summarizes the clinicopathological 
features, maxAF, and MPV1 scores for the 5 methylation 
blocks of the cohort. Patients with higher MPV1 and 
maxAF >5% had shorter OS, indicating that these 
dif ferential  methylat ion s ignatures from the f ive 
methylation blocks could serve as an alternative to maxAF, 

Figure 3 Cross-validated mean-squared error (MSE) generated by 
the least absolute shrinkage and selection operator (LASSO) model 
to predict maximum allelic fraction (maxAF). X-axis denotes the 
log of the lambda. Y-axis denotes the MSE. The values on the top 
of the graph indicate the number of methylation block features. 
Dotted line represents the lambda.min which reflects the minimum 
average cross-validated error, and lambda.1se which reflects the 
most normalized model whereby the error is within 1 standard 
error of the minimum.
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to be associated with maxAF. Blue denotes low MPV1 (MPV1 <0.1), red denotes high MPV1 (MPV1 >0.3) in the corresponding methylation 
block. X-axis denotes the genomic positions of the 5 methylation blocks. Y-axis denotes the maxAF of the 26 patients grouped according to 
the maxAF. Light green represents patients with maxAF ≤5%. Dark green represents patients with maxAF >5%. LUSC, lung squamous cell 
carcinoma.

and potentially serve as prognostic biomarkers for LUSC.
Discussion

In addition to the clinical value of somatic mutation 
profiling in guiding therapeutic management for patients 
with lung cancer, mounting evidence supports the utility of 
DNA methylation signatures as diagnostic, prognostic, or 
predictive biomarkers (29-34). Compared to invasive tissue 
sampling, blood samples can be obtained in a minimally-
invasive manner and sampled repeatedly during the 
treatment course. CtDNA, derived from DNA fragments 

shed into the plasma via necrosis, apoptosis, or active 
release of DNA from tumor cells, can reflect dynamic 
changes in the genetic and epigenetic status of the tumor 
without the intra-tumor heterogeneity associated with tissue 
biopsies (31-34). The concentration of ctDNA from the 
plasma-derived cfDNA is highly dependent on the tumor 
burden. Therefore, the detection of somatic mutations 
from ctDNA is severely limited in early-stage tumors (44). 
As compared with somatic mutations, DNA methylation 
in promoters of various tumor suppressor genes is more 
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ubiquitous and occurs at the early stages of lung tumor 
development (18,20-27), which improves the sensitivity 
of detecting aberrant DNA methylation from cfDNA. 
Numerous reports have identified the promoter region 
of a single gene or a panel of genes that are differentially 
methylated in NSCLC; however, histology-based subcohort 
analysis on LUSC is limited (30,33,35-42). As compared 
to lung adenocarcinoma, LUSC has shown a histologically 
distinct methylation pattern in certain gene promoters (40); 
however, no study has yet reported on specific prognostic 
markers in LUSC.

In this study, we performed parallel somatic mutation 
and methylation profiling of ctDNA obtained from 
Chinese patients with various stages of LUSC to identify 
the molecular factors that can predict survival outcomes at 
the time of diagnosis. Our data demonstrated that maxAF 
>5%, derived from ctDNA somatic mutation profiling 
at baseline, was significantly correlated with shorter OS. 
Furthermore, we identified five genomic regions or genes 
that were differentially methylated at baseline and were 
significantly correlated with OS, suggesting their potential 
to predict prognosis even at the time of diagnosis. To the 
best of our knowledge, this study is the first to identify 
methylation signatures from the ctDNA of patients with 
LUSC that are significantly correlated with their prognosis. 
These methylation signatures are promising biomarkers 
for predicting survival outcome at the time of diagnosis for 
this subset of patients. Our findings highlight the potential 
clinical utility of ctDNA somatic mutation and methylation 
profiling at baseline for predicting the survival outcomes 
of patients diagnosed with various stages of LUSC. DNA 
methylation profiling of plasma samples could provide a 
minimally-invasive alternative to tissue biopsy procedures 
in the prognostication of patients with LUSC.

The ctDNA somatic mutation profile of our cohort was 
consistent with the mutation profile of LUSC patients in 
previous studies (14-16). TP53 was the most commonly 
mutated gene from our cohort, with an overall mutation 
rate of 73%. Only 8 patients from our cohort had 
potentially actionable mutations with available targeted 
agents. Stratifying the patients into two groups based on 
maxAF at baseline revealed a strong correlation between 
maxAF and OS.

ctDNA methylation profiling of our cohort revealed 
differential methylation patterns in various genomic 
regions, with 1,956 differentially methylated blocks 
at  basel ine correlated with maxAF. Among the 5 
differentially methylated regions associated with maxAF 

and OS, DMRTA2 was also identified to be differentially 
methylated in lung tumors compared with normal lung 
samples and benign tumors (25). Moreover, PAX3 (22) 
and BARHL2 (23) were also identified as hypermethylated 
from primary LUSC tumors. However, no study has 
associated the differential methylation of these genes or 
other genomic regions with the prognosis of patients with 
LUSC.

Our study is limited by the inclusion of a small cohort of 
patients recruited from a single center, which might have 
introduced sampling bias. A prospective cohort study with 
a larger sample size in a multi-center setting is required to 
further establish the potential of differential methylation 
signatures from these genomic regions as prognostic 
biomarkers of patients with LUSC. Experimental studies 
on the individual genes that are correlated with prognosis 
would also advance the understanding of their regulation 
and functional role. It would also be interesting to analyze 
longitudinal ctDNA samples from patients with LUSC 
during their treatment course to establish methylation 
patterns that could predict treatment response, development 
of resistance, and disease relapse.

Conclusions

Our study identified molecular features that show promise 
as prognostic biomarkers for patients with various stages of 
LUSC at the time of their diagnosis. Our study provides an 
incremental contribution towards understanding the clinical 
value of ctDNA methylation and somatic mutation profiling 
at baseline in predicting the survival outcomes of patients 
with LUSC.
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