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Introduction

According to World Health Organization data, lung 
cancer is the deadliest of all known tumors. In 2018, total 
lung cancer cases reached 2.09 million, with 1.76 million 
related deaths reported (1). Such a high mortality rate can 
be reduced by early diagnosis and treatment. Screening 
programs have been shown to significantly increase the 

number of cases diagnosed at an early stage and have 
become highly recommended (2-5). During screening, 
a variety of medical imaging modalities can be applied; 
however, for the screening of lung nodules, computed 
tomography (CT) is the keystone imaging technique, 
while other available methods are of lesser importance. To 
guarantee the effectiveness of a screening program, each 
data set should be carefully analyzed. However, the demands 
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of such in-depth analysis on the time of experienced staff 
is a problem. This factor is especially relevant to medical 
image analysis, in which experienced radiologists with a 
limited amount of time must analyze a large number of 
images for a single patient.

The task of radiologists is to identify all pulmonary 
nodules and examine their border, shape, location, and 
size, as well as to judge their type (solid, part-solid, or non-
solid) (6-9). During lung cancer screening, in which there 
could be multiple nodules potentially measuring only 
a few millimeters in size, such a procedure is extremely 
challenging and time-consuming. One possible solution for 
this problem is to use artificial intelligence. 

Artificial Intelligence (AI) refers to the use of a computer 
to simulate intelligent behavior with or without minor 
human intervention (10). AI is employed in many areas of 
medicine, including medical diagnosis, medical statistics, 
robotics, and human biology. In the case of lung cancer 
screening, a branch of artificial intelligence, namely 
machine learning, provides algorithms as an aid for 
radiologists. Such techniques could serve as a computer-
aided diagnostic system for identifying candidate nodules 
and retrieving as much diagnostically relevant information 
as possible. This paper focuses on a comprehensive review 
of such algorithms, beginning with the simplest solutions 
developed , with a major emphasis on the current state-of-
the-art in radiomics and deep learning algorithms.

Computer-aided detection systems for detection 
and diagnosis of pulmonary nodules 

The algorithms used in the pulmonary nodule identification 
process are referred to under the common name of 
computer-aided detection systems, and are based on the 

following main steps: lung segmentation, and pulmonary 
nodule detection and classification. 

The first step, lung segmentation, is performed by 
removing the background and unwanted areas from the 
input CT image to narrow the image region for further 
examination. Over the years, a number of algorithms have 
been developed for this purpose. The first approaches 
focused on two-dimensional (2D) (11) and three-
dimensional (3D) (12,13) region growing algorithms. 
Other widely used algorithms are based on Lai et al.’s active 
contour model (14). Recently, deep learning algorithms 
have overtaken the classical approaches as being less 
sensitive and more accurate . The current state-of-the-
art methods utilize statistical finite element analysis (15), 
or three-dimensional lung segmentation, improved by the 
adversarial neural network training, which was successfully 
implemented by Siemens Healthcare in their AI-RAD 
Companion framework (16). A summary of state-of-the-art 
algorithms for lung segmentation is provided in Table 1.

Nodule candidate detection, the second step in CT 
scan analysis, is performed to identify structures within the 
lung that are suspected of being malignant lung nodules. 
CT scans with examples of benign and malignant nodules 
are shown in Figure 1. A number of algorithms have been 
published to accomplish the nodule detection task, among 
which, multiple grey-level thresholding (22) is considered 
to be the best. However, algorithms based on shape (23) 
and template matching (24), as well as morphological 
approaches with convexity models (25) and filtering-based 
methods (26), are also capable of successfully detecting 
candidate nodules with high accuracy. In 2019, a polygonal 
approximation algorithm (27) was proposed, followed by 
a neuro-evolutionary scheme (28) in 2020. Since 2016, 
deep learning networks have played an important role in 

Table 1 Review of state-of-the-art lung segmentation algorithms

Year Authors Method No. of cases Quality index Quality index value

2006 Campadelli et al. (17) Spatial edge detection 487 Overlap measure 82.00%

2007 Gao et al. (18) Threshold based 8 Dice index 99.00%

2015 Dai et al. (19) Shape-based N/A Dice index 98.00%

2017 Soliman et al. (20) Shape-based 105 Dice index 98.50%

2016 Shi et al. (11) Thresholding 23 Overlap measure 98.00%

2017 Rebouças Filho et al. (21) Deformable model 40 F-measure 99.14%

2019 Zhang et al. (15) Statistical finite element analysis 20 N/A N/A

2020 Fischer et al. (16) AI-RAD  137 N/A N/A
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Figure 1 Left: Benign nodule with visible calcification in the right upper lobe (RUL). Right: Malignant, spiculated nodule with cavitation in 
the right lower lobe (RLL).

nodule detection. These systems are discussed in dedicated 
paragraphs later in this paper. A review of algorithms for the 
detection of candidate lung nodules is presented in Table 2.

The application of each lung nodule detection algorithm 
mentioned in Table 2 results in a number of false-positive 
candidates, the lowest rate for which was reported by 
Cascio et al. in (30) (2.5 FP/scan), with Ozekes reporting 
the highest rate in (29) (13.38 FP/scan). The reduction 
of false positives is achieved by applying nodule feature 
extraction or nodule candidate classification approaches. 
Several new methods for feature extraction and nodule 
candidate classification have been published recently. Table 3  
summarizes such algorithms together with their reported 
accuracy.

Despite all of the research conducted so far, there is still 
a great need to improve existing CAD algorithms for lung 
cancer diagnosis.

Radiomics in lung cancer diagnosis and therapy

In a previous paragraph, we reviewed existing CAD 
algorithms, pointing out their main drawback, which is 
a lack of strict definition of the set of features which can 
be used to determine whether an identified nodule is 
cancerous or benign. In parallel to the development of 
CAD systems, Lambin et al. (44) defined a new concept 
called radiomics. Radiomics is based on the extraction 
of a large number of features from a single image using 
data-characterization algorithms. Such features assist in 
identifying cancer characteristics hidden from the naked 
eye of a human expert. However, the radiomics image 
processing pipeline consists of more steps than simply 
feature extraction. The step taken prior to radiomic feature 

calculation is segmentation of the region of interest (ROI), 
which in most cases is performed manually due to the lack 
of an accurate “gold standard” technique for pulmonary 
nodule segmentation. The third part of each radiomics 
analysis is pulmonary nodule classification—the process 
of model selection to perform one of the following tasks: 
(I) categorization of the analyzed nodule into one of two 
groups: malignant or benign; (II) prediction of the response 
to therapy (primarily radiotherapy); or (III) prediction of 
the overall survival of the patient.

The standard flow of each radiomic analysis is shown in 
Figure 2.

Lambin and Kumar’s initial papers (45) utilized only a 
limited number of image-derived features, whereas Aerst’s 
2014 study (46) proposed a well-defined set of features that 
are used in almost all radiomics applications. In general, 
radiomic features are grouped into the size and shape-
based features (47,48); descriptors of the image intensity 
histogram (49,50); descriptors of the relationships between 
voxels (51); derived textures (52,53); textures extracted from 
filtered images (50,54); and fractal features (55).

The definitions of the abovementioned features, along 
with brief guidance on how to calculate their values, 
have also been described in the works of Galloway (56),  
Pentland (57), Amadsun (58), and Thibault (59).

Over the years, radiomics has become one of the most 
popular and important techniques in the detection of a large 
variety of tumors. The increasing popularity of radiomics is 
clearly evidenced by the large number of papers containing 
the term “radiomics” together with “lung cancer” on the 
PubMed database. The numbers of papers available on 
PubMed from 2012 until May 2020 are presented in Figure 3.

The final step of model development is validation, in 
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which the trained model is evaluated on new, independent 
data in order to check its performance. If the model achieves 
a reasonable performance on the validation data and 
performs as well as on the training data, its robustness and 
generalization are confirmed . Assuming representativeness 
of the training data set, a lower prediction performance 
on validation data would indicate overfitting (i.e., when a 
model draws false conclusions on training data that do not 
apply to new observations). A poor performance on both the 
training and validation data would indicate underfitting (i.e., 
when the classification model is unable to draw meaningful 

conclusions from the data).
Despite the potential of radiomics, as proven by 

the exponentially growing number of publications, the 
challenge of developing a general, robust signature that can 
be effectively implemented in a clinical setting still exists. 
This is reflected in the number of publications devoted 
to the problem surrounding the lack of reproducible 
radiomic signatures (60-62). Additionally, a number of 
authors have utilized test-retest procedures. As a result 
of such an approach, Zhovanic et al. (63) have shown 
that more than 60 radiomic features are sensitive to the 

Table 2 Review of lung nodule candidate detection algorithms

Year Authors Method Accuracy False positive rate

2008 Ozekes et al. (29) 3D template matching 90.00% 13.38

2009 Ye et al. (26) Filtering-based 90.20% 8.2

2011 Pu et al. (23) Shape-based 70.00% N/A

2011 Kubota et al. (25) Convexity model and morphological approach 69.00% N/A

2012 Cascio et al. (30) Stable 3-D mass spring models 97.00% 6.1

2012 Soltaninejad et al. (31) Active contour and k-nearest neighbors algorithm 90.00% 5.63

2013 Choi et al. (32) Entropy analysis 99.00% 2.27

2014 Jo et al. (24) Template matching 91.00% N/A

2016 Akram et al. (22) Multiple grey-level thresholding 97.52% N/A

2016 Gonçalves et al. (33) Hessian matrix–based method N/A N/A

2018 Naqi et al. (27) Polygonal approximation 97.70% N/A

2019 Huidrom et al. (28) Neuro-evolutionary scheme 93.20% N/A

Table 3 Summary of recently published false-positive reduction algorithms together with their reported sensitivity and false-positive rates

Year Authors Identified features True positive rate False-positive rate

2009 Guo et al. (34) Shape features 94.77% N/A

2009 Murphy et al. (35) Shape, curvedness 80.00% 4.20

2009 Retico et al. (36) Morphological features, texture features 72.00% 6.00

2010 Sousa et al. (37) Shape, texture, gradient, histogram, spatial features 84.84% 0.42

2010 Messay et al. (38) Shape, intensity, gradient 82.66% 3.00

2013 Orozco et al. (39) Texture features 84.00% 7.00

2013 Tartar et al. (40) Shape features 89.60% 7.90

2014 Teramoto et al. (41) Shape features, intensity 83.00% 5.00

2018 Gong et al. (42) Intensity, shape, texture features 79.30% 4.00

2020 Sun et al. (43) S-transform 97.87% 6.70
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different CT reconstruction parameters as well as to the 
specific vendors of different CT scanners. The research 
of Yip et al. (64) evidenced the relationship between the 
segmentation and stability of radiomic features, and it was 
subsequently concluded that radiomic features are sensitive 
to interobserver variability that exist naturally in the 
medical world. To deal with this problem, a set of guidelines 
called the “radiomics quality score” was proposed, including 
a 16-point checklist (consisting of robust segmentation, the 
stability of test-retest, description of the imaging protocol 
used, and internal and external validation, among other 
items) that should be submitted together with a radiomics 
study (65).

Moreover, Parmar et al. (66) showed that the choice of 
classification model for lung cancer assessment contributed  
the most to the variation in performance (34.21% of total 
variance). In their study, 12 different machine learning 
classifiers stemming from 12 classifier families (bagging, 
Bayesian, boosting, decision trees, discriminant analysis, 
generalized linear models, multiple adaptive regression 
splines, nearest neighbors, neural networks, partial least 
squares and principle component regression, random 

forests, and support vector machines) were tested on 
radiomic feature data. The researchers identified the 
random forest method to be the best for handling radiomic 
feature instability, achieving the highest prognostic 
performance. 

In another study, Ferreira Junior et al. (67) used three 
different classification methods for the prediction of lung 
cancer histopathology and metastases. They used up to 100 
radiomic features and evaluated the performance of the 
naïve Bayes method, the k-nearest neighbors algorithm, and 
a radial basis function-based artificial network. Although 
these methods are not widely used now, all showed great 
potential for the assessment of lung cancer by radiomics.

More recently, the success of artificial neural networks 
enabled the application of an end-to-end machine learning 
algorithm, which automatically extracts features from 
its input data. The development of convolutional neural 
networks (CNN), which are mathematical models devoted 
to imaging data, has shown great potential for their use 
in medical imaging. However, Tajbaksh et al. (68) showed 
that older neural network architectures outperformed 
2D CNNs. The performance of the deep models was 
comparable to that of the shallow models, which were 
trained on previously extracted radiomic features.

Hosny et al. (69) extended the idea of applying CNNs 
from 2D to 3D data and demonstrated the potential of 
using deep learning for mortality risk stratification based on 
CT images from patients with non-small cell lung cancer 
(NSCLC).

Radiomics in lung cancer diagnosis

Radiomic features, calculated based on the low-dose 
computed tomography (LDCT) images, are frequently 
used in the screening and diagnosis of lung cancer. Multiple 
studies have shown that this approach supports the 
detection of lung cancer at an early stage, unlike molecular 
or blood tests. National Lung Screening Trial proved 
the effectiveness of radiomics in the early detection of 

Figure 2 A standard radiomics workflow.

Figure 3 Number of papers with the keywords “lung cancer” and 
“radiomics” as identified in the PubMed database for the years 
2012–2019 and from January to May 2020.
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malignant lung nodules, with the number of lung cancer-
related deaths in the screening group 20% lower than that 
in the control group (70). Kumar et al. (71) demonstrated 
radiomics to be an effective tool in differentiating between 
malignant and benign tumors, with an accuracy of 79.06%, 
a sensitivity of 78.00%, and a specificity of 76.11% obtained 
from the Lung Image Database Consortium and Image 
Database Resource Initiative (LIDC-IRDI) dataset. Liu  
et al. (72) published their findings of four feature signatures 
that were able to differentiate between malignant and 
benign nodules with an accuracy of 81%, a sensitivity 
of 76.2%, and a specificity of 91.7%. In another study, 
conducted by Wu et al. (73), a 53-feature radiomic signature 
allowing for the classification of malignant and benign 
nodules with an area under the curve (AUC) equal to 72% 
was given.

The malignancy of a nodule is not the only important 
factor in the process of diagnosis and planning therapy—
tumor stage is another. In the classical clinical approach, the 
tumor stage is estimated on the basis of a histopathological 
biopsy and other clinical factors. Chaddad et al. (74) 
identified radiomic features that are associated with the 
tumor, node, metastasis (TNM) stage of lung cancer 
patients. Wu et al. (75) proved that a radiomic-based feature 
allows for the identification of early-stage metastasis in 
lung cancer (M staging). Their findings were confirmed by 
Coroller et al. (76) in a study performed of 182 cases of lung 
adenocarcinoma.

Radiomics as a tool for predicting therapeutic response

The radiomic signature has proven to be effective not 
only in lung cancer detection and staging but also in 
predicting the response of the patient to the applied 
therapy. Aerts et al. (77) have shown that a radiomic 
signature evaluated before treatment aids in the prediction 
of EGFR-mutation related response to therapy among 
patients with NSCLC. Based on these findings, Coroller 
et al. (78) found that a radiomic signature could be used 
to predict response to chemoradiotherapy in NSCLC 
patients. Another successful application of radiomics 
was reported by Mattonen et al. (79), who predicted the 
risk of tumor recurrence based on analysis of radiomic 
features. Bogowicz et al. (80) stated that CT radiomics is 
promising pre-treatment and intra-treatment biomarker 
for therapeutic outcome prediction, although most of 
the published studies have been performed only in a 
retrospective setting. Recently, Vaidya et al. (81) published 

important results confirming that radiomics may be a 
promising tool for estimating the patient score to identify 
those who could benefit the most from adjuvant therapy. 
However, their most important finding was a correlation of 
radiomic features with multimodal biological data, which 
corroborates the relationship between radiomic features and 
tumor biology.

Despite the importance and success of radiomics in the 
fields discussed in the previous sections, the development 
of the alternative deep learning based methods performing 
feature extraction similar to radiomics is still a main 
research focus for many groups. Avanzo et al. (82) pointed 
out that deep learning can facilitate automated radiomic 
feature extraction without the need to design a set of hand-
crafted radiomic features. However, they also noted that the 
explainability of deep learning models should be taken into 
account during model development, and further research 
should be conducted in that area.

Deep learning in lung cancer imaging

Deep neural networks are successfully used in many 
applications related to automated image recognition. In the 
analysis of lung cancer images, deep neural networks are 
primarily used to perform two key tasks: (I) detection and 
segmentation of pulmonary nodules; and (II) classification 
of identified pulmonary nodules.

Figure 4 presents a schematic diagram of how deep 
neural networks are being used in lung nodule detection 
(segmentation) (A) and classification (diagnosis) (B).

Deep learning-based detection and segmentation of 
pulmonary nodules

This section discusses the application of deep neural 
networks for the detection and segmentation of pulmonary 
nodules suspected to be malignant.

Khosravan et al. (83) designed a 3D CNN named S4ND 
(after Single-Shot Single-Scale lung Nodule Detection) to 
detect lung nodules without further processing. The input 
CT volume is divided into a 16×16×8 voxels grid, and each 
cell is passed through a 3D CNN comprising five dense 
blocks. The output is represented by a probability map of 
the presence of a nodule in each cell. LUNA16 was used 
as training data with 10-fold cross validation. On average, 
seven false-positive findings were produced per scan. 

Golan et al. (84) used dense blocks only at the last layer 
of the convolution layer. As before, CT volume was divided 
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into small sub-volumes of 5×20×20 voxels size. As whole 
or partial change of the nodule may be preserved in a cell, 
the network reads each sub-volume and interprets it in 
terms of nodule presence. An LIDC-IDRI dataset was used 
for training and cross-validation. The method produced 
an average of 20 false positives per scan. Zhu et al. (85) 
designed Deep 3D Dual Path Nets (3D DPN26) with 3D 
Faster R-CNN for nodule detection with 3D dual paths and 
a U-net-like structure for feature extraction. Dual paths are 
composed of a residual connection and a dense block. Due 
to residual connections, the performance of the network 
is improved by higher effectiveness of the training stage . 
On the other hand, dense blocks exploit new features from 
the received volume. The LUNA16 dataset was used as 
training data and 10-fold cross-validation was performed for 
validation. With the highest sensitivity, eight false positives 
were produced on average per scan.   

Ding et al. (86) used a modified Faster R-CNN (after 
Region-Based Convolutional Neural Network) with stacked 
deconvolution layers at the end of its standard architecture. 
CT volume is passed to the network sequentially, with 
an input image of 600×600×3 voxels from 3 consecutive 
slices of the series passed to generate region proposals for 

that subspace of the CT scan. An additional 3D CNN was 
designed to reduce false positives in the second stage of 
the pipeline. A LUNA16 dataset was used for performance 
evaluation. There were an average of eight false positives 
per scan. 

Xie et al. (87) applied a similar approach to identify and 
classify the lesions. The candidate nodules were selected 
by a network in three consecutive steps. They used Faster 
R-CNN with two region proposal networks trained for 
different kind of slices to detect the nodule. Then additional 
2D CNNs were implemented to minimize false positives 
in the nodule classification. The last network, serving as 
the voting node, was used for result fusion. Sixty percent 
of the LUNA16 dataset was used as training data, whereas 
the remaining data were used as the validation and testing 
sets. The highest sensitivity was obtained with eight false 
positives per scan. Huang et al. (88) took advantage of 
performing data augmentation on training data. They used 
standard 3D CNN architecture; however, by using smart 
data augmentation, the classification performance was 
significantly improved. Each nodule was disturbed randomly, 
thus generating several variants that enhanced the training 
set. Experiments were carried out on an LIDC dataset 

Figure 4 A schematic diagram of lung nodule detection (A) and classification (B).

A

B
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with 10-fold cross-validation. Only five false positives per 
scan were produced with a sensitivity of 90%. Nasrullah  
et al. (89) used a Faster R-CNN with customized mixed link 
network (CMixNet) and U-net-like architecture for nodule 
detection. The volumetric CT image was divided into 
96×96×96 voxel sub-volumes and processed separately; the 
resulting nodule detection system combined all processed 
patches. A sensitivity of 94.21% was achieved with an 
average of eight false positives per scan for the LIDC 
dataset. Following the idea of R-CNN, Cai et al. (90), used 
Mask R-CNN with ResNet50 architecture as a backbone 
and applied a feature pyramid network (FPN) to extract 
feature maps. Then, a region proposal network (RPN) was 
used to generate bounding boxes for candidate nodules 
from the generated feature maps. For the LUNA16 dataset, 
the proposed method achieved a sensitivity of 88.70% with 
eight false positives per scan.

Table 4 presents a summary of deep learning algorithms 
used in the detection and segmentation of pulmonary 
nodules.

Deep learning-based automated classification of pulmonary 
nodules

Automatically detected pulmonary nodules need to be 
diagnosed in order to determine whether they are malignant 
or benign. This process, which was originally performed 
by CAD systems is now a task for deep neural networks. 
Next, we will discuss the state-of-the-art solutions for such 
diagnostic algorithms.

Kang et al., (91) used the 3D multi-view CNN (MV-
CNN) based on 3D Inception and 3D Inception-ResNet 
architectures. ResNet architecture addresses the vanishing 

gradient problem in deep CNN networks. During 
backpropagation, the gradient value decreases after each 
convolution block and barely influences the initial layers 
in a network. ResNet makes use of the residual connection 
that short convolution blocks during backpropagation. 
Inception architecture enhances the convolution operation 
by introducing a different convolution resolution. The 
proposed network operates on cropped nodules from 
the 3D volume at different scales, thus capturing the 
localized as well as the region-based phenotype of the 
nodule. Each series of the cropped nodule is fed into 
the network simultaneously to generate a diagnosis. 
Experiments were conducted on an LIDC-IDRI dataset 
with 10-fold cross-validation. Dey et al. (92) investigated 
the performance of different 3D architectures for nodule 
classification. Four architectures have been proposed: basic 
3D CNN, 3D DenseNet, multi-output CNN, and multi-
output DenseNet. Each architecture is composed of two 
paths, which accept input volumes 50×50×5 voxels and 
100×100×10 voxels, respectively. The input image is created 
by resizing the segmentation to a particular input shape, 
and then the slices are sampled from the segmented regions. 
Basic 3D CNN represents a vanilla CNN architecture 
extended to a 3D task, whereas 3D DenseNet is equipped 
with additional dense layers before each convolution layer. 
Multi-output architectures take advantage of early outputs 
after each pooling layer, which are passed to the final output 
to improve classification performance. The LIDC-IDRI 
dataset together with a private dataset of 147 CT scans were 
used in the study. For the LIDC-IDRI dataset, five-fold 
cross-validation was used for evaluation. 

Taffti et al. (93) used full CT scans to classify nodules 
into cancerous and non-cancerous groups. In their research, 

Table 4 Summary of deep learning algorithms used for pulmonary nodule detection and segmentation

Year Authors Network architecture True positive rate

2017 Ding et al. (86) Faster R-CNN  94.60%

2017 Huang et al. (88) 3D CNN 90.00%

2018 Khosravan et al. (83) S4ND 95.20%

2018 Zhu et al. (85) 3D DPN26 Faster R-CNN 95.80%

2019 Xie et al. (87) 2D CNN 86.42%

2019 Nasrullah et al. (89) Faster R-CNN & CMixNet 94.21%

2016 Golan et al. (84) Dense-CNN 78.90%

2020 Cai et al. (90) Mask R-CNN 88.70%
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a 3D CNN was constructed by creating three convolution 
paths for different volume resolutions. Each CT image 
was resized to three different resolutions (50×50×20, 
100×100×20, and 150×150×20 voxels) and fed into the 
network. Taffti et al.’s study used Data Science Bowl 2017 
(DSB2017) and Marshfield Clinic Lung Image Archive 
datasets. Hussein et al. (94) also used a standard 3D CNN 
architecture, although the model was pre-trained on 
1,000,000 videos. In their work, they introduced the use 
of transfer learning for lung nodule classification for the 
first time. Furthermore, the following six separate CNN 
networks were created to assess different nodule features: 
calcification, lobulation, sphericity, speculation, margin, 
and texture. The features were defined by a sparse matrix 
representation of the first convolution layer in each 
network. Using these features, a malignancy score for a 
nodule was produced. An LIDC dataset was used and the 
performance was evaluated using 10-fold cross-validation.   

Ciompi et al. (95) presented a deep learning system for 
classification based on multi-stream, multi-scale CNN. 
The system was trained on the data from the Multicentric 
Italian Lung Detection (MILD) screening trial and tested 
on images from a Danish Lung Cancer Screening Trial 
(DLSCT). In the study, the radiomic features of the nodule 
were linked with classification performance of the system. 
The lowest classification scores were achieved for solid and 
part-solid nodules (63.3% and 64.7% respectively), and 
the highest classification score (89.2%) was obtained for 

calcified nodules. 
Shen (96) developed a deep learning model that produces 

additional information to form an interpretable framework 
for assessing nodule malignancy. Apart from diagnosing 
malignancy, the proposed hierarchical semantic CNN 
(HSCNN) predicts five different categories: calcification, 
margin, texture, sphericity, and subtlety. The motivation 
for this approach    was to approach a “black-box” criticism 
of deep neural networks by producing a set of categories 
which attempt to explain a classification outcome. An LIDC 
dataset was used for training and validation. Recently, Ren 
et al. (97) developed a manifold regularized classification 
deep neural network (MRC-DNN) with an encoder-
decoder structure that outputs a reconstructed image of the 
volumetric image of an input nodule. During the process, 
a manifold representation of the nodule is created. By 
feeding this representation into a fully connected neural 
network (FCNN), a classification is performed directly on 
the manifold. The network was trained and validated on an 
LIDC dataset. 

Table 5 presents the summary for the DL systems for 
automated diagnosis of pulmonary nodules.

Conclusions

The issue of automated detection (segmentation) of 
pulmonary nodules and their later diagnosis is still not 
completely resolved. A number of computer-aided detection 

Table 5 Summary of deep learning algorithms used for automated diagnosis of pulmonary nodules

Year Authors Network Accuracy

2017 Kang et al. (91) 3D MV-CNN 95.25%

Inception 95.41%

Inception-ResNet 95.11%

2017 Hussein et al. (94) Multi-task CNN 91.26%

2017 Ciompi et al. (95) Multi-stream CNN 72.90%

2018 Dey et al. (92) Basic CNN 84.35%

DenseNet 88.42%

Multi-Output CNN 85.84%

Multi-Output DenseNet 90.40%

2018 Tafti et al. (93) Multi-Scale CNN 83.75%

2019 Shen et al. (96) HSCNN 84.20%

2020 Ren et al. (97) MRC-DNN 90.00%
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systems, as well as radiomic and deep learning approaches 
exist; however, the gold standard for such methods has yet 
to be established. Among all the methods discussed here, 
those based on radiomics and deep learning seem to be the 
most promising. We are certain that in the not too distant 
future we will see a successful combination of radiomics 
and deep learning that will result in a robust, sensitive, and 
accurate computer-aided diagnostic tool for radiologists.
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