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Original Article

Triptolide inhibits epithelial-mesenchymal transition phenotype 
through the p70S6k/GSK3/β-catenin signaling pathway in  
taxol-resistant human lung adenocarcinoma
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Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) 
and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck 
to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to 
overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from 
Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant 
human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.
Methods: Triptolide’s inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell 
cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. 
Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects 
of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were 
evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end 
labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by 
western blot and IHC.
Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-
resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant 
delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-
mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.
Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung 
adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, 
indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung 
adenocarcinoma.
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Introduction

Lung cancer is the leading killer among cancers world-wide 
(1,2); about 85% of lung cancers are classified as non-small 
cell lung cancer (NSCLC) (3), and adenocarcinoma being 
the leading entity therein. Treatment for NSCLC includes 
tyrosine kinase inhibition for those with driver mutations, 
surgery, radiation, chemotherapy, immunotherapy, and/or 
a combination of these treatments. However, development 
of chemoresistance is one of the main challenges of 
chemotherapy; therefore, new drugs that can prevent or 
overcome chemoresistance are urgently required.

Taxol is frequently applied in NSCLC treatment. It is a 
microtubule-stabilizing agent, which promotes microtubule 
assembly, prevents depolymerization, and inhibits cell 
division. Despite its success as an anti-tumor drug, cancer 
cells gradually develop resistance to taxol, which limits 
its long-term effects. Many mechanisms can cause taxol-
resistance: multidrug-resistant phenotype mediated by 
ATP-binding cassette (ABC) transporters is the best known 
mechanisms (4); epithelial-to-mesenchymal transition 
(EMT) is another mechanism for induction of resistance 
to chemotherapy (5,6). In EMT, epithelial cells acquire a 
mesenchymal phenotype, which increases their motility 
and promotes the establishment of metastases. Studies 
have shown that signaling pathways which inhibit EMT 
also suppress drug resistance in NSCLC (7). Therefore, 
molecules that target EMT signaling pathways leading 
to EMT inhibition or reversal, may be used to effectively 
overcome drug resistance in tumors.

Triptolide, a natural product extracted from Tripterygium 
Wilfordii, has been used to treat autoimmune diseases 
and inflammation in traditional Chinese medicine for 
years. Previous studies have revealed that triptolide exerts 
remarkable anti-tumor effects in many kinds of cancers, such 
as breast cancer (8), lung cancer (9,10), prostate cancer (11),  
osteosarcoma (12), neuroblastoma (13), lymphoma (14), 
malignant mesothelioma (15), gastrointestinal cancers  
(16-20), and leukemia (21). On the basis of these preclinical 
observations, clinical trials with this molecule are currently 
underway (22). However, whether and how triptolide exerts 

anti-tumor effects in taxol-resistant NSCLC still remains 
unknown.

This study aimed to identify the anti-tumor effects of 
triptolide in taxol-resistant lung adenocarcinoma cells, 
and detect related targets and signaling pathways in A549/
TaxR cells. And to our knowledge, it is the first study to 
investigate triptolide’s effect on EMT in taxol-resistant lung 
adenocarcinoma cells and related mechanisms worldwide.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-145).

Methods

Reagents

Triptolide and taxol were obtained from AbMole Bioscience 
(Houston, TX, USA). Roswell Park Memorial Institute 
(RPMI)-1640 medium, fetal bovine serum (FBS), penicillin-
streptomycin, trypsin, and other reagents related to cell 
culture were all purchased from Thermo Fisher Scientific, 
Inc. (Waltham, MA, USA).

Cell culture

The A549/TaxR cells were purchased from KeyGen Biotech 
(Nanjing, Jiangsu, China), while A549 cells were purchased 
from the Cell Bank of Chinese Academy of Sciences 
(Shanghai, China). Both A549 and A549/TaxR cells were 
cultivated by RPMI-1640 medium containing 10% FBS 
and 100 μg/mL of penicillin-streptomycin. To maintain 
resistance, taxol (70 nM) was added into the medium with 
A549/TaxR cells, and all cells were cultivated in 5% CO2 
under 37 ℃ conditions.

Sulforhodamine B (SRB) assay

A SRB assay was performed to detect the inhibitory effects 
of triptolide (23,24). Briefly, 4,000 cells were cultivated 
in a 96-well flat-bottom plate (NEST, Wuxi, Jiangsu, 
China) and incubated for 24 hours at 37 ℃, and were then 
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treated with triptolide (0, 20, 40, and 60 nM) for another 
72 hours. The percentage of cell growth inhibition was 
calculated using the formula: 100% − ODsample/ODcontrol, and 
IC50 values were derived by curve-fitting methods using 
GraphPad Prism 8 software (La Jolla, CA, USA).

Cell cycle analysis

Cells were first treated with triptolide (0, 20, 40, and 60 nM) 
for 24 hours, they were then harvested by trypsin, washed 
twice in phosphate buffered saline (PBS), and fixed in 70% 
ethanol at −20 ℃ for several hours. Then, the cells were 
suspended in PBS which contained 10 µg/mL of propidium 
iodide (PI) (Elabscience, Wuhan, Hubei, China) and  
10 µg/mL of ribonuclease (RNase) A (Elabscience) at 37 °C 
for 30 minutes. The cell cycle was then analyzed by Beckman 
CytoFLEX flow cytometer (Beckman Coulter Life Sciences, 
Indianapolis, IN, USA) with CytExpert Software (version 
2.3.1.22, Beckman Coulter).

Cell apoptosis analysis

Annexin V-FITC/PI Apoptosis Detection Kit (Elabscience) 
was used to detect cell apoptosis. Briefly, cells were 
cultivated in a 6-well plate (2×105 cells/well), incubated for 
24 hours at 37 ℃, and then treated with triptolide (0, 20, 40, 
and 60 nM) for 24 hours. After cell dissociation, the cells 
were collected and washed twice in cold PBS, and subjected 
to annexin V-propidium iodide (AV-PI) double staining 
according to the manufacturer’s instructions. Apoptosis was 
analyzed using the Beckman CytoFLEX flow cytometer 
with CytExpert Software.

Protein extraction and western blot

Primary antibodies against BAX, Caspase 3, Cleaved-
Caspase 3, PARP, p-Gsk-3α (Ser21), p-Gsk-3β (Ser9), 
Jagged1, c-Myc, Slug, TCF8/ZEB1, p70S6K/p-p70S6K 
(Thr389), and Histone H3 were obtained from Cell 
Signaling Technology (Beverly, MA, USA); β-actin and 
E-cadherin were obtained from Proteintech (Wuhan, 
Hubei, China); β-catenin, CCND3, and HES1 were 
purchased from ABcolnal (Wuhan, Hubei, China); and 
Bcl-2, Gsk-3β, and Gsk-3α were purchased from Abcam 
(Cambridge, MA, USA).

The cells were analysed by an extraction buffer (cat. 
no. FNN0011; Thermo Fisher Scientific, Inc.) containing 
protease inhibitor (cat. no. 78438; Thermo Fisher Scientific, 

Inc.), phosphatase inhibitor (cat. no. 4906845001; Roche 
Diagnostics, Basel, Switzerland), and phenylmethylsulfonyl 
fluoride (1 mM). The concentrations of lysates were then 
determined by bicinchoninic (BCA) assay. We then added 20 µg  
of each protein sample into 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS/PAGE) gels and 
transferred them electrophoretically onto polyvinylidene 
fluoride (PVDF) membranes (0.45 µm, Millipore, Bedford, 
MA, USA). Membranes were then incubated with the primary 
antibodies overnight, washed three times with 1× tris-buffered 
saline with Tween 20 (TBST), and incubated with horseradish 
peroxidase (HRP)-conjugated secondary antibodies (1:5,000, 
cat. no. 7074 and 7076; Cell Signaling Technology). 
Luminata™ Forte Western HRP substrate (Millipore) was 
then used to visualize the band according to manufacturer’s 
protocol, and ImageJ 1.51 software (National Institutes of 
Health, Bethesda, MD, USA) was used to calculate band 
intensity.

Preparation of cytoplasmic and nuclear extractions for 
western blot analysis

The A549/TaxR cells were trypsinized after treatment 
with triptolide, and we then used NE-PER® Nuclear and 
Cytoplasmic Extraction reagents (Thermo Fisher Scientific, 
Inc.) to extract their cytoplasmic and nuclear fractions 
according to the manufacturer’s instructions. Next, western 
blot was performed with a β-catenin specific antibody, and 
β-actin and Histone H3 were used as loading controls of 
cytoplasmic and nuclear fractions, respectively.

Transwell cell migration/invasion assays

Cell migration and invasion were determined using an  
8 µm diameter pore filter (NEST). Matrigel was used to 
coat Transwell insert membrane during the cell invasion 
assay, whereas it was unnecessary in the cell migration assay. 
Five ×104 cells were cultivated into the upper chamber 
and RMPI-1640 medium containing 20% FBS was added 
into the lower chamber. After being treated with triptolide  
(0, 20, 40, and 60 nM) for 24 hours, cells were fixed across 
the pores with paraformaldehyde and stained with crystal 
violet solution. The number of cells was counted by 
randomly selecting 3 fields in each chamber.

Tumor model in vivo

Male Bagg Albino (BALB)/c nude 6-week-old mice were 
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purchased from Vital River Research Animal Services (Beijing, 
China) and raised in a sterile environment, and experiments 
were performed under a project license (No. 81874396) granted 
by the Ethical Committee for Animal Experimentation of the 
Second Hospital of Shandong University, in compliance with 
institutional guidelines for the care and use of animals. The 
A549/TaxR cells (1×106 cells in 100 µL of PBS) were injected 
into each mouse subcutaneously. When tumors reached  
50–100 mm3, the mice were assigned randomly into 3 groups, 
and the reagents that were injected subcutanesouly every 
other day were as follows: (I) 100 µL of solvent [PBS/dimethyl 
sulfide (DMSO) =19:1]; (II) low-dose triptolide (0.4 mg/kg); 
(III) high-dose triptolide (0.8 mg/kg). The body weight of each 
mouse was measured daily to determine whether triptolide had 
a toxic effect, and tumor volumes were calculated according 
to the formula: tumor volume (mm3) = 1/2×(tumor length) × 
(tumor width)2.

Immunohistochemistry (IHC) and histological analysis

Tumor specimens were fixed in 4% paraformaldehyde, 
embedded in paraffin, and sectioned. Briefly, tissue sections 
were deparaffinized and the slides were microwaved in 
citrate buffer (10 mM, pH =6.0) for 20 minutes. The 
sections were incubated in 3% H2O2 to quench the activity 
of endogenous peroxidase. After blocking in 1.5% goat 
serum (Beyotime Institute of Biotechnology, Shanghai, 
China) for 60 minutes at room temperature, the sections 
were incubated with primary antibodies of PCNA, β-catenin, 
p-Gsk-3α, p-Gsk-3β, and p-p70S6K at 4 ℃ overnight. The 
next day, the sections were incubated with a secondary 
antibody [1:10,000, goat anti-rabbit IgG H&L (HRP), cat. 
no. ab205718; Abcam], developed in diaminobenzidine, and 
then counter-stained with hematoxylin. Finally, the sections 
were examined under light microscopy.

The integrated optical density (IOD), positive staining 
area of p-p70S6K, β-catenin, p-GSK-3α, and p-GSK-
3β in tumor specimens, and the percentage of Ki67/
dUTP nick end labeling (TUNEL)-positive cells among 
total cells were measured by Image Pro Plus 6.0 software 
(Media Cybernetics, Inc., Rockville, MD, USA). The 
average optical density (AOD)  was determined based on the 
formula: AOD = IOD/area for semi-quantitative analysis.

Immunofluorescence (IF)

The A549/TaxR cells were cultivated onto glass coverslips in 
a 6-well plate (2×105 cells/well) and rested overnight. After 

treatment with triptolide for 24 hours, the cells were fixed in 
4% paraformaldehyde for 30 minutes at room temperature. 
The slides were then permeabilized by 1% Triton X-100 in 
PBS for 10 minutes and blocked in 10% normal goat serum, 
followed by the incubation with the β-catenin primary 
antibody overnight. They were then washed 3 times in 
PBS the next day, and incubated on the coverslips with 
the secondary antibody at room temperature for 1 hour. 
Lastly, the coverslips were mounted with mounting medium 
containing 4',6-diamidino-2-phenylindole (DAPI) (Abcam).

TUNEL staining

The TUNEL staining was performed to detect cell 
apoptosis in tumor sections using a TUNEL assay kit 
according to the manufacturer’s instructions (Promega, 
Madison, WI, USA) and those of a previous study (24). 
Permount solution was used to dehydrate and mount the 
stained slides, and a BX43 light microscope (Olympus 
Corporation, Tokyo, Japan) was used to visualize effect of 
the permount solution on the slides.

Statistical analysis

All experiments were repeated 3 times in this study. Data 
are presented as the means ± SD, and analyzed by t-test and 
one-way analysis of variance (ANOVA). Least-significant 
difference and Tukey’s test were used to analyze multiple 
comparisons. A P value <0.05 was considered to have 
statistical significance.

Results

Triptolide inhibits proliferation, and induces S-phase 
arrest and apoptosis of taxol-resistant human lung 
adenocarcinoma cells

Taxol (70 nM) was added to the cell culture medium of 
A549/TaxR cells to maintain chemoresistance. As shown in  
Figure 1A, A549 cells had little expression of multidrug 
resistance-associated protein 1 (MRP-1) and P-glycoprotein 
(P-gp), whereas the expression levels of these 2 proteins were 
much higher in A549/TaxR cells. The IC50 value of taxol 
in the A549/TaxR cells was 424nM, which was more than  
50 times higher than that in A549 cells (7.8 nM, Figure 1B).

The chemical structure of triptolide (molecular weight, 
360.4 g/mol) is presented in Figure 2A. To evaluate whether 
triptolide affects cell viability, both A549 and A549/TaxR 
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cells were treated with an increasing dose of triptolide. The 
results indicated that proliferation of both A549 and A549/
TaxR cells was inhibited by triptolide in a dose-dependent 
manner (Figure 2B, Figure S1A). Moreover, the IC50 value 
of triptolide in A549/TaxR cells was 15.6 nM, which was 
only about a half of that in the A549 cells.

The effect of triptolide exposure (20 nM, for 24 hours) 
on cell cycle progression was analyzed by flow cytometry 
in A549 and A549/TaxR cells. As shown in Figure S1B and 
Figure 2C, in the control group 36% and 51% of A549 and 
A549/TaxR cells were in S phase, respectively; however, the 
percentages rose to 49% and 77% in S phase in the group 
treated with triptolide. Triptolide also induced apoptosis 
of A549 and A549/TaxR cells. Evaluation of AV-PI positive 
cells revealed that at 60 nM triptolide significant apoptosis 
was induced in A549 cells (Figure S1C,D), A backspace 
is needed for the bracket and at 40 and 60 nM in A549/
TaxR cells (Figure 2D,E). The pro-apoptotic effect was 
determined by western blot; increased levels of cleaved-
caspase 3, cleaved-PARP, and pro-apoptotic protein BAX 
and decreased level of anti-apoptotic protein Bcl-2 were 
observed in A549/TaxR cells as shown in Figure 2F. In 
summary, triptolide inhibited proliferation, and induced 
S-phase arrest and apoptosis of A549 and A549/TaxR cells.

Triptolide reverses the EMT phenotype in A549/TaxR cells

A previous study indicated that triptolide can inhibit EMT 
in gefitinib-resistant lung cancer cells (10); therefore, we 
hypothesized that triptolide might suppress migration and 
invasion of A549/TaxR cells. The transwell-assay showed that 

triptolide significantly inhibited cell migration and invasion 
at the dosages of 20, 40, and 60 nM (Figure 3A). Additionally, 
as shown in Figure 3B, cell viability increased to 92% after 
triptolide treatment (20 nM, 24 hours). A549/TaxR cells 
remained viable after triptolide treatment (20 nM), apoptosis 
was induced (Figure 2E), and migration and invasion was 
inhibited.

The expression level of EMT markers and EMT-
related transcription factors were evaluated by western blot. 
Epithelial marker E-cadherin was upregulated, whereas 
transcription factors ZEB1 and Slug were downregulated 
(Figure 3C), suggesting a reversion of the EMT phenotype 
in A549/TaxR cells by triptolide.

Wnt/β-catenin pathway plays a role in EMT reversion in 
triptolide-treated A549/TaxR cells

The canonical Wnt signaling pathway has been shown to play 
a role in EMT inhibition/reversion, and triptolide has been 
shown to inhibit the Wnt/β-catenin pathway in NSCLC 
cells (25,26). To test whether EMT reversion induced 
by triptolide was due to inhibition of the Wnt/β-catenin 
pathway in A549/TaxR cells, we examined the expression 
level of β-catenin, which together with the downstream target 
genes Jagged1 and c-Myc is considered the central molecule 
in the Wnt signaling pathway. Downregulation of β-catenin, 
Jagged1, and c-Myc was induced by increasing triptolide 
concentrations (Figure 4A). Since Notch can have an effect 
on EMT similar to that of the Wnt/β-catenin pathway (26), 
we evaluated the expression level of Notch1 intracellular 
domain (NICD1) and the downstream target genes HES1 
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and CCND3. Our results did not show significant changes in 
the level of NICD1, HES1, and CCND3.

Nuclear translocation of β-catenin is critical for activation 
of the Wnt/β-catenin pathway. To verify whether triptolide 
inhibits the Wnt signaling pathway, western blot and IF were 
used to detect the cytoplasmic and nuclear levels of β-catenin. 
Both cytoplasmic and nuclear β-catenin levels were reduced 
by triptolide (Figure 4B,C), with the reduction of nuclear 
β-catenin being more prominent. These results allow to 
conclude that triptolide reversed EMT by repressing the 

Wnt/β-catenin signaling pathway.

Triptolide inhibits growth of A549/TaxR xenografts  
in vivo

A mouse model was established to investigate the effect 
of triptolide in vivo. The mean volumes of subcutaneous 
tumors in low-dose (0.4 mg/kg) and high-dose (0.8 mg/kg) 
triptolide groups were smaller than those in the vehicle group  
(Figure 5A,B). At the termination of the experiments the 
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mean tumor volume of the vehicle group was 1,313 mm3, 
while 948 and 638 mm3 for the low-dose and high-dose 
triptolide groups, respectively. The body weight of mice was 
measured every day to identify any possible side effect of 
triptolide. No obvious weight loss was detected in triptolide-
treated mice (Figure 5C), which indicates that triptolide did 
not induce significant systemic toxicity at the dosage applied.

IHC assay was performed in mice tumor samples to evaluate 
cell proliferation and apoptosis, and a significant decrease 
of PCNA expression as well as an increased percentage of 
TUNEL-positive apoptotic cells in the high-dose triptolide 
(0.8 mg/kg) group was demonstrated (Figure 5D). This means, 
that triptolide not only inhibited cell proliferation but also 
induced cell apoptosis in the A549/TaxR xenograft tumors  
in vivo.

Triptolide suppresses phosphorylation of GSK3 and 
p70S6K

Our results above showed that triptolide-induced 
downregulation of β-catenin inhibited the Wnt pathway. 
GSK-3, which has been found being inactivated through 
phosphorylation at serine 9/21 by protein kinase p70S6k, has 
been shown to be a negative regulator of β-catenin (27-29).  
To determine whether β-catenin degradation induced by 
triptolide was regulated by the dephosphorylation of GSK-3 
and p70S6K in A549/TaxR cells, we examined the expression 
level of p-p70S6K, p-GSK-3α and p-GSK-3β. The 
downregulation of p-p70S6K, p-GSK-3α, and p-GSK-3β  
observed at increasing doses of triptolide is shown in 
Figure 6A; while down-regulation was clearly observed, a 
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relationship between concentration of triptolide and total 
expression levels of p70S6K, GSK-3α, and GSK-3β could 
not be detected. Additionally, reductions of p-GSK-3α, 
p-GSK-3β and β-catenin were also found in mice tumor 
samples (Figure 6B). To conclude, triptolide suppressed 
the Wnt/β-catenin pathway by blocking the activity of 
p70S6K, and this activated GSK-3 to promote degradation 
of β-catenin.

Discussion

Triptolide induces apoptosis of many drug-resistant tumor 

cells, including vincristine-resistant KB cells, doxorubicin-
resistant MES-SA cells, and adriamycin-resistant K562  
cells (30). This study also found that vincristine-resistant 
KB cells and doxorubicin-resistant MES-SA cells were 
more sensitive to triptolide than their parental cells, which 
is similar to our findings that the IC50 value of triptolide in 
A549 cells is about 2 times higher than that in A549/TaxR 
cells. Considering these findings, triptolide may become a 
promising and broad-spectrum agent to treat chemoresistant 
cancers, but the mechanisms on how triptolide inhibits these 
cells still needs further investigation.

Our findings revealed that triptolide may act on the 
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mitochondrial apoptotic pathways by upregulating BAX, 
cleaved-PARP and cleaved-caspase 3, and downregulating 
Bcl-2, a major regulator of mitochondrial apoptotic 
pathways, and this led to death of A549/TaxR cells. In 
previous studies it was shown that death receptors and 
mitochondrial pathways are affected by triptolide, and 
apoptosis was induced in some solid and blood tumors 
(14,21,31). Besides, triptolide can also induce apoptosis 
mediated by apoptosis inducing factor (AIF) (32) and 
autophagic cell death (33).

The development of chemoresistance to cisplatin, taxol 

and epidermal growth factor receptor-tyrosine kinase 
inhibitors (EGFR-TKIs) is a major obstacle in the treatment 
of lung adenocarcinoma. EMT has been demonstrated as 
one of the mechanisms that contributes to chemoresistance 
such as to cisplatin (34-37) and has been reported to be either 
a cause or consequence of taxol-resistance in A549 cells (38). 
EMT has also been shown to cause acquired resistance to 
EGFR-TKIs such as erlotinib (39) and afatinib (40). This 
knowledge, combined with our present results showing that 
triptolide can reverse EMT, suggest that this molecule may 
be developed for the clinical treatment of drug-resistant 
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cancers.
Inhibition of A549/TaxR xenografts by triptolide has 

been demonstrated by our experiments. However, due to 
the absence of taxol-treated mice bearing taxol-sensitive 
A549 tumors, the role of triptolide in breaking taxol 
resistance in vivo through EMT reversal is not yet proven 
and deserves further investigations.

EMT can be positively regulated by the Wnt/β-catenin 

pathway (26), a process in which GSK-3 plays a significant 
regulatory role. GSK-3 is found in all eukaryotes and is a 
widely-expressed and highly-conserved serine/threonine 
protein kinase that can be inactivated by p70S6k through 
phosphorylation at serine 9/21 (27-29). It is encoded by 
2 genes which generate to 2 related proteins, GSK-3α 
and GSK-3β, in mammals. Active GSK-3β can prevent 
transcription of β-catenin target genes by stimulating 
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the degradation of β-catenin protein and promoting the 
destruction of nuclear phosphorylated β-catenin. Our 
results show that inhibition of the p70S6K/GSK-3/β-catenin 
signaling pathway is likely a major mechanism whereby 
triptolide inhibits EMT and the growth of A549/TaxR cells. 
However, the way triptolide inhibits the activity of p70S6K 
is not yet clear and requires further investigations.

In summary, our study demonstrated that triptolide, 
a natural product isolated from Tripterygium Wilfordii, 
induces apoptosis of A549/TaxR cells and reverses the 
EMT phenotype through repression of the p70S6K/GSK3/
β-catenin signaling pathway, and suppresses the growth 
of A549/TaxR xenograft tumor without obvious toxicity  
in vivo. To our knowledge, this is the first study to proclaim 
triptolide’s inhibition of EMT in taxol-resistant lung 
adenocarcinoma and associated mechanisms, moreover, 
these findings may provide a promising application for the 
combined therapeutic use of triptolide plus taxol, which 
could be applied for the treatment of chemoresistant lung 
adenocarcinoma.
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Figure S1 Triptolide inhibits proliferation and induces apoptosis of A549 cells. (A) Dose-dependent inhibition of the proliferation of A549 
cells by triptolide. Cell viability was determined by SRB assay after treatment with triptolide for 72 hours. (B) S-phase arrest in A549 cells 
after treatment with triptolide (20 nM) for 24 hours. (C) Representative flow cytometric graphs of A549 cells after treatment with triptolide (0, 
20, 40, and 60 nM) for 24 hours. (D) Quantification of apoptotic cells after treatment with triptolide. The graph shows AV-PI positive cells, 
and the data are presented as the means ± SD. (E) Expression levels of PARP, Caspase-3, Bcl-2, and Bax in A549 cells which were detected 
by western blot after treatment with triptolide for 24 hours. *P<0.05, ***P<0.001 compared to controls. SRB, sulforhodamine B; AV-PI, 
annexin V-propidium iodide; SD, standard deviation.


