
© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(2):955-964 | http://dx.doi.org/10.21037/tlcr-21-44

Original Article

A machine learning-based prediction of the micropapillary/solid 
growth pattern in invasive lung adenocarcinoma with radiomics

Bingxi He1,2#, Yongxiang Song3#, Lili Wang4#, Tingting Wang5, Yunlang She5, Likun Hou6, Lei Zhang5, 
Chunyan Wu6, Benson A. Babu7, Ulas Bagci8, Tayab Waseem9, Minglei Yang5,10, Dong Xie5, Chang Chen5

1School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China; 2Key Laboratory of 

Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; 3Department of Thoracic Surgery, Affiliated Hospital 

of Zunyi Medical College, Guizhou, China; 4Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese 

Medicine, Shanghai, China; 5Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 

China; 6Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; 7Department of Internal 

Medicine, Lenox Hill Northwell Health, New York, NY, USA; 8Department of Radiology, Northwestern University, Chicago, IL, USA; 9Department 

of Molecular Biology and Cell Biology, Eastern Virginia Medical School Norfolk, VA, USA; 10Department of Thoracic Surgery, Ningbo No. 2 

Hospital, Chinese Academy of Sciences, Ningbo, China

Contributions: (I) Conception and design: B He, L Hou, L Wang; M Yang, D Xie, C Chen; (II) Administrative support: C Chen; D Xie; L Hou; M 

Yang; Y Song; Y Zhu; (III) Provision of study materials or patients: C Chen; B He; L Hou, L Wang; M Yang; (IV) Collection and assembly of data: 

B He; L Hou, L Wang, T Wang, Y She, J Deng, M Zhao, Y Song; (V) Data analysis and interpretation: B He; T Wang, L Zhang, Y She, M Yang, D 

Xie; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Chang Chen. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 

200443, China. Email: chenthoracic@163.com; Dong Xie. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University 

School of Medicine, Shanghai 200443, China. Email: kongduxd@163.com; Minglei Yang. Department of Thoracic Surgery, Ningbo No. 2 Hospital, 

Chinese Academy of Sciences, Ningbo, China. Email: doctoryml@126.com.

Background: Micropapillary/solid (MP/S) growth patterns of lung adenocarcinoma are vital for making 
clinical decisions regarding surgical intervention. This study aimed to predict the presence of a MP/S 
component in lung adenocarcinoma using radiomics analysis.
Methods: Between January 2011 and December 2013, patients undergoing curative invasive lung 
adenocarcinoma resection were included. Using the “PyRadiomics” package, we extracted 90 radiomics 
features from the preoperative computed tomography (CT) images. Subsequently, four prediction 
models were built by utilizing conventional machine learning approaches fitting into radiomics analysis: a 
generalized linear model (GLM), Naïve Bayes, support vector machine (SVM), and random forest classifiers. 
The models’ accuracy was assessed using a receiver operating curve (ROC) analysis, and the models’ stability 
was validated both internally and externally.
Results: A total of 268 patients were included as a primary cohort, and 36.6% (98/268) of them had lung 
adenocarcinoma with an MP/S component. Patients with an MP/S component had a higher rate of lymph 
node metastasis (18.4% versus 5.3%) and worse recurrence-free and overall survival. Five radiomics features 
were selected for model building, and in the internal validation, the four models achieved comparable 
performance of MP/S prediction in terms of area under the curve (AUC): GLM, 0.74 [95% confidence 
interval (CI): 0.65–0.83]; Naïve Bayes, 0.75 (95% CI: 0.65–0.85); SVM, 0.73 (95% CI: 0.61–0.83); and 
random forest, 0.72 (95% CI: 0.63–0.81). External validation was performed using a test cohort with 193 
patients, and the AUC values were 0.70, 0.72, 0.73, and 0.69 for Naïve Bayes, SVM, random forest, and 
GLM, respectively.
Conclusions: Radiomics-based machine learning approach is a very strong tool for preoperatively 
predicting the presence of MP/S growth patterns in lung adenocarcinoma, and can help customize treatment 
and surveillance strategies.
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Introduction

Lung adenocarcinoma is established to be the most common 
subtype of lung cancer, with high heterogeneity in its 
molecular, pathological, and clinical aspects. Based on the 
histological pattern, a classification by the International 
Association for the Study of Lung Cancer/American Thoracic 
Society/European Respiratory Society further categorized 
invasive lung adenocarcinoma into the five following subtypes: 
lepidic, acinar, solid, papillary, and micropapillary (1).  
It is now required that each histological pattern and its 
percentage be recorded in the pathological reports. Many 
studies (2-4) have supported the histological classification 
of lung adenocarcinoma being correlated with patient’s 
prognosis, lymph node metastasis, and epidermal growth 
factor receptor (EGFR) mutation status. Patients with the 
micropapillary (MP)-predominant and solid (S)-predominant 
subtype are considered to have worse survival prognosis 
and higher recurrence rates. Studies also have shown that 
even a MP component of <5% has a significant prognostic 
impact on patient’s survival (5,6). Moreover, patient with an 
MP component >5% undergoing limited resection, but not 
lobectomy, would carry a higher risk of tumor recurrence 
compared with those having an MP component of <5% (7). 
Therefore, preoperative predictions of the presence of an 
MP/S component can provide important information for 
deciding a patient’s surgical strategies.

Radiomics (often called texture/shape analysis) can be 
used to characterize the medical images via quantitative 
image analysis; thus, it may represent a valuable source of 
information for lesion diagnosis and prognosis prediction (8). 
Machine learning, an artificial intelligence subfield, can utilize 
radiomics features to automatically infer decisions from the 
datasets with the purpose of developing a decision-making 
model. In regrading lung cancer, computed tomography (CT)-
based radiomics are a practical, low-cost tool for noninvasively 
characterizing lung lesions and discerning between malignant 
and benign lung nodules (9), thus stratifying the risk of 
mediastinal lymph node metastasis (10) and discriminating 
invasive from indolent adenocarcinomas (11). However, highly 
accurate and reliable machine learning methods are still lacked 

in driving the success of radiomics applications in clinical care, 
and should be chosen appropriately (12). 

Thus, in our study, we aimed to evaluate and compare 
the predictive value of radiomics-based machine learning 
models in the presence of an MP/S growth pattern of lung 
adenocarcinoma. 

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-44). 

Methods

This was a multicenter study with patients retrospectively 
included from three different institutions, including 
Shanghai Pulmonary Hospital, Ningbo No. 2 Hospital, 
and the Affiliated Hospital of Zunyi Medical College. 
The waiver of informed consent was approved by the 
institutional review board (IRB) of each participating 
hospital. The study was performed in accordance with the 
Declaration of Helsinki (as revised in 2013). The complete 
design of our study is illustrated in Figure 1.

Study population

Patients undergoing resection for invasive lung adenocarcinoma 
from January 2011 to December 2013 at Shanghai Pulmonary 
Hospital, and from January 2013 to December 2014 in the other 
two hospitals were retrospectively recruited in this study. The 
inclusion criteria were as follows: (I) pathologically confirmed 
invasive lung adenocarcinoma; (II) complete preoperative 
thin-section CT image (1 mm) data with follow-up survival 
data; and (III) tumor size measured in CT images <3 cm. We 
excluded those patients with multifocal lesions, neoadjuvant 
chemotherapy or radiotherapy. The dataset from Shanghai 
Pulmonary Hospital with the most included patients (N=268) 
was used as the primary cohort for model development, and 
the datasets (N=193) from the other two hospitals were used as 
independent external validation cohorts.

All patients were followed up every 6 months for the first 
3 years after surgery and every year thereafter. Follow-up 
examinations included thoracic CT scans, carcinoembryonic 
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antigen (CEA) levels, abdominal CT scans or ultrasonography, 
bone scintigraphy, and cranial CT scans or magnetic resonance 
imaging (MRI). All patients were followed up for more than 
5 years. Each included patient was restaged based on the 8th 
edition of lung cancer staging classification (13).

Histological evaluation

All formalin-fixed, paraffin-embedded (FFPE) tissue 
specimens were recut and stained with hematoxylin and 
eosin (HE). Two pathologists concurrently re-evaluated the 
slides using a multiheaded microscope, and discrepancies 
were resolved through discussion. Histological subtypes 
of lung adenocarcinoma were classified on the basis of the 
International Association for the Study of Lung Cancer/
American Thoracic Society/European Respiratory Society 
multidisciplinary classification of lung adenocarcinoma (1). 
Each histological subtype component was recorded in 5% 
increments. Based on the presence or absence of an MP/S 
growth pattern (Figure S1A), the study population was split 
into two groups: (I) patients with MP/S components and (II) 
patients without.

Image acquisition and tumor segmentation

Thin-section CT scans of the lungs were obtained at full 
inspiration by the SOMATOM Definition AS scanner 

(64×0.625 mm  detector, 1.0 pitch; Siemens, Germany) or a 
Brilliance 40 scanner (40×0.625 mm detector configuration, 
0.4 pitch, Philips, The Netherlands) with 120 KVp of 
tube energy and 200 mAS of effective dose. A medium 
sharp reconstruction algorithm was utilized for image 
reconstruction with a section thickness of 1 mm and a 0.7-
mm increment. All CT scans were performed without 
contrast medium. The identified CT scans were downloaded 
from the Picture Archiving and Communication Systems 
(PACS) (Figure S1B). 

We used the open-source platform (3D-slicer, v4.9.0, 
www.slicer.org) to achieve tumor segmentation via the 
“segment editor” model. Tumors were delineated on the 
CT images in horizontal, sagittal, and coronal planes using 
a semi-automatic segmentation based on “level tracing” 
and “smoothing”. A radiologist and a thoracic surgeon then 
reviewed all tumor segmentations in consensus, and any 
discrepancies were resolved by additional correction. 

Radiomics feature extraction and selection

“PyRadiomics”, an open-source package for standardizing 
the extraction of radiomics data (https://github.com/
Radiomics/pyradiomics), was used to extract 90 radiomics 
features from the nonfiltered segmented tumor regions 
(ROIs). The extracted features can be classified into five 
categories: (I) shape (n=14); (II) intensity (n=19); (III) gray 

Figure 1 The complete design of this study. Tumor slide of micropapillary/solid (MP/S) pattern was stained with hematoxylin and eosin. 
Original magnification, ×20.
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level co-occurrence matrix (GLCM; n=25); (IV) gray level 
run length matrix (GLRLM; n=16); and (V) gray level size 
zone matrix (GLSZM; n=16). Shape features quantified 
the three-dimensional (3D) geometry of the tumor, such 
as sphericity and surface area. Intensity features, also 
called first-order statistical features, are derived from the 
histogram of the tumor voxel, and can include the 90th 
percentile and standard deviation. GLCM, GLRLM, 
and GLSZM features characterize tumor texture and 
reflect the intratumor heterogeneity via an analysis of the 
spatial patterns of the tumor voxel. A detailed description 
and computing algorithms of the radiomics features are 
given in the Appendices (Appendix 1). Each radiomics 
feature was compared between the two subgroups, and the 
corresponding P value was calculated to test the significance. 
Multicollinearity of the radiomics features was visualized 
through a correlation heatmap. To reduce the collinearity of 
the extracted features and remove redundant information to 
avoid the overfitting issue, the most significant feature was 
selected from each category by identifying the feature with 
the lowest P value within each category before modelling (14).

Model building and validation

Based on the selected radiomics features, four popular 
machine learning methods were utilized to build the 
predictive models. These methods included the generalized 
linear model (GLM), Naïve Bayes, random forest, and 
support vector machine (SVM). In order to evaluate the 
model’s stability, a bootstrap resampling technique was 
used, and 100 random samples were iteratively selected with 
replacement from the original dataset. In each iteration, 
the model was constructed on the selected samples and 
validated using the remaining patients in the original 
dataset. The discrimination ability of model was assessed 
with the area under the curve (AUC) value. In addition, 
the clinical usefulness of these models was measured and 
compared by a decision curve analysis.

Statistical analysis 

Statistical analyses were performed in R platform (R 
version 3.4.2). R package “ComplexHeatmap” was used 
for unsupervised cluster analysis. Package “e1071” was 
used for the implementation of Naïve Bayes and SVM 
classifiers, while the package “randomForest” was applied 
to develop the random forest model, both using the default 
parameter tuning with caret interface. A GLM via penalized 

maximum likelihood was fitted using the “glm” function 
with default parameters. Continuous and categorical 
variables were analyzed through the student’s t and chi-
squared tests, respectively. Variables with a P value <0.1 
in univariate analysis were entered into the multivariate 
logistic regression in a forward stepwise fashion. A Kaplan-
Meier analysis was used to evaluate the survival outcomes of 
different groups, and differences among the survival curves 
were evaluated by a log-rank test. A two-sided P value <0.05 
was considered statistically significant.

Results

Baseline characteristics and survival analysis

From January 2011 to December 2013, a primary cohort 
consisting of 268 patients with invasive lung adenocarcinoma 
at Shanghai Pulmonary Hospital was included in this study. 
The median age was 61 years (range, 30–87 years). Most of 
the patients were female (56%) and had no smoking history 
(79.1%). Furthermore, 10.1% (27/268) of patients had lymph 
node metastasis, among whom 20 were N1 positive, 17 were 
N2 positive, and 10 had both N1 and N2 metastasis. With 
regards to histological subtypes, 77 adenocarcinomas (28.7%) 
were revealed as having MP components, among which only 
9 were MP-predominant. In terms of solid growth pattern, 
33 adenocarcinomas contained solid components, and 25 
of them were solid-predominant. Overall, 36.6% (98/268) 
of lung adenocarcinoma patients had an MP/S component 
with 12 presenting both components. The validation 
cohort consisted of 193 patients, and, with the exception 
of slightly larger lung tumors (mean: 2.47 versus 2.17 cm; 
P=0.003), there were no significant differences in baseline 
characteristics compared to that of patients in the primary 
cohort (Table 1).

Clinical significance of the MP/S component

In univariate analysis, male patients with elevated CEAs and 
larger tumor sizes were more likely to be MP/S positive  
(Table S1). Among these three clinical factors, multivariate 
analysis demonstrated that sex was the only significant 
predictor of having an MP/S component. The presence of 
an MP/S component significantly correlated with tumor 
aggressive characteristics, including lymph node metastasis 
(18.4% versus 5.3%; P=0.001) and visceral pleural invasion 
(68.4% versus 55.3%; P=0.011). Overall and recurrence-free 
survival (OS and RFS, respectively) were compared between 
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patients with MP/S components and those without. Log-rank 
tests revealed that the presence of an MP/S component was 
significantly associated with decreased OS and RFS in both the 
training (Figure 2, both P<0.001) and the validation (Figure S2, 
P<0.001 and P=0.016) cohort. Even for the patients without 
lymph node metastasis, the prognostic effect of an MP/S 
growth pattern still remained significant (Figure S3). 

Radiomics analysis and feature selection

Unsupervised cluster analysis demonstrated that the 

radiomics feature was significantly associated with histological 
subtypes. As shown in Figure 3, three clusters of patients 
with similar radiomics pattern were significantly different 
in terms of predominant histological, MP-containing, and 
solid-containing subtypes, and the percentages of lung 
adenocarcinomas with an MP/S component were 62.5%, 
1.9%, and 39.0%, respectively (P<0.001). 

The correlation heatmap (Figure S4) revealed that 
multicollinearity was present among these radiomics 
features. By identifying the features with the lowest p values 
within each radiomics category, the five radiomics features 

Table 1 Baseline characteristics of patients with and without the micropapillary/solid pattern

Variables Primary cohort (n=268) Validation cohort (n=193) P

Age, years 61 [30–87] 60 [35–82] 0.19

Sex, n (%) 0.43

Female 150 (56.0) 100 (51.8)

Male 118 (44.0) 93 (48.2)

Smoking history, n (%) 0.74

Smoker 56 (20.9) 37 (19.2)

Non-smoker 212 (79.1) 156 (80.8)

Lobular location, n (%) 0.54

RUL 84 (31.3) 57 (29.5)

RML 18 (6.7) 18 (9.3)

RLL 55 (20.5) 30 (15.5)

LUL 71 (26.5) 55 (28.5)

LLL 40 (14.9) 33 (17.1)

Predominant subtype, n (%) 0.21

Lepidic 90 (33.6) 73 (37.8)

Acinar 94 (35.1) 71 (36.8)

Papillary 50 (18.7) 28 (14.5)

Solid 25 (9.3) 14 (7.3)

Micropapillary 9 (3.4) 4 (2.1)

Lymph node metastasis 27 (10.1) 16 (8.1) 0.63

Size (cm) 2.47±0.88 2.17±0.84 0.003

With MP/S component, n (%) 1

No 170 (63.4) 122 (63.2)

Yes 98 (36.6) 71 (36.8)

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CEA, carcinoembryonic  
antigen; MP, micropapillary; S, solid.

http://Figure S2
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contributing the most to the diagnosis of MP/S-containing 
lung adenocarcinomas were selected to compensate for 
this multicollinearity problem. As shown in Figure 4A, 
by calculating the negative log10 of the p value, the five 
radiomics features (surface volume ratio, root mean squared, 
run entropy, joint average, and zone entropy) were top-

ranked in the y-axis. The differences in these five radiomics 
features between patients with MP/S components and those 
without are summarized in Table 2. In an unsupervised 
cluster analysis of the five selected radiomics features, 
the percentage of patients with MP/S components was 
significantly different among the formed clusters in both 

P<0.001 P<0.001

A B

Figure 2 Kaplan-Meier curves of survival comparison between patients with the MP/S growth pattern and those without. Recurrence-free 
survival (A) and overall survival (B) curves. MP/S, micropapillary/solid growth pattern.

Figure 3 Radiomics heatmap with 268 patients in the y-axis and 90 radiomics features in the x-axis. Unsupervised cluster analysis revealed 
three clusters of patients with similar radiomics pattern, and the histological features of the lung adenocarcinomas were significantly 
different among these clusters in terms of pre-dominant, micropapillary-containing, and solid-containing subtypes.
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the primary and external cohorts (Figure S5). 

Model building and validation

For the predictive model built by x, the probability of 
having an MP/S component can be simply expressed by 
the following equation: 1/[1+ exp (−0.0057× root mean 
squared −1.93× zone entropy +25.4)]. The four machine 
leaning algorithms demonstrated similar model accuracy, 
with the Naïve Bayes model demonstrating the highest 
AUC value of 0.75 (95% CI: 0.65–0.85). The AUC values 
of each model in each iteration were all >0.6, which 
indicates good reliability of the selected radiomics features 
(Figure 4B). In the external validation, the AUC values were 
0.70 (95% CI: 0.62–0.79), 0.72 (95% CI: 0.63–0.81), 0.73 

(95% CI: 0.64–0.82), and 0.69 (95% CI: 0.61–0.77) for 
Naïve Bayes, SVM, random forest, and GLM, respectively 
(Figure 4C). The decision curve analysis indicated that there 
might be comparable net benefits among four proposed 
models (Figure S6).

Discussion 

Given that the MP and S subtypes present as strong 
predictors for tumor recurrence and worse survival of lung 
adenocarcinoma, we can confidently assume that predicting 
the presence of an MP/S component could be vital for 
improving the prognosis of lung adenocarcinoma (5,15). 
In this study, we confirmed that patients with an MP/
S component had a higher rate of lymph node metastasis 
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Figure 4 Model building and validation, and their predictive performance comparison. (A) Radiomics feature selection was accomplished by 
identifying the feature with the lowest P value within each category. (B) Evaluation of the model performance of the five modelling strategies 
by bootstrap resampling. The Y-axis indicates the AUC value in each iteration of sampling. (C) Model assessment with ROC curves in 
external validation.
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and worse prognoses than those without. In addition, we 
demonstrated that four machine learning models based on 
five optimal radiomics features could achieve similar and 
relatively accurate MP/S prediction performance (highest 
AUC value of 0.75; 95% CI: 0.65–0.85), which confirms the 
good reliability of radiomics features.

Overwhelming evidence shows that the MP and solid 
subtypes present as strong predictors for worse prognosis, 
and the prognostic effect remains even with proportions 
<5% (5,15). Our results are consistent with these studies, 
which demonstrate that the presence of an MP/S growth 
pattern significantly correlated with lymph node metastasis 
(P=0.001) and visceral pleural invasion (P=0.011), as well 
as decreased OS and RFS. Furthermore, several reports 
(16-18) have also demonstrated that the MP pattern 
is positively associated with the EGFR mutation and 
anaplastic lymphoma kinase (ALK) fusion. It was also found 
that more than 85% of MP-predominant adenocarcinomas 
harbor EGFR driver mutations, and the MP growth pattern 
appears to be most likely correlated with a heterogeneous 
EGFR mutation, which acts as a mechanism of acquired 
resistance to EGFR tyrosine kinas inhibitors (TKIs) (18,19). 
Solid subtypes have otherwise been correlated with a high 
rate of KRAS mutation (20). Therefore, it is highly valuable 
to predict the presence of the MP/S growth pattern in 
helping to create personalized treatment and surveillance 
strategies for patients with lung adenocarcinoma.

Radiomics features can potentially decode the medical 
images to completely and non-invasively capture tumor 
phenotypic characteristics quantitatively,  and has 
demonstrated promising predictive results for tumor 
invasiveness assessment (11), recurrence-free or overall 
survival (21,22), and treatment response (23). Regarding 
the histological growth pattern prediction, Park et al. (24) 
demonstrated that radiomics could differentiate three 

categories of the predominant subtypes in adenocarcinoma 
with favorable performance. However, the strong impact 
of MP/S component on poor prognosis needs to more 
accurately identify its presence, even those with a small 
portion. Song et al. (6) reported that a multivariable logistic 
model could identify two radiomics features, including the 
lower value for the minimum of whole pixel values and 
the lower value for the variance of positive pixel values, 
as imaging predictors for tumors with an MP component 
>5%. The unsupervised cluster analysis of our study also 
confirmed that the radiomics features are significantly 
associated with histological subtypes. However, the problem 
of multicollinearity leading to predictive model overfitting 
cannot be ignored. Jiang et al. (25) found that the random 
forest model built with reliable radiomics features (intraclass 
correlation coefficients ≥0.75) could obtain a good 
predictive performance in spreading through the air space 
in lung adenocarcinoma. Traverso et al. (26) proposed that 
machine learning–based radiomics methods may be useful 
for robust predictive model development. Thus in our study, 
after the pairwise comparison was performed to identify the 
most significant and predictive radiomics features from each 
category with the lowest P value, four popular machine 
learning methods were utilized to build the predictive 
models and achieve similar and stable performance in both 
internal and external validation. Our results indicated that 
these machine-learning methods turned out reasonably 
stable against data perturbation and hence they could 
be preferred for radiomics-based modeling. In addition, 
the five selected features were demonstrated to be highly 
reliable and could be utilized even when based on the CT 
images from different institutions, at different time points, 
and with different algorithms used for model construction. 

This study also had some limitations which should 
be noted. First, both the primary and external validation 

Table 2 Selected radiomics features for predicting the micropapillary/solid pattern in lung adenocarcinoma 

Feature class Feature name
Student’s t test

Without MP/S (n=170) With MP/S (n=98) P

Shape Surface volume ratio 0.41±0.14 0.32±0.09 3.87E-08

First order Root mean squared 694±174 827±96 2.12E-14

GLRLM Run entropy 4.42±0.28 4.63±0.18 1.45E-13

GLCM Joint average 9.65±2.75 11.91±1.69 5.06E-15

GLSZM Zone entropy 5.87±0.47 6.17±0.23 1.92E-11

GLRLM, gray level run length matrix; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix.
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cohorts were predominantly composed of female non-
smoking patients with a relatively small sample size. 
Due to the imbalanced data seen in this study, a larger 
multicenter study would be needed for further validate the 
reproducibility and generalizability of our findings. Second, 
during radiomics feature extraction, the effects of CT 
scanner variability and inconsistent acquisition parameters 
were not considered. Further studies on radiomics should 
clarify the influence of the CT scanning setting on 
radiomics features, such as the application of the contrast 
medium. Lastly, the performance of the existed machine 
learning model for predicting the MP/S growth pattern was 
moderate and might be not yet suitable for clinical practice. 
The application of other novel ML-based predictive 
models or radiomics combined with deep learning in MP/S 
prediction may be worthwhile in future research. 

In conclusion, radiomics features as applied to 
machine learning classification significantly correlate with 
histological subtypes of lung adenocarcinoma and seems 
to present a non-invasive, economical approach for MP/S 
growth pattern prediction.
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Supplementary

Table S1 Baseline characteristics of patients with and without micropapillary/solid pattern in primary cohort

Variables Total (n=268) Without MP/S (n= 170) With MP/S (n=98) P

Gender, n <0.001

Female 150 (56.0%) 110 (64.7%) 40 (40.8%)

Male 118 (44%) 60 (35.3%) 58 (59.2%)

Age, years 61 (30–87) 60 (30–85) 62 (34–87) 0.19

Smoking history 0.21

Smoker 56 (20.9%) 31 (18.2%) 25 (25.5%)

Non-smoker 212 (79.1%) 139 (81.8%) 73 (74.5%)

Lobular location, n 0.73

RUL 84 (31.3%) 51 (30.0%) 33 (33.7%)

RML 18 (6.7%) 12 (7.1%) 6 (6.1%)

RLL 55 (20.5%) 35 (20.6%) 20 (20.4%)

LUL 71 (26.5%) 43 (25.3%) 28 (28.6%)

LLL 40 (14.9%) 29 (17.1%) 11 (11.2%)

Predominant subtype, n <0.001

Lepidic 90 (33.6%) 83 (48.8%) 7 (7.1%)

Acinar 94 (35.1%) 58 (34.1%) 36 (36.7%)

Papillary 50 (18.7%) 29 (17.1%) 21 (21.4%)

Solid 25 (9.3%) 0 25 (25.5%)

Micropapillary 9 (3.4%) 0 9 (9.2%)

Lymph node metastasis, n 27 (10.1%) 9 (5.3%) 18 (18.4%) <0.001

N1 metastasis, n 20 (7.5%) 7 (4.1%) 13 (13.3%) –

N2 metastasis, n 17 (6.3%) 3 (1.8%) 14* (14.3%) –

CEA, n 0.02

≥5 ng/mL 34 (14.6%) 15 (10.2%) 19 (22.1%)

<5 ng/mL 234 (85.4%) 155 (91.2%) 79 (80.6%)

Size (cm) 2.47±0.88 2.34±0.84 2.66±0.91 0.03

*, 5 patients had multiple mediastinal lymph node metastasis. RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, 
left upper lobe; LLL, left lower lobe; VPI, visceral pleural invasion; CEA, carcinoembryonic antigen.
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Appendix 1

Radiomics feature extraction

90 CT-based radiomics features of five categories were extracted: (I) Shape; (II) First

order statistics; (III) gray level co-occurrence matrix (GLCM); (IV) gray level run

length matrix (GLRLM); (V) gray level size zone matrix (GLSZM).

Group 1. Shape (n=14)

1: Volume (V): determined by counting the number of voxels in the nodule region and

multiplying this value by the voxel size.

2: Surface area (S)= �铨ຉ
� ຉ

�
���� � ���� , where N is the number of triangles covering

the surface and a, b and c are edge vectors.

3: Surface to volume ratio=S
�

4: Sphericity=
�
�����

�

5: Spherical disproportion= �
����

, where R is the radius of a sphere with the same

volume as the tumor, and equal to
� ��
��
.

6: Maximum 2D Diameter Slice: is defined as the largest pairwise Euclidean distance

between tumor surface mesh vertices in the row-column (generally the axial) plane.

7: Maximum 2D Diameter Row: is defined as the largest pairwise Euclidean distance

between tumor surface mesh vertices in the column-slice (usually the sagittal) plane.

8: Maximum 2D Diameter Column: is defined as the largest pairwise Euclidean

distance between tumor surface mesh vertices in the row-slice (usually the coronal)

plane.

9: Maximum 3D diameter: measured as the largest pairwise Euclidean distance

between voxels on the surface of the tumor volume.

10: Major axis=� ����⺂�

11: Minor Axis=� ����⺂�
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12: Least axis=� ��t���

13: Elongation= ����⺂�
����⺂�

�

14: Flatness= ��t���
����⺂�

� Here, ����⺂������⺂� and ��t��� are the lengths of the largest,

second largest and smallest principal component axes.

Group 2. First-order statistics/ Intensity (n=19)

Histogram features describe the distribution of voxel intensities within the CT image

commonly used and basic metrics. Let X denote the three-dimensional image matrix

with N voxels and P first order histogram with �� discrete intensity levels.

1: 10 Percentile: the 10th percentile of X.

2: Maximum: the maximum intensity of the X

3: Minimum: the minimum intensity of the X

4: Median: the median intensity of the X

5: Range: the range of intensity values of X

6: Mean (�)=ຉ
� �

� ����

7 90Percentile: the 90th percentile of X.

8 Interquartile range=P75-P25, P25 and P75 are the 25th and 75th percentile of the X.

9: Mean absolute deviation=ຉ
� �铨ຉ

� � � � �

10 Robust Mean Absolute Deviation= ຉ
�ຉͲ�െͲ �铨ຉ

�ຉͲ�െͲ �ຉͲ�െ� � � �ຉͲ�െͲ

11. Standard deviation= ຉ
� �铨ຉ

� � � � � �

12: Root mean square= �
� �� � +���

�

13: Energy= �铨ຉ
� �� � + ���

14 Total Energy=V �铨ຉ
� �� � + ���

Here, c is optional value, defined by voxel Array Shift, which shifts the intensities to

prevent negative values in X. This ensures that voxels with the lowest gray values

contribute the least to Energy, instead of voxels with gray level intensity closest to 0.

Appendix 1

Radiomics feature extraction

90 CT-based radiomics features of five categories were extracted: (I) Shape; (II) First

order statistics; (III) gray level co-occurrence matrix (GLCM); (IV) gray level run

length matrix (GLRLM); (V) gray level size zone matrix (GLSZM).

Group 1. Shape (n=14)

1: Volume (V): determined by counting the number of voxels in the nodule region and

multiplying this value by the voxel size.

2: Surface area (S)= �铨ຉ
� ຉ

�
���� � ���� , where N is the number of triangles covering

the surface and a, b and c are edge vectors.

3: Surface to volume ratio=S
�

4: Sphericity=
�
�����

�

5: Spherical disproportion= �
����

, where R is the radius of a sphere with the same

volume as the tumor, and equal to
� ��
��
.

6: Maximum 2D Diameter Slice: is defined as the largest pairwise Euclidean distance

between tumor surface mesh vertices in the row-column (generally the axial) plane.

7: Maximum 2D Diameter Row: is defined as the largest pairwise Euclidean distance

between tumor surface mesh vertices in the column-slice (usually the sagittal) plane.

8: Maximum 2D Diameter Column: is defined as the largest pairwise Euclidean

distance between tumor surface mesh vertices in the row-slice (usually the coronal)

plane.

9: Maximum 3D diameter: measured as the largest pairwise Euclidean distance

between voxels on the surface of the tumor volume.

10: Major axis=� ����⺂�

11: Minor Axis=� ����⺂�
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15: Entropy= �铨ຉ
�� ���� log� �� � + ϵ� , ϵ is an arbitrarily small positive number

(≈2.2×10−16).

16: Kurtosis=
ຉ
� �铨ຉ

� �� � ����

� ຉ
� �铨ຉ

� �� � ���� ��

17: Skewness==
ຉ
� �铨ຉ

� �� � ����

� ຉ
� �铨ຉ

� � � �� � ��

18: Uniformity= �
�� �����

19: Variance=ຉ
� �铨ຉ

� � � � � �

Group 3: Gray Level Co-occurrence Matrix (GLCM) based features (n=25)

A GLCM is defined as p ��� �� δ� α� , a matrix with size �� � �� describing the

second order joint probability function of an image, where the ��� �� th element

represents the number of times the combination of intensity levels � and � occur in two

pixels in the image, that are separated by a distance of δ pixels in direction α, and ��

is the number of discrete gray level intensities. In our study, distance δ was set to 1

and direction α to each of the 13 directions in three-dimensions.

Each 3D gray level co-occurrence-based feature was calculated as the mean of the

feature calculations for each of the 13 directions.

Let:

P ��� �� be the co-occurrence matrix for an arbitrary δ and α,

�� be the number of discrete intensity levels in the image,

μ be the mean of P �� � ,

�� � 铨 �铨ຉ
�� P ��� �� be the marginal row probabilities,

�� � 铨 �铨ຉ
�� P ��� �� be the marginal column probabilities,

�� be the mean of ��,

�� be the mean of ��,

�� be the standard deviation of ��,

�� be the standard deviation of ��,

��+� � 铨 �铨ຉ
��

�铨ຉ
�� P ��� �� �� + � 铨 ��� 铨 �������� ,
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���� � 铨 �铨ຉ
��

�铨ຉ
�� P ��� �� � � � � 铨 ��� 铨 Ͳ�ຉ���� � ຉ ,

HX 铨� �铨ຉ
�� ����� log� ��� � � be the entropy of ��,

HY 铨� �铨ຉ
�� ����� log� ��� � � be the entropy of ��,

H 铨� �铨ຉ
��

�铨ຉ
�� P ��� �� log� �������� be the entropy of P ��� ��,

HXYຉ 铨� �铨ຉ
��

�铨ຉ
�� P �� � log ������ ������

HXY� 铨� �铨ຉ
��

�铨ຉ
�� ����������log ������ ������

1: Inverse difference moment normalized (IDMN) = 铨Ͳ
���ຉ �������

ຉ+��

��



2: Joint energy= �铨ຉ
��

�铨ຉ
�� � ���� ����

3: Difference average (DA)= �铨Ͳ
�� �ຉ ��������

4: Difference variance = �铨Ͳ
�� �ຉ �� � െ���������

5: Sum squares= �铨ຉ
��

�铨ຉ
�� �� � ���� � ��� ��

6: Joint entropy= �铨ຉ
��

�铨ຉ
�� ��������� log� ������� + ϵ�

7: Inverse difference (ID)= �铨Ͳ
���ຉ �������

ຉ+� ���
�



8: Joint average= �铨ຉ
��

�铨ຉ
�� �� ��� ��

9: IDM= �铨Ͳ
���ຉ �������

ຉ+� �
�

���
�



10: Autocorrelation= �铨ຉ
��

�铨ຉ
�� ��� ��� ��

11: Cluster prominence= �铨ຉ
��

�铨ຉ
�� �� + � � �� � ���� � ��� ��

12: Cluster shade= �铨ຉ
��

�铨ຉ
�� �� + � � �� � ���� � ��� ��

13: Cluster tendency= �铨ຉ
��

�铨ຉ
�� �� + � � �� � ���� � ��� ��

14: Correlation= �铨ຉ
��

�铨ຉ
�� �� � �� � �����
����������

15: Contrast= �铨ຉ
��

�铨ຉ
�� � � ��� ��� ��

16: Difference entropy= �铨Ͳ
�� �ຉ ������� log� ����� � + ϵ�

15: Entropy= �铨ຉ
�� ���� log� �� � + ϵ� , ϵ is an arbitrarily small positive number

(≈2.2×10−16).

16: Kurtosis=
ຉ
� �铨ຉ

� �� � ����

� ຉ
� �铨ຉ

� �� � ���� ��

17: Skewness==
ຉ
� �铨ຉ

� �� � ����

� ຉ
� �铨ຉ

� � � �� � ��

18: Uniformity= �
�� �����

19: Variance=ຉ
� �铨ຉ

� � � � � �

Group 3: Gray Level Co-occurrence Matrix (GLCM) based features (n=25)

A GLCM is defined as p ��� �� δ� α� , a matrix with size �� � �� describing the

second order joint probability function of an image, where the ��� �� th element

represents the number of times the combination of intensity levels � and � occur in two

pixels in the image, that are separated by a distance of δ pixels in direction α, and ��

is the number of discrete gray level intensities. In our study, distance δ was set to 1

and direction α to each of the 13 directions in three-dimensions.

Each 3D gray level co-occurrence-based feature was calculated as the mean of the

feature calculations for each of the 13 directions.

Let:

P ��� �� be the co-occurrence matrix for an arbitrary δ and α,

�� be the number of discrete intensity levels in the image,

μ be the mean of P �� � ,

�� � 铨 �铨ຉ
�� P ��� �� be the marginal row probabilities,

�� � 铨 �铨ຉ
�� P ��� �� be the marginal column probabilities,

�� be the mean of ��,

�� be the mean of ��,

�� be the standard deviation of ��,

�� be the standard deviation of ��,

��+� � 铨 �铨ຉ
��

�铨ຉ
�� P ��� �� �� + � 铨 ��� 铨 �������� ,
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17: Homogeneity1= �铨ຉ
��

�铨ຉ
�� ������

ຉ+���


18: Homogeneity2= �铨ຉ
��

�铨ຉ
�� ������

ຉ+����


19: Informational measure of correlation 1(IMC1) = �������ຉ
max �������

20: Informational measure of correlation 2(IMC2) = ຉ � t������������

21: Maximal Correlation Coefficient = �铨Ͳ
�� ������������

����������


22: Inverse difference normalized (IDN)= �铨Ͳ
���ຉ �������

ຉ+� ���
�



23: Inverse variance= �铨ຉ
�� �������

��
 ,

24: Maximum probability=max� P ��� ���

25: Sum entropy=� �铨�
��� ��+���� log� ���+� � + ϵ�

Group 4: Gray-Level Run-Length matrix based features (n=16)

Run-Length metrics quantify gray level runs in an image. A gray level run is defined

as the length in numbers of pixels, of consecutive that have the same gray level value.

In a gray level run-length matrix p ��� ����, the �� � th element describes the number

of times � a gray level � appears consecutively in the direction specified by �� and ��

is the number of discrete gray level intensities.

Let:

�� : the number of discrete intensity values in the image

��� the number of different run lengths

�� : the number of voxels in the mage

�� � 铨 �铨ຉ
��

�铨ຉ
�� �p �� ��θ � : the number of runs in the image along angle �

P �� ��� : the run length matrix for an arbitrary direction �

p �� ��� : the normalized run length matrix, p �� ��� 铨 P �� ���
�����

1: Run entropy (RE)= �铨ຉ
��

�铨ຉ
�� � �� � θ �� �� � θ + ϵ�
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2: Run variance (RV)= �铨ຉ
��

�铨ຉ
�� � �� � θ �� � ���

3: Grey level variance (GLV)= �铨ຉ
��

�铨ຉ
�� � �� � θ �� � ���

4: Gray level non-uniformity Normalized (GLNN)= �铨ຉ
�� � �铨ຉ

�� p �� ��θ �
�



�� � �

5: Run length non-uniformity Normalized (RLNN)= �铨ຉ
�� � �铨ຉ

�� p �� ��θ �
�



�� � �

6: Short run emphasis (SRE)=
�铨ຉ
��

�铨ຉ
�� �p �� ��θ

��
�

�� �

7: Long run emphasis (LRE)= �铨ຉ
��

�铨ຉ
�� �� p �� ��θ

�� �

8: Gray level non-uniformity (GLN)= �铨ຉ
�� � �铨ຉ

�� p �� ��θ �
�



�� �

9: Run length non-uniformity (RLN)= �铨ຉ
�� � �铨ຉ

�� p �� ��θ �
�



�� �

10: Run percentage (RP)= �铨ຉ
��

�铨ຉ
�� p �� ��θ

��


11: Low gray level run emphasis(LGLRE)= �铨ຉ
��

�铨ຉ
�� �p �� ��θ

��
�

�� �

12: High gray level run emphasis (HGLRE)= �铨ຉ
��

�铨ຉ
�� �� p �� ��θ

�� �

13: Short run low gray level emphasis(SRLGLE)=
�铨ຉ
��

�铨ຉ
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����
�
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14: Short run high gray level emphasis(SRHGLE)=
�铨ຉ
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�铨ຉ
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15: Long run low gray level emphasis(LRLGLE)= �铨ຉ
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�铨ຉ
�� �p �� ��θ ��
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�

�� �

16: Long run high gray level emphasis(LRHGLE)= �铨ຉ
��

�铨ຉ
�� ���� p �� ��θ

�� �

Group 5: Gray-level size zone matrix (n=16)

A Gray Level Size Zone Matrix (GLSZM) quantifies gray level zones in an image. A

gray level zone is defined as the number of connected voxels that share the same gray

level intensity. In a gray level size zone matrix p ��� ��, the �� � th element equals the

17: Homogeneity1= �铨ຉ
��

�铨ຉ
�� ������

ຉ+���


18: Homogeneity2= �铨ຉ
��

�铨ຉ
�� ������

ຉ+����


19: Informational measure of correlation 1(IMC1) = �������ຉ
max �������

20: Informational measure of correlation 2(IMC2) = ຉ � t������������

21: Maximal Correlation Coefficient = �铨Ͳ
�� ������������

����������


22: Inverse difference normalized (IDN)= �铨Ͳ
���ຉ �������

ຉ+� ���
�



23: Inverse variance= �铨ຉ
�� �������

��
 ,

24: Maximum probability=max� P ��� ���

25: Sum entropy=� �铨�
��� ��+���� log� ���+� � + ϵ�

Group 4: Gray-Level Run-Length matrix based features (n=16)

Run-Length metrics quantify gray level runs in an image. A gray level run is defined

as the length in numbers of pixels, of consecutive that have the same gray level value.

In a gray level run-length matrix p ��� ����, the �� � th element describes the number

of times � a gray level � appears consecutively in the direction specified by �� and ��

is the number of discrete gray level intensities.

Let:

�� : the number of discrete intensity values in the image

��� the number of different run lengths

�� : the number of voxels in the mage

�� � 铨 �铨ຉ
��

�铨ຉ
�� �p �� ��θ � : the number of runs in the image along angle �

P �� ��� : the run length matrix for an arbitrary direction �

p �� ��� : the normalized run length matrix, p �� ��� 铨 P �� ���
�����

1: Run entropy (RE)= �铨ຉ
��

�铨ຉ
�� � �� � θ �� �� � θ + ϵ�
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number of zones with gray level � and size � appear in image.

Let:

��: the number of discreet intensity values in the image

�� : the number of discreet zone sizes in the image

�� : the number of voxels in the image

�� = �铨ຉ
��

�铨ຉ
�� p �� � � the number of zones in the tumor

P ��� �� be the size zone matrix

p ��� �� be the normalized size zone matrix, defined as p �� � 铨 P ��� ��
P ��� ��

1: Large Area Low Gray Level Emphasis (LALGLE)= �铨ຉ
��

�铨ຉ
�� �P �� � �����

��

2: Gray Level Variance (GLV)= �铨ຉ
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�铨ຉ
�� ������ �� � ���

3: High Gray Level Zone Emphasis (HGLZE)= �铨ຉ
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�铨ຉ
�� �P �� � ���

��

4: Large Area High Gray Level Emphasis (LAHGLE)= �铨ຉ
��

�铨ຉ
�� �P �� � ��

��
�

��

5: Gray Level Non-Uniformity Normalized (GLNN)= �铨ຉ
�� � �铨ຉ

�� p �� � �
�



���

6: Small Area High Gray Level Emphasis (SAHGLE)=
�铨ຉ
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�铨ຉ
�� �P �� � ��

��
�

��
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8: Low Gray Level Zone Emphasis (LGLZE)= �铨ຉ
��

�铨ຉ
�� �P �� �

��
�

��

9: Small Area Low Gray Level Emphasis (SALGLE)=
�铨ຉ
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�铨ຉ
�� �P �� �

����
�

��

10: Small area emphasis (SAE)=
�铨ຉ
��

�铨ຉ
�� �P �� �

��
�

��

11: Large area emphasis (LAE)= �铨ຉ
��

�铨ຉ
�� �P �� � ���

��

12: Zone percentage (ZP)= �铨ຉ
��

�铨ຉ
�� P �� �

��
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13: Zone Variance(ZV)= �铨ຉ
��

�铨ຉ
�� p�i�j��j � μ�� , μ= �铨ຉ

��
�铨ຉ
�� p�i�j�j

14: Zone entropy (ZE)= �铨ຉ
��

�铨ຉ
�� p�i�j� log� � ��� +

15: Size-zone non-uniformity (SZN)= �铨ຉ
�� � �铨ຉ

�� P �� � ��

��

16: Size-zone non-uniformity normalized (SZNN)= �铨ຉ
�� � �铨ຉ

�� P �� � ��

���

The correlation matrix of the radiomics feature was displayed in Fig S5, which

revealed high multicollinearity between the 90 extracted features.

The correlation matrix of the radiomics feature was displayed in Figure S5, which 

revealed high multicollinearity between the 90 extracted features.

number of zones with gray level � and size � appear in image.

Let:

��: the number of discreet intensity values in the image

�� : the number of discreet zone sizes in the image

�� : the number of voxels in the image

�� = �铨ຉ
��

�铨ຉ
�� p �� � � the number of zones in the tumor

P ��� �� be the size zone matrix

p ��� �� be the normalized size zone matrix, defined as p �� � 铨 P ��� ��
P ��� ��

1: Large Area Low Gray Level Emphasis (LALGLE)= �铨ຉ
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Figure S1 Exemplary pictures of micropapillary growth pattern. (A) Representative hematoxylin and eosin-stained tumor slide of 
micropapillary pattern. Original magnification, ×20. (B) Radiologic image (axial) of tumor with micropapillary pattern.

Figure S2 Recurrence-free survival and overall survival curves for patients without lymph node metastasis in the training cohort. MP/S, 
lung adenocarcinoma containing micropapillary or solid growth pattern.



© Translational Lung Cancer Research. All rights reserved. http://dx.doi.org/10.21037/tlcr-21-44

Figure S3 Recurrence-free survival and overall survival curves between patients having MP/S growth pattern and those without in the 
validation cohort. MP/S, lung adenocarcinoma containing micropapillary or solid growth pattern.

Figure S4 Heatmap of correlation matrix of the 90 extracted radiomics features in primary cohort.
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Figure S5 Unsupervised clustering analysis of the five selected radiomics features in both the training and validation cohort.

Figure S6 The decision curve analysis of four proposed models in the validation set. 


