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Background: Accumulating evidence suggests that lymphocyte infiltration in the tumor microenvironment 
is positively correlated with tumorigenesis and development, while the role of Tregs (regulatory T cells) has 
been controversial. Therefore, we attempted to discover the possible value of Tregs for lung adenocarcinoma 
(LUAD).
Methods: The gene-sequencing data of LUAD were applied from three Gene Expression Omnibus (GEO) 
datasets—GSE10072, GSE32863 and GSE43458; the corresponding fractions of tumor-infiltrating immune 
cells were extracted from the CIBERSORTx portal. Weighted gene coexpression network analysis (WGCNA) 
and protein-protein interaction (PPI) network analysis were conducted to identify the significant module 
and candidate genes related to Tregs. The role of candidate genes in LUAD was further verified using data 
from The Cancer Genome Atlas (TCGA) database. Finally, we constructed a nomogram model to predict 
the prognosis of LUAD by plotting Kaplan-Meier (K-M), receiver operating characteristic (ROC) and 
calibration curves, which elucidated the performance of the nomogram.
Results: In total, 10,047 genes in 333 samples (196 tumor and 137 normal samples) from the GEO 
database were included. By WGCNA and PPI analysis, we identified a significant black module and 36 
candidate genes related to Treg. Next, the candidate genes were verified using TCGA data by Cox regression 
analysis to screen 13 hub genes that stratified LUAD patients into low- or high-risk groups. Low-risk 
patients showed a significantly longer overall survival (OS) than high-risk patients (3-year OS: 70.2% vs. 
35.2%; 5-year OS: 36.6% vs. 0; P=1.651E-09), and the areas under the ROC curves (AUCs) showed good (3-
year AUC: 0.733; 5-year AUC: 0.777). Next, we constructed a survival nomogram combining the hub genes 
and clinical parameters; the low-risk patients still showed a favorable prognosis compared with that of the 
high-risk patients (P=7.073E-13), and the AUCs were better (3-year AUC: 0.763; 5-year AUC: 0.873).
Conclusions: We revealed the role of immune-infiltrating Treg-related genes in LUAD and constructed 
a prognostic nomogram, which may help clinicians make optimal therapeutic decisions and help patients 
obtain better outcomes.
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Introduction

Lung cancer is the leading cause of malignancy-related 
death worldwide, with approximately 2.2 million new cases 
and 1.9 million deaths worldwide in 2017 (1), despite great 
progress in diagnosis and therapeutics over the years. As 
the most prevailing histological type of lung cancer, lung 
adenocarcinoma (LUAD) always derives from the acinar 
cells of the lung periphery and has a poor prognosis. This 
cause may be mainly due to the high heterogeneity of 
LUAD and advanced stage of patients when diagnosed (2). 
However, the current TNM (tumor size, lymph nodes and 
distant metastasis) staging system tends to be insufficient to 
accurately characterize and stage tumors at an early stage 
and even after surgery (3,4), features that are necessary 
to design an optimal initial treatment plan and offer 
adequate postoperative adjuvant therapy. Therefore, more 
complementary methods to enhance TNM staging and 
identify the behavior of LUAD are needed.

In recent years, our view of cancer has changed 
drastically. Tumors are no longer regarded as simple 
malignant masses or cells but as a complex tumor 
microenvironment: tumor cells recruit other infiltrating 
immune cell subpopulations to constitute a self-sufficient 
biological unit (5). The composition of the tumor 
microenvironment varies in different patients and even in 
the same type of cancer, such as different fractions of B 
cells, NK cells, M1/M2 macrophages, granulocytes, mast 
cells, CD8+ T cells, CD4+ helper T cells, and regulatory 
T cells, which determine tumor characteristics and the 
patient prognosis (6-8). Previous studies showed that the 
expansion and accumulation of suppressive Tregs always 
caused the development, metastasis and recurrence of 
multiple malignancies including lung cancer (9-12). Some 
studies found that FoxP3+CD4+Tregs infiltrating correlated 
negatively with the survival of small cell lung cancer (SCLC) 
(13,14). Other researches on non-small cell lung cancer 
(NSCLC) revealed that whether in peripheral blood or 
intratumor, high level of Tregs was associated with high 
metastasis and low survival rates (15-17). However, a study 
published in ‘Nature Immunology’ from Ferreira et al.,  
highlighted the role of type 1 Tregs in enhancing the 
immunity barrier in peripheral tissues, which challenged the 
classical view of Tregs in immunosuppression (18). Given 
that the role of Tregs (regulatory T cells) in tumors has 
been controversial, we attempted to explore the potential 
value of Tregs for LUAD.

In the present study, we integrated three LUAD 

sequencing datasets ,  GSE10072,  GSE32863,  and 
GSE43458, from the Gene Expression Omnibus (GEO) 
database and extracted the relevant fractions of 22 immune-
infiltrating cells from the CIBERSORTx portal. Next, 
weighted gene coexpression network analysis (WGCNA) 
and protein-protein interaction (PPI) network analysis 
were conducted to identify the most significant module 
and candidate genes related to Tregs. The candidate genes 
were then further validated using data from The Cancer 
Genome Atlas (TCGA) database, and 13 hub genes were 
screened. The correlation between hub genes and Tregs was 
tested using Spearman’s method. Finally, we constructed 
a nomogram model combining the hub genes and clinical 
parameters, which showed a better performance to predict 
the risk of LUAD. The flow diagram of this study is shown 
in Figure 1. We present the following article in accordance 
with the TRIPOD reporting checklist (available at http://
dx.doi.org/10.21037/tlcr-20-822).

Methods

Data source and processing

The LUAD sequencing data were applied from three GEO 
(http://www.ncbi.nlm.nih.gov/geo/) datasets, GSE10072, 
GSE32863, and GSE43458. We used the sav and limma 
packages of R to perform batch calibration and data 
normalization. When a gene corresponds to multiple 
probes, the mean value is taken as the final expression value.

Estimation of immune infiltrating cells

Using the sequencing data, we estimated the fractions of 
22 tumor-infiltrating immune cells using CIBERSORTx 
(https://cibersortx.stanford.edu/), an online tool that 
imputes gene expression profiles by a deconvolution 
algorithm and provides an estimated abundance of known 
cell types within a mixed cell population (19).

Construction of the coexpression network and module-trait 
relationships

The expression values of the 10,048 genes of the LUAD 
samples were used to construct a weight coexpression 
network employing the R package “WGCNA”, a biological 
method used to integrate genes with coexpression into the 
same module. The correlations between the modules and 
sample traits are calculated to screen the models with a high 

http://dx.doi.org/10.21037/tlcr-20-822
http://dx.doi.org/10.21037/tlcr-20-822
https://cibersortx.stanford.edu/
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Figure 1 Flow diagram of the study.
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correlation with traits, and the genes in the modules are 
analyzed to identify target genes (20).

Here, we used the fractions of 22 immune-infiltrating cells 
as sample traits and chose an optimal soft threshold power (β) 
to build a scaleless network when setting the index of scale-
free topologies as 0.90. Next, we assigned genes with similar 
expression patterns to the same module (minimum size =30) 
using the “dynamic tree cutting” algorithm. Moreover, we 
estimated the correlation of the module eigengenes with the 
infiltrating level of the 22 immune-infiltrating cells to screen 
the significance of the modules by Pearson’s test. Finally, we 
selected the “Tregs (regulatory T cells)” subtype of interest 

and the module with the highest correlation with Tregs was 
selected for further study.

Construction of the PPI network and identification of 
candidate genes

From the significant module, we obtained Treg-related 
module genes, with which the PPI network was developed 
using Search Tool for the Retrieval of Interacting Genes 
(STRING; https://string-db.org/). Next, the PPI network 
was presented using Cytoscape (version 3.7.2), which is a free 
app for visualizing sophisticated networks and integrating 

https://string-db.org/
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them with attribute data. The “CytoHubba” module of 
Cytoscape is a plug-in that recognizes hub genes in a network 
based on the properties of nodes in a network (21), from 
which we screened the candidate genes related to Tregs.

Verification of candidate genes using TCGA data and 
screening of the hub genes

To further verify the role of candidate genes in LUAD, we 
applied gene sequencing and the corresponding completely 
clinical data (375 LUAD and 48 normal samples) at the 
TCGA (https://portal.gdc.cancer.gov/) portal, from which 
we extracted the expression values of the Treg-related genes. 
The expression values of LUAD and normal tissues were 
averaged using the “mean” function. Next, we used log2 
transform to normalize all the average expression values. 
Analysis of the statistically significant differences between 
the LUAD and normal expression data was conducted 
using the Wilcoxon signed-rank test built into R (version 
3.6.3; https://www.r-project.org/), defining the threshold 
of |log(fold change)| no less than 1 and the false discovery 
rate (FDR) less than 0.05. Finally, we implemented a Cox 
proportional hazards model to screen the Treg-related hub 
genes and their coefficients, from which the patients were 
assigned a high- or low-risk score. The risk scores were 

calculated using the following formula: 1
 = n

g gRisk score e c∗∑
(eg is the expression value of gene g in a sample; n is the 
number of independent indicators, and cg refers to the 
regression coefficient of gene g in the Cox proportional 
hazards model).

Validation of Treg-related hub genes

The Kaplan-Meier (K-M) curve was illustrated to estimate 
the differences in overall survival (OS) between the low- 
and high-risk groups using the log-rank test to analyze the 
statistical significance. Moreover, we implemented receiver 
operating characteristic (ROC) curves to evaluate the 
accuracy of grouping (low/high risk). Spearman’s correlation 
between the Treg infiltration level and expression of hub 
genes was calculated using the data from Tumor Immune 
Estimation Resource (TIMER2.0; http://timer.cistrome.
org/), and the results were visualized using the “ggstatsplot” 
package of R.

Enrichment analysis of hub genes related to Tregs

To identify tumor-related molecular mechanisms of the 

hub genes related to Tregs, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed in R using 
the packages org.Hs.eg.db, Cluster Profiler, enrichplot, and 
ggplot2 with both P values and q-values less than 0.05.

Construction and validation of the prognostic nomogram 
model for LUAD

To apply the Treg-related genes better clinically, we 
constructed a prognostic nomogram model for LUAD, 
combining the risk score with traditional clinical parameters 
(age, gender, stage, T, N and M). A nomogram is an effective 
tool that formulates the scoring criteria for all the variables 
in the regression equation according to their regression 
coefficients. Next, each patient receives a summed 
score, which can be converted into the probability of the 
outcome time of each patient through the function (22).  
We then performed ROC, calibration and K-M curve 
analyses to elucidate the performance of the nomogram.

Statistical analysis

All statistical analyses and graphics were generated using 
the R and Perl packages. A Cox proportional hazards model 
was applied to identify survival genes related to Tregs. K-M 
curve analysis was performed to show the differences in 
OS between the low- and high-risk groups, using the log-
rank test to estimate the significance of the differences. 
The calibration curve, ROC curve and area under the curve 
(AUC) values were used to determine the efficacy of the 
model. A P value less than 0.05 was defined as statistically 
significant.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Gene sequencing data and estimation of immune-
infiltrating cells

We acquired the gene expression data of 10,048 genes 
from 196 LUAD and 137 normal tissues from the GEO 
database and calculated the abundance of 22 immune-
infiltrating cells for each sample using the CIBERSORTx 
portal. Next, the fractions of 22 immune-infiltrating 
cells with gene expression data were selected as traits of 
WGCNA.

https://portal.gdc.cancer.gov/
https://www.r-project.org/
http://timer.cistrome.org/
http://timer.cistrome.org/
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Coexpression network and protein-protein interaction 
network

The expression data of the 10,048 genes with the abundance 
of 22 immune-infiltrating cells were used to build the 
coexpression network. To build the scaleless network, we 
chose the appropriate soft threshold power (β=10) because 
it was the first power value to make the index of scale-free 
topologies reach 0.90 (Figure 2A,B). Treg-related genes 
with similar expression patterns were incorporated into 
the same module using a dynamic tree-cutting algorithm 
(module size =30), making a hierarchical clustering tree 
with 12 modules (Figure 2C). As shown in Figure 3A, the 
black module was highly correlated with regulatory T cells 
(Tregs) (R2=0.52, P=1e-10) among the twelve modules. 
Because we were interested in Tregs, we selected 111 Treg-

related genes (Table S1) in the black module with P<0.05 
for further study.

Next, we developed the PPI network (Figure 3B) using 
111 module genes and eventually screened 36 candidate 
genes related to Tregs using the “CytoHubba” module of 
Cytoscape with all scores no less than 10.

Verification of the role of Treg-related genes in LUAD

To further verify the role of 36 candidate genes in LUAD, 
we extracted the gene sequencing and corresponding clinical 
data from the TCGA datvabase, comprising 375 LUAD 
and 48 normal samples. Using the Cox proportional hazards 
model, we eventually screened 13 hub genes (CCNB2, 
ECT2, RAD51AP1, UBE2C, CENPE, TOP2A, TYMS, 

Figure 2 Selection of the appropriate soft threshold (power) and construction of the hierarchical clustering tree. (A) Selection of the soft 
threshold made the index of scale-free topologies reach 0.90. (B) Analysis of the average connectivity of 1–20 soft threshold power. (C) 
Treg-related genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating a 
hierarchical clustering tree.

Scale independence Mean connectivity

Gene dendrogram and module colors

BA

C

https://cdn.amegroups.cn/static/public/TLCR-20-822-supplementary.pdf
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Module-trait relationshipsA

B

Figure 3 Heatmap of the correlations between the modules and immune-infiltrating cells (traits). (A) Within every square, the number on 
the top refers to the coefficient between the cell infiltrating level and corresponding module, and the bottom is the P value. (B) The protein-
protein interaction network of Treg-related genes.

KIF20A, STIL, CDKN3, PRC1, AURKA, HMMR) and 
their coefficients. Of the 13 hub genes, 4 (STIL, CCNB2, 
RAD51AP1, TOP2A) were considered risk genes (HRs: 
0.2895–0.9717; all P<0.05), and their overexpression may 
lead to a worse prognosis. Additionally, 4 genes (HMMR, 
ECT2, TYMS, and PRC1) may serve as protective genes 

(HRs: 1.0030–2.6878; all P<0.05), and their overexpression 
may lead to a better outcome for LUAD. The results of 
Cox regression analyses are shown in detail in Table 1. The 
individual risk score of each LUAD patient was calculated 
according to our risk score formula. Based on the median 
risk score, the LUAD patients were assigned to the low- 
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Table 1 Univariate and multivariate cox regression analyses of Treg-related genes in lung adenocarcinoma

Genes
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P Coef

CCNB2 1.2865 (1.1052, 1.4975) 0.0011 0.5618 (0.3248, 0.9717) 0.0391 −0.5766 

CENPF 1.3786 (1.1801, 1.6106) 0.0001 

ECT2 1.3876 (1.1780, 1.6344) 0.0001 1.4995 (1.0674, 2.1066) 0.0195 0.4051 

TPX2 1.2902 (1.1383, 1.4624) 0.0001 

RAD51AP1 1.2278 (1.0348, 1.4568) 0.0187 0.5962 (0.3927, 0.9052) 0.0152 −0.5172 

UBE2C 1.2097 (1.0799, 1.3551) 0.0010 1.1744 (0.938, 1.4706) 0.1610 0.1608 

KIF11 1.4513 (1.2191, 1.7276) 0.0000 

CDC20 1.2925 (1.1298, 1.4786) 0.0002 

CENPE 1.6591 (1.3094, 2.1023) 0.0000 1.7341 (0.9894, 3.0393) 0.0545 0.5505 

CEP55 1.3132 (1.1228, 1.5359) 0.0007 

TOP2A 1.1981 (1.0513, 1.3654) 0.0067 0.6710 (0.4736, 0.9507) 0.0248 −0.3989 

TYMS 1.4399 (1.2047, 1.7209) 0.0001 1.5270 (1.0734, 2.1721) 0.0186 0.4233 

KIF20A 1.5165 (1.2591, 1.8266) 0.0000 1.4245 (0.9433, 2.1511) 0.0925 0.3538 

ASPM 1.5214 (1.2596, 1.8375) 0.0000 

BUB1 1.3451 (1.1377, 1.5903) 0.0005 

TRIP13 1.2308 (1.0550, 1.4360) 0.0083 

STIL 1.4508 (1.1313, 1.8605) 0.0034 0.5235 (0.2895, 0.9465) 0.0322 −0.6472 

CDKN3 1.3521 (1.1623, 1.5730) 0.0001 1.3149 (0.9192, 1.8809) 0.1339 0.2738 

PTTG1 1.4207 (1.1964, 1.6871) 0.0001 

MCM4 1.2973 (1.0940, 1.5385) 0.0028 

MCM6 1.3489 (1.0960, 1.6602) 0.0047 

DEPDC1 1.4407 (1.2008, 1.7286) 0.0001 

NUSAP1 1.3527 (1.1465, 1.5960) 0.0003 

MCM2 1.2728 (1.0766, 1.5049) 0.0047 

PRC1 1.4413 (1.2203, 1.7022) 0.0000 1.6418 (1.0030, 2.6873) 0.0486 0.4958 

KNTC1 1.3367 (1.0618, 1.6826) 0.0135 

AURKA 1.2579 (1.0781, 1.4677) 0.0036 0.7174 (0.5122, 1.0049) 0.0534 −0.3321 

PAICS 1.4356 (1.1493, 1.7933) 0.0014 

MELK 1.3452 (1.1507, 1.5726) 0.0002 

HMMR 1.4166 (1.1914, 1.6844) 0.0001 1.4713 (1.0176, 2.1274) 0.0401 0.3862 

TTK 1.3397 (1.1229, 1.5984) 0.0012 

PBK 1.2934 (1.1217, 1.4914) 0.0004 

CCNB1 1.3997 (1.1978, 1.6355) 0.0000 

HR, hazard ratio; Coef, regression coefficient of genes in the multivariate Cox regression analysis.
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BA

Figure 4 K-M and ROC curves based on the risk score model. (A) K-M curve of the high-risk (red) and low-risk (blue) LUAD patients. (B) 
Three-year (red) and five-year (blue) ROC curves of the risk score model.

and high-risk groups.
K-M survival curve analysis was performed to determine 

the difference between the two groups. The median survival 
time of the low-risk patients was 4.38 years, while that of 
the high-risk patients was 2.48 years (Figure 4A). The low-
risk patients had a significantly better OS than the high-risk 
patients (3-year OS: 70.2% vs. 35.2%; 5-year OS: 36.6% 
vs. 0; P=1.651E-09), and the areas under the ROC curve 
(AUCs) were good (3-year AUC: 0.733; 5-year AUC: 0.777) 
(Figure 4B).

Spearman’s correlation between the Treg infiltration 
level and expression level of 13 hub genes were illustrated 
using the R package “ggstatsplot” (Figure 5). Of the 
13 hub genes, we found that the expression levels of 
AURKA, CCNB2, CDKN3, ECT2, HMMR, KIF20A, 
PRC1, UBE2C, RAD51AP1, TOP2A and TYMS all had 
a positive correlation with Treg infiltration in the tumor 
microenvironment. By contrast, the correlation between the 
gene expression (of CENPE and STIL) and the infiltration 
level was negative.

Prognostic nomogram model for LUAD: construction and 
validation

To apply Treg-related genes to clinical use, we constructed a 
nomogram model, combining the risk score with traditional 
clinical indicators, to predict the prognosis of LUAD. 
Given the high correlation between pathologic staging of M 
and T/N/stage, we finally included five clinical indicators 
(age, gender, stage, T and N) in the model (Figure 6).

To tes t  the  d i scr iminabi l i ty  of  the  model ,  we 
implemented the calibration curve, which is used to assess 
the accuracy of the (disease) risk model in predicting the 
probability of an individual outcome event in the future and 
reflects the degree of consistency between the predicted 
model risk and actual occurrence risk (23). In the study, 
the calibration curves showed that the predicted survival 
rate was consistent with the actual incidence rate within  
3/5 years (Figure 7A,B). Moreover, we plotted the K–
M curve, which showed good discriminating ability of 
the nomogram (P=7.073e−13) (Figure 8A), and the AUC 
was improved (3-year AUC: 0.763; 5-year AUC: 0.873)  
(Figure 8B).

GO and KEGG pathway enrichment analyses

To identify molecular mechanisms of the candidate genes 
in LUAD, GO and KEGG pathway enrichment analyses 
were performed (Table 2). GO analysis includes 3 categories: 
biological processes (BP), cellular components (CC) and 
molecular function (MF). We found that the top enriched 
terms were (mitotic) nuclear division, spindle organization, 
organelle fission and chromosome segregation in BP; 
spindle, kinetochore and chromosome/centromeric region 
in CC; protein serine/threonine kinase activity, DNA-
dependent ATPase activity and catalytic activity, acting on 
DNA in MF (Figure 9A). For KEGG enrichment pathways, 
the Treg-related hub genes were mostly enriched in the 
cell cycle, oocyte meiosis, DNA replication, p53 signaling 
pathway, human T-cell leukemia virus 1 infection, cellular 
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Figure 5 Spearman’s correlations between 13 candidate genes and the infiltration level of Tregs (the “Rho” in the pictures indicates the 
Spearman’s rank correlation coefficient, and “p” indicates the P value).
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Figure 6 Prognostic nomogram for lung adenocarcinoma. According to the 6 variables (age, gender, stage, pathologic_T, pathologic_N 
and riskScore) in the model, 6 corresponding “points” values can be obtained, and the “total points” can be calculated by summing them. 
Therefore, the 3-/5-year survival rate of patients can be predicted

Figure 7 Calibration curve of the nomogram model at the 3-/5-year survival. Good concordance was obtained at the 3-year (A) and 5-year (B) 
year survivals of the nomogram-predicted probability with the actual survival.

senescence and ubiquitin-mediated proteolysis (Figure 9B).

Discussion

As the predominant histological phenotype of lung cancer, 
LUAD has a poor prognosis with a 5-year survival rate 
less than 25% (24,25), likely because of its undetected 
pathogenesis and complicated patterns of invasive growth, 
such as lymphovascular invasion, pleural invasion, and 
aerogenous invasion (26,27). Histopathological analysis 

revealed that the infiltration of inflammatory cells 
and lymphocytes is an important activity of the tumor 
microenvironment that may impact tumorigenesis, invasion, 
metastasis, and prognosis. Therefore, increasing emphasis 
has been placed on immune infiltration cell targeting 
compared with direct tumor cell killing (28). In recent 
years, immunotherapy for LUAD has advanced rapidly and 
has been markedly beneficial to patients (29). The 2018 
Nobel Prize in physiology and medicine was awarded to 
Professor James P. Allison, and Professor Tasuku Honjo for 
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P=7.073e–13

Figure 8 K-M and ROC curves based on the nomogram model. (A) K-M curve of high-risk (red) and low-risk (blue) LUAD patients. (B) 
Three-year (red) and five-year (blue) ROC curves of the risk score model.

their contribution to immune checkpoint therapy. To date, 
antibodies against PD-1/L1—nivolumab, pembrolizumab, 
cemiplimab, atezolizumab, durvalumab and avelumab—have 
been approved by the U.S. Food and Drug Administration 
(FDA) for first-line and/or late-stage treatment of 17 
cancers (including NSCLC) (30,31). Pembrolizumab has 
been recommended for non-squamous cell carcinoma 
patients with high PD-L1 expression levels (tumor 
proportion score ≥50%) (32). However, the intratumor or 
inter-tumor heterogeneity and the non-standardized cut-
off values for PD-1/L1, tumor mutation burden (TMB) and 
other independent immune-related biomarkers are far from 
being efficient (33-36). Thus, more potential and effective 
biomarkers are required.

In this study, we integrated three different GEO 
datasets (GSE10072/GSE32863/GSE43458) and obtained 
196 LUAD and 137 normal samples. First, we acquired 
the abundances of 22 tumor-infiltrating immune cells 
using a deconvolution algorithm with the help of the 
CIBERSORTx portal, and then we identified candidate 
modules (black) and 36 candidate genes highly related to 
Tregs using the method of weighting gene coexpression 
network and PPIs. To verify the Treg-related genes, we 
generated the expression data of Treg-related genes as 
well as the clinical parameters from the TCGA database 
and then implemented a Cox proportional hazards model 
to calculate a risk score for each LUAD patient. The 
model performed well in that the low-risk patients had 
significantly longer 3- and 5-year survival times than the 
high-risk patients. Moreover, to further apply the Treg-
related risk score in the clinic, we constructed a prognostic 

nomogram for LUAD, integrating the Treg-related risk 
score with traditional clinical parameters (age, gender, stage, 
T and N). The AUC value and calibration curve indicated 
that the nomogram performed better. Additionally, GO 
enrichment analysis revealed that the prognostic Treg-
related genes were mainly enriched in BP involving cell 
proliferation, such as mitosis, chromosome separation, and 
DNA replicase activity. For the KEGG pathway analysis, 
Treg-related genes were mostly involved in the cell cycle, 
DNA replication and ubiquitin-mediated proteolysis, which 
were similar to the GO enriched terms for the cell cycle. 
This may reflect the reason for Treg enrichment in the 
tumor microenvironment, a finding that was consistent 
with that in previous studies (37-39). Moreover, the p53 
and FoxO signaling pathways were included in the KEGG 
enriched pathways. P53 is a tumor suppressor that monitors 
the cell cycle, maintains genomic stability by participating 
in DNA repair and is coexpressed with angiogenic genes 
such as Smad4 to inhibit tumor angiogenesis (40,41). FoxO 
is a nuclear protein subfamily that mediates the inhibition 
of insulin or insulin-like growth factor to further influence 
cell cycle regulation, energy metabolism, protein stability, 
oxidative stress, apoptosis, and immunity (42,43).

Akimova et al. found that the number and inhibitory 
function of Treg intratumor were significantly higher 
than those in blood, lungs and lymph nodes by single-cell 
studies (37,38). Conventional research has highlighted 
the protective role of Tregs in alleviating inflammation 
in autoimmune diseases (44). Xie et al. showed that Tregs 
recruited to tumors played a role as “accomplices” in 
helping tumor cells escape immunological surveillance (45).  
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Table 2 GO and KEGG pathway enrichment analysis of candidate genes in the most significant terms

Terms ID Description Gene ratio Padjust Gene ID Count

Biological 
process

GO:0000280 Nuclear division 15/35 4.15E-14 CENPF/TPX2/UBE2C/KIF11/CDC20/CENPE/
TOP2A/ASPM/TRIP13/NUSAP1/PRC1/KNTC1/
AURKA/TTK/CCNB1

15

GO:0048285 Organelle fission 15/35 8.22E-14 CENPF/TPX2/UBE2C/KIF11/CDC20/CENPE/
TOP2A/ASPM/TRIP13/NUSAP1/PRC1/KNTC1/
AURKA/TTK/CCNB1

15

GO:0140014 Mitotic nuclear 
division

13/35 8.22E-14 CENPF/TPX2/UBE2C/KIF11/CDC20/CENPE/
TRIP13/NUSAP1/PRC1/KNTC1/AURKA/TTK/
CCNB1

13

GO:0007088 Regulation of mitotic 
nuclear division

11/35 6.79E-13 CENPF/UBE2C/KIF11/CDC20/CENPE/TRIP13/
NUSAP1/KNTC1/AURKA/TTK/CCNB1

11

GO:0051783 Regulation of nuclear 
division

11/35 2.50E-12 CENPF/UBE2C/KIF11/CDC20/CENPE/TRIP13/
NUSAP1/KNTC1/AURKA/TTK/CCNB1

11

GO:0007051 Spindle organization 10/35 2.06E-11 TPX2/KIF11/CDC20/CENPE/ASPM/STIL/
PRC1/AURKA/TTK/CCNB1

10

GO:1902850 Microtubule 
cytoskeleton 
organization involved 
in mitosis

9/35 1.01E-10 TPX2/KIF11/CDC20/CENPE/STIL/NUSAP1/
PRC1/TTK/CCNB1

9

GO:0007059 Chromosome 
segregation

11/35 2.72E-10 CENPF/ECT2/CDC20/CENPE/TOP2A/BUB1/
TRIP13/NUSAP1/PRC1/TTK/CCNB1

11

GO:0051983 Regulation of 
chromosome 
segregation

8/35 6.96E-10 CENPF/ECT2/CDC20/CENPE/BUB1/TRIP13/
TTK/CCNB1

8

GO:0098813 Nuclear chromosome 
segregation

10/35 6.96E-10 CENPF/ECT2/CDC20/CENPE/BUB1/TRIP13/
NUSAP1/PRC1/TTK/CCNB1

10

Cellular 
component

GO:0005819 Spindle 13/35 8.73E-13 CENPF/ECT2/TPX2/KIF11/CDC20/CENPE/
KIF20A/ASPM/PRC1/KNTC1/AURKA/TTK/
CCNB1

13

GO:0000922 Spindle pole 9/35 2.76E-10 CENPF/TPX2/KIF11/CDC20/ASPM/PRC1/
KNTC1/AURKA/CCNB1

9

GO:0030496 Midbody 8/35 2.02E-08 CENPF/ECT2/CENPE/CEP55/KIF20A/ASPM/
PRC1/AURKA

8

GO:0098687 Chromosomal region 9/35 1.62E-07 CENPF/CENPE/BUB1/MCM4/MCM6/MCM2/
KNTC1/TTK/CCNB1

9

GO:0072686 Mitotic spindle 6/35 3.66E-07 ECT2/TPX2/KIF11/CENPE/ASPM/AURKA 6

GO:0005876 Spindle microtubule 5/35 5.84E-07 KIF11/CENPE/PRC1/KNTC1/AURKA 5

GO:0000776 Kinetochore 6/35 1.48E-06 CENPF/CENPE/BUB1/KNTC1/TTK/CCNB1 6

GO:0005813 Centrosome 9/35 1.48E-06 CCNB2/CENPF/CDC20/CEP55/ASPM/STIL/
AURKA/HMMR/CCNB1

9

GO:0042555 MCM complex 3/35 7.85E-06 MCM4/MCM6/MCM2 3

GO:0000775 Chromosome, 
centromeric region

6/35 7.85E-06 CENPF/CENPE/BUB1/KNTC1/TTK/CCNB1 6

Table 2 (continued)
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Table 2 (continued)

Terms ID Description Gene ratio Padjust Gene ID Count

Molecular 
function

GO:0004674 Protein serine/
threonine kinase 
activity

6/35 9.86E-03 BUB1/AURKA/CDK4/MELK/TTK/PBK 6

GO:0008094 DNA-dependent 
ATPase activity

3/35 2.04E-02 TOP2A/MCM4/MCM6 3

GO:0016538 Cyclin-dependent 
protein serine/
threonine kinase 
regulator activity

2/35 2.04E-02 CDK4/CCNB1 2

GO:0003697 Single-stranded DNA 
binding

3/35 2.07E-02 RAD51AP1/MCM4/MCM6 3

GO:0004003 ATP-dependent DNA 
helicase activity

2/35 3.66E-02 MCM4/MCM6 2

GO:0004386 Helicase activity 3/35 3.80E-02 MCM4/MCM6/MCM2 3

GO:0004712 Protein serine/
threonine/tyrosine 
kinase activity

2/35 4.11E-02 AURKA/TTK 2

GO:0003678 DNA helicase activity 2/35 4.11E-02 MCM4/MCM6 2

GO:0140097 Catalytic activity, 
acting on DNA

3/35 4.11E-02 TOP2A/MCM4/MCM6 3

GO:0008026 ATP-dependent 
helicase activity

2/35 4.62E-02 MCM4/MCM6 2

KEGG 
pathways

hsa04110 Cell cycle 10/17 9.47E-15 CCNB2/CDC20/BUB1/PTTG1/MCM4/MCM6/
MCM2/CDK4/TTK/CCNB1

10

hsa04114 Oocyte meiosis 6/17 1.56E-07 CCNB2/CDC20/BUB1/PTTG1/AURKA/CCNB1 6

hsa04914 Progesterone-
mediated oocyte 
maturation

4/17 4.57E-05 CCNB2/BUB1/AURKA/CCNB1 4

hsa03030 DNA replication 3/17 5.39E-05 MCM4/MCM6/MCM2 3

hsa04115 p53 signaling pathway 3/17 4.47E-04 CCNB2/CDK4/CCNB1 3

hsa05166 Human T-cell leukemia 
virus 1 infection

4/17 9.68E-04 CCNB2/CDC20/PTTG1/CDK4 4

hsa04218 Cellular senescence 3/17 4.00E-03 CCNB2/CDK4/CCNB1 3

hsa04068 FoxO signaling 
pathway

2/17 3.06E-02 CCNB2/CCNB1 2

hsa04120 Ubiquitin mediated 
proteolysis

2/17 3.46E-02 UBE2C/CDC20 2

hsa00670 One carbon pool by 
folate

1/17 4.15E-02 TYMS 1

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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BA

Figure 9 Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses. (A) Enriched GO terms. The changing colors from blue to red elucidate the Padjust value increasing, and the length of the bar 
indicates the numbers of gene enrichment terms. (B) Enriched KEGG pathways. The depth of red indicates the size of the Z value, and the 
number of blue points indicates the number of enriched genes.

Shimizu et al. and Marshall et al. revealed that the 
enrichment of Tregs in tumors usually indicates a poor 
prognosis (16,46). However, the latest discovery of Ferreira 
et al. found that Tregs promoted the differentiation of 
CD8+ effector memory T cells into tissue-resident memory 
T cells by providing the necessary cytokines, yielding more 
effective antitumor immunity (18). Therefore, studying the 
role of Treg cell infiltration into tumor tissue may provide 
a new perspective for immunotherapy or prognosis of 
LUAD.

Infiltrating Tregs in the tumor microenvironment play 
a potentially important role, which has been partially 
confirmed and applied in our study. However, this study 
has certain limitations. Although we drew the conclusion 
through multiple sequencing data and across different 
databases, more studies are needed to verify our results. 
Additionally, our results were obtained at the transcriptome 
level, and more proteomics level validation and clinical 
trials are needed to accelerate the clinical application.

Conclusions

We provide insights into the roles of Treg-related genes 
in LUAD and constructed a promising nomogram, which 
may help clinicians formulate more adequate treatment and 
follow-up plans.
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Table S1 Treg-related genes in the black module within the WGCNA

Genes geneSymbol moduleColor correlation pvalue

KCNN4 KCNN4 black 0.575150544 5.48E-13

SFTPC SFTPC black -0.565568309 1.60E-12

NMU NMU black 0.536306398 3.41E-11

PTTG1 PTTG1 black 0.535131806 3.83E-11

UBE2C UBE2C black 0.53294386 4.76E-11

CDH3 CDH3 black 0.522132089 1.36E-10

PRC1 PRC1 black 0.521329867 1.46E-10

ADH1B ADH1B black -0.511965354 3.51E-10

MCM2 MCM2 black 0.507713866 5.18E-10

CENPF CENPF black 0.502760059 8.09E-10

HBB HBB black -0.49096442 2.28E-09

MOCOS MOCOS black 0.486294241 3.39E-09

MCM4 MCM4 black 0.477216289 7.24E-09

PFKP PFKP black 0.472008662 1.11E-08

PLAU PLAU black 0.468830381 1.43E-08

TOP2A TOP2A black 0.464486642 2.02E-08

CDC20 CDC20 black 0.462223397 2.42E-08

ALDH1A1 ALDH1A1 black -0.453478065 4.75E-08

ALDH18A1 ALDH18A1 black 0.452147529 5.26E-08

CCNB2 CCNB2 black 0.449112061 6.61E-08

SEMA3D SEMA3D black -0.438979613 1.40E-07

NUSAP1 NUSAP1 black 0.438663793 1.43E-07

MMP13 MMP13 black 0.435259827 1.83E-07

CEP55 CEP55 black 0.433914001 2.02E-07

SOX4 SOX4 black 0.432285428 2.27E-07

SOX9 SOX9 black 0.431245589 2.44E-07

KDELR2 KDELR2 black 0.429892775 2.69E-07

TNFRSF21 TNFRSF21 black 0.426985404 3.30E-07

DNAJC12 DNAJC12 black 0.426584086 3.39E-07

KIF11 KIF11 black 0.424923066 3.81E-07

LDHA LDHA black 0.416864203 6.62E-07

STIL STIL black 0.416343124 6.86E-07

TPX2 TPX2 black 0.413116763 8.53E-07

ADRB2 ADRB2 black -0.407874503 1.21E-06

PUS7 PUS7 black 0.404488471 1.51E-06

ASPM ASPM black 0.404203158 1.54E-06

PGC PGC black -0.401771557 1.80E-06

MX2 MX2 black 0.399563346 2.07E-06

E2F3 E2F3 black 0.399303513 2.11E-06

CAT CAT black -0.397370401 2.38E-06

PCP4 PCP4 black 0.396071437 2.59E-06

C1orf21 C1orf21 black -0.39527342 2.72E-06

SCG5 SCG5 black 0.39410399 2.93E-06

TTK TTK black 0.392581529 3.23E-06

SPP1 SPP1 black 0.388746907 4.10E-06

KIF20A KIF20A black 0.387189755 4.51E-06

TYMS TYMS black 0.386767241 4.63E-06

HMMR HMMR black 0.386014719 4.85E-06

SEC61G SEC61G black 0.385953885 4.87E-06

KIAA0101 KIAA0101 black 0.384399009 5.35E-06

HSD17B6 HSD17B6 black -0.383093462 5.79E-06

CRTAC1 CRTAC1 black -0.381929739 6.22E-06

PLOD1 PLOD1 black 0.378259599 7.75E-06

COL10A1 COL10A1 black 0.378078519 7.84E-06

PRAME PRAME black 0.377581222 8.08E-06

PAICS PAICS black 0.377282427 8.22E-06

DPY19L1 DPY19L1 black 0.376765685 8.48E-06

MELK MELK black 0.37397527 1.00E-05

MCM6 MCM6 black 0.372532885 1.09E-05

METTL7A METTL7A black -0.370966369 1.19E-05

AURKA AURKA black 0.370809065 1.20E-05

CCNB1 CCNB1 black 0.37033082 1.24E-05

ECT2 ECT2 black 0.365318292 1.65E-05

CALU CALU black 0.36529166 1.66E-05

PLAC8 PLAC8 black -0.364961965 1.69E-05

PBK PBK black 0.364347328 1.75E-05

LAMP3 LAMP3 black -0.359981249 2.24E-05

SFTPD SFTPD black -0.358210384 2.47E-05

RAD51AP1 RAD51AP1 black 0.351631848 3.56E-05

H1F0 H1F0 black 0.350653657 3.76E-05

HMGB3 HMGB3 black 0.350353978 3.82E-05

SLC35F2 SLC35F2 black 0.34443235 5.25E-05

CACNA2D2 CACNA2D2 black -0.336814033 7.85E-05

PPM1H PPM1H black 0.336249174 8.08E-05

TARS TARS black 0.33430046 8.94E-05

TRIP13 TRIP13 black 0.320428429 0.000179901

ELOVL6 ELOVL6 black 0.320361728 0.000180492

NT5E NT5E black 0.320080384 0.000183006

GRIA1 GRIA1 black -0.315030487 0.000234026

PLA2G4A PLA2G4A black 0.313134688 0.000256374

ABCA3 ABCA3 black -0.310102738 0.000296262

EGLN3 EGLN3 black 0.309713627 0.000301777

KNTC1 KNTC1 black 0.30969087 0.000302103

GFPT1 GFPT1 black 0.308648936 0.000317359

UCHL1 UCHL1 black 0.305999816 0.000359417

CCT6A CCT6A black 0.305271948 0.000371843

CDKN3 CDKN3 black 0.303427326 0.000405135

BUB1 BUB1 black 0.29979723 0.000478822

STK39 STK39 black 0.296519816 0.000555768

ISG15 ISG15 black 0.2933711 0.000640264

PDIA6 PDIA6 black 0.28268491 0.001022857

CENPE CENPE black 0.280282054 0.001133656

VTCN1 VTCN1 black 0.278210118 0.001237884

ECM1 ECM1 black 0.269847575 0.001753518

TBC1D2 TBC1D2 black -0.269837096 0.001754272

IGF2BP3 IGF2BP3 black 0.268602772 0.001845105

TSPAN6 TSPAN6 black 0.2644483 0.00218309

ABCA12 ABCA12 black 0.260953227 0.002509841

PMM1 PMM1 black -0.260077036 0.002598402

DUOX1 DUOX1 black -0.259976146 0.002608778

AK1 AK1 black -0.257109727 0.002919691

IARS2 IARS2 black 0.24379239 0.00484815

CPD CPD black 0.24302499 0.004987955

TUBB2A TUBB2A black 0.22982296 0.008026973

NUP107 NUP107 black 0.22702412 0.008850547

CDK4 CDK4 black 0.214869382 0.013355314

DEPDC1 DEPDC1 black 0.213590616 0.013929506

ASNS ASNS black 0.208765193 0.01629464

SELENBP1 SELENBP1 black -0.208672311 0.016343394

ALDH2 ALDH2 black -0.206779293 0.017364988

CCT2 CCT2 black 0.177629065 0.041587382

Supplementary
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