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A signature of estimate-stromal-immune score-based genes 
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Background: Immune and stromal component evaluation is necessary to establish accurate prognostic 
markers for the prediction of clinical outcomes in lung adenocarcinoma (LUAD). We aimed to develop a 
gene signature based on the Estimation of STromal and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE)-stromal-immune score in LUAD.
Methods: The transcriptomic profiles of patients with LUAD were obtained from The Cancer Genome 
Atlas (TCGA), and the immune and stromal scores were derived using the ESTIMATE algorithm. The 
prognostic signature genes were selected from the differentially expressed genes (DEGs) using the robust 
partial likelihood-based cox proportional hazards regression method. The negative log-likelihood and the 
Akaike Information Criterion (AIC) were used to identify the optimal gene signature. The validation was 
carried out in 2 independent datasets from the Gene Expression Omnibus (GSE68571 and GSE72094).
Results: Patients with high ESTIMATE, stromal, and immune scores had better overall survivals (P=0.0035, 
P=0.066, and P=0.0077). The expression of thirty-seven genes was related to ESTIMATE-stromal-immune 
score. A risk stratification model was developed based on a gene signature containing CD74, JCHAIN, and 
PTGDS. The ESTIMATE-stromal-immune risk score was revealed to be a prognostic factor (P=0.009) after 
multivariate analysis. Four groups were classified based on this risk stratification model, yielding increasing 
survival outcomes (log-rank test, P=0.0051). This risk stratification model and other clinicopathological 
factors were combined to generate a nomogram. The calibration curves showed perfect agreement between 
the nomogram-predicted outcomes and those actually observed. Similar observations were made in 2 
independent cohorts.
Conclusions: The gene signature based on the ESTIMATE-stromal-immune score could predict the 
prognosis of patients with LUAD.
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Introduction

Lung cancer is the primary cause of cancer death and the 
most frequently diagnosed malignancy globally. Worldwide 
lung cancer incidence and mortality were estimated  
2.1 million new lung cancer cases and 1.8 million 
related deaths in 2018 (1). In the past 15 years, lung 
adenocarcinoma (LUAD) has become the most common 
subtype of lung cancer (2). For patients with LUAD, 
outcomes are variable and difficult to predict (3,4). Novel 
technologies and strategies for detection of LUAD 
and stratification of prognosis are being developed, yet 
standardized predictive and surrogate biomarkers still lack 
for personalized prognostication.

For many years, the prognostication of lung cancer 
was based on the tumor-node-metastasis (TNM) staging 
system, which allowed major clustering for management 
and prognostication (5). However, the static measurement 
method of TNM system does not fully reflect the dynamic 
process of the disease, such as the time to occurrence or 
death, and lacks relevant prognostic information: clinical 
outcomes can vary 8–47% among stage I–II lung cancer 
(6,7). The TNM staging assumes homogeneous growth, 
which is not reflected by actual neoplastic processes where 
also the host immune response plays a key role (8). Thus, 
novel biomarkers and risk evaluation models are warranted 
to improve prognostic prediction and precision treatment in 
addition to the TNM staging system.

LUAD tissue comprise tumor cells, infiltrating immune 
cells, tumor-related stromal cells, airway epithelial cells, 
and other normal endothelial cells. Recent studies have 
found that stromal cells play an essential role in the 
progression and treatment of cancer (9). Along with the 
tumor growth, immune cells also play important roles (10).  
Stromal and immune cells constitute the major components 
of the tumor microenvironment of LUAD (11,12). 
Therefore, the prognostic stratification of LUAD patients 
can be improved by comprehensive evaluation that includes 
metrics for stromal and immune cells to support personalize 
prognostication over the TNM staging system. The 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) 

algorithm was recently developed. It integrates the 
transcriptional profiles of cancer tissues and various 
infiltrating normal cells (13). Using this algorithm, the 
levels of infiltrating stromal and immune cells are predicted 
by calculating the scores based on gene signatures. 
Previously, researchers have used this method to predict the 
prognosis of patients with cancers of the digestive system 
cancer (14). However, data on stromal and immune scores 
in lung cancer are lacking.

In this study, we aimed to test immune and stromal 
scores in association with prognosis in LUAD. In particular, 
we aimed to investigate the interaction between the tumor 
and tumor immune microenvironment (TIME) during lung 
tumorigenesis and progression, and to introduce a new 
potential gene signature risk stratification model based on 
the estimate-stromal-immune scores that could be clinically 
used to predict the survival outcomes of LUAD patients. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-223).

Methods

Population

This retrospective study included derivation and validation 
cohorts from publicly available database, as follows:
	 Derivation cohort: 514 LUAD samples from The 

Cancer Genome Atlas (TCGA);
	 Validation cohorts: external validation was operated 

in two independent cohorts from the Gene 
Expression Omnibus (GEO) database:

•	 96 LUAD samples from GSE68571 database;
•	 442 LUAD samples from GSE72094 database.

Clinicopathological data for the corresponding patients 
were obtained including age, sex, pathologic stage, and 
survival outcome. The inclusion criteria for this study were 
available survival information and available expression data.

In accordance with the database policy, access to the 
dataset was obtained from TCGA and GEO. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).
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Estimation of stromal and immune scores

The gene expression data of LUAD tissues in derivation 
population were downloaded from the Genomic Data 
Commons (GDC, available at: http://potal.gdc.cancer.gov/) 
Data Portal on November 6, 2019. The FPKM (fragments 
per kilobase of exon per million reads mapped) method was 
used to quantify gene expression. 

The expression matrix for estimating the stromal and 
immune scores was normalized by the ESTIMATE algorithm. 
Stromal and immune scores were calculated by performing 
single-sample gene set enrichment analysis. These scores 
formed the basis for the ESTIMATE score (15). 

Statistical analysis

The association of the Estimate, stromal, and immune 
scores with the clinicopathological characteristics of LUAD 
patients was analyzed by comparing the score distributions 
among sex, pathologic T, pathologic M, and TNM stage 
subgroups.

Relationship of estimate-stromal-immune scores and 
prognosis 
The Kaplan–Meier estimator was used to estimate the 
patients’ overall survival. The derivation cohort was divided 
into 2 groups based on their ESTIMATE, stromal, and 
immune scores: maximally selected rank statistics were 
employed to identify the optimal score cutoff for classifying 
patients by each score. The R package “maxstat” was used 
during identification (16). Log-rank tests were used to 
compare the survival outcomes of the 2 groups. 

Identification of differentially expressed genes (DEGs) 
The high and low ESTIMATE score groups (stromal or 
immune) were compared for gene expression: the DEGs 
were identified using the “limma” package in R (17). For the 
identification of DEGs, the threshold was a simultaneously 
absolute value of log2 (fold change) >1 and false discovery 
rate (FDR) adjusted P value <0.05. The low-risk group was 
used as reference: genes that were up-regulated in the high-
risk group were considered “up-regulated DEGs” and those 
that were comparatively down-regulated were considered 
“down-regulated DEGs”. A heatmap was created to show 
the expression patterns of significant DEGs. Complete 
linkage was used to measure distances between unsupervised 
hierarchical clusters.

Analyses of Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes Pathway Enrichment 
Gene Ontology (GO) biological process (BP), cellular 
component (CC), and molecular function (MF) enrichment 
analyses were performed. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis was 
performed for all DEGs. The criterion for statistical 
significance was an FDR adjusted P value of <0.05.

Gene signature and risk evaluation model 
Prognostic genes were defined as those with a log-rank P value 
of <0.01 for survival comparison at the optimal expression 
cutoff. All DEGs performed the prognostic identification. 
A robust partial likelihood-based Cox proportional 
hazards regression survival model was used to select 
prognostic signature genes from all prognostic DEGs (18).  
A series of gene signatures were generated by forward 
selection. The Akaike information criterion (AIC) and 
negative log-likelihood methods were used to identify the 
optimal gene signature.

A risk stratification model was developed as follows:
	 positive prognostic genes earned a score of 0 when 

up-regulated and 1 when down-regulated;
	 negative prognostic genes earned a score of 1 when 

up-regulated and 0 when down-regulated. 
This model was applied in the external validation cohorts 

by summing the scores of all signature genes. Then, the 
patients were stratified into risk groups according to their 
risk score level. The clinicopathological characteristics of 
patients in the risk score =0, risk score =1, risk score =2, and 
risk score =3 groups are list in Table 1.

R version 3.5.2 (http://www.R-project.org) was used for 
the statistical analyses. The “estimate” package with default 
parameters was used to calculate the ESTIMATE, stromal, 
and immune scores.

The “rbsurv” package with 3-fold cross-validation and  
1,000 iterations was used to construct the robust likelihood-
based survival model. GO and KEGG enrichment analyses 
were performed using the “clusterProfiler” package. Heatmaps 
and Venn diagrams were constructed with the “pheatmap” and 
“VennDiagram” packages, respectively. The FDR method was 
used to adjust for multiple testing. Multivariate Cox regression 
analysis was performed to identify the independent risk factors 
for overall survival. And the protein-protein interaction 
(PPI) network was constructed. After the integration of 
clinicopathological risk factors and risk group (based on the 

http://www.R-project.org
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Table 1 Clinicopathologic characteristics of patients in different risk groups

Characteristics
Whole cohort  

(n=514)
Risk score =0 

(n=124)
Risk score =1 

(n=130)
Risk score =2 

(n=139)
Risk score =3 

(n=121)
P value

Age [median (IQR)] 66.00 [59.00, 72.25] 68.50 [61.00, 74.00] 68.00 [60.00, 74.25] 65.00 [57.00, 71.50] 62.00 [56.50, 70.00] <0.001

Gender (%) 0.006

Female 274 (53.6) 82 (66.1) 68 (52.7) 71 (51.4) 53 (44.2)

Male 237 (46.4) 42 (33.9) 61 (47.3) 67 (48.6) 67 (55.8)

Stage (%) <0.001

I 275 (54.3) 85 (70.2) 73 (57.5) 60 (43.5) 57 (47.5)

II 121 (23.9) 29 (24.0) 28 (22.0) 29 (21.0) 35 (29.2)

III 84(16.6) 6 (5.0) 18 (14.2) 40 (29.0) 20 (16.7)

IV 26 (5.1) 1 (0.8) 8 (6.3) 9 (6.5) 8 (6.7)

Survival (%) 0.023

Alive 327 (63.6) 92 (74.2) 84 (64.6) 81 (58.3) 70 (57.9)

Dead 187 (36.4) 32 (25.8) 46 (35.4) 58 (41.7) 51 (42.1)

Stage (%)* <0.001

i 274 (53.6) 85 (68.5) 73 (56.6) 60 (43.5) 56 (46.7)

ii 120 (23.5) 29 (23.4) 28 (21.7) 28 (20.3) 35 (29.2)

iii 84 (16.4) 6 (4.8) 18 (14.0) 40 (29.0) 20 (16.7)

iv 26 (5.1) 1 (0.8) 8 (6.2) 9 (6.5) 8 (6.7)

M (%)* 0.322

M0 343 (67.1) 83 (66.9) 83 (64.3) 93 (67.4) 84 (70.0)

M1 25 (4.9) 1 (0.8) 7 (5.4) 9 (6.5) 8 (6.7)

Mx 139 (27.2) 38 (30.6) 39 (30.2) 35 (25.4) 27 (22.5)

N (%)* <0.001

N0 328 (64.2) 91 (73.4) 87 (67.4) 74 (53.6) 76 (63.3)

N1 95 (18.6) 24 (19.4) 21 (16.3) 22 (15.9) 28 (23.3)

N2 74 (14.5) 4 (3.2) 15 (11.6) 39 (28.3) 16 (13.3)

N3 2 (0.4) 1 (0.8) 0 (0.0) 1 (0.7) 0 (0.0)

Nx 11 (2.2) 3 (2.4) 6 (4.7) 2 [1–4] 0 (0.0)

T (%) 0.002

T1 168 (32.9) 55 (44.4) 51 (39.5) 35 (25.4) 27 (22.5)

T2 276 (54.0) 60 (48.4) 61 (47.3) 87 (63.0) 68 (56.7)

T3 45 (8.8) 6 (4.8) 11 (8.5) 9 (6.5) 19 (15.8)

T4 19 (3.7) 3 (2.4) 4 (3.1) 6 (4.3) 6 (5.0)

Tx 3 (0.6) 0 (0.0) 2 [1–6] 1 (0.7) 0 (0.0)

Table 1 (continued)
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Estimate, stromal, and immune scores), a nomogram was built 
for precise prediction of overall survival.

Results

Estimation of estimate-stromal-immune scores

The expression data and clinical information from 514 
LUAD patients in the TCGA database were analyzed. 
The clinicopathological characteristics of patients in the 
risk score =0, risk score =1, risk score =2, and risk score =3 
groups are listed in Table 1. Patients in the group with the 
highest risk (risk score =3) were more likely to be younger 
and male (P<0.001, and P=0.006 respectively). Furthermore, 
patients in the highest risk group had a larger tumor 
size and lymph node metastases (P=0.002, and P<0.001 
respectively). The lower risk groups included more early-
stage patients (P<0.001).

In the validaiton cohort, the estimate scores ranged 
from −2,963.63 to 4,485.76; the stromal scores ranged from 
−1,959.31 to 2,098.77; and the immune scores ranged from 
−1,355.85 to 3,286.67. Patients in higher risk groups yielded 
lower Estimate scores (P<0.001), lower immune scores 
(P<0.001), and lower stromal scores (P=0.003). 

Association of estimate, stromal, and immune scores with 
the clinicopathological characteristics and prognoses of 
LUAD patients

The association between the scores (Estimate, stromal, or 

immune) and patients data is summarized in Figure 1A. The 
estimate, stromal, and immune scores of female patients were 
increased compared to those of males (P=0.002, P=0.0058, 
and P=0.0033, respectively). Significant correlations were 
found between the estimate, stromal, immune scores and 
pathologic T factor. Larger tumors (T3 and T4) yielded 
lower estimate and immune scores than those of smaller sizes 
(T1 and T2) (Kruskal Wallis test, P=0.04 for Estimate score, 
P=0.22 for stromal score, and P=0.012 for immune score). 
Significant correlations were also observed between the 
estimate and stromal scores and pathologic M factor. Patients 
with metastases (M1) yielded lower estimate and stromal 
scores than those without metastases or with unknown 
metastatic status (M0 and Mx) (Kruskal Wallis test, P=0.025 
and P=0.016 respectively). Both the estimate and immune 
scores were variously distributed among TNM stage. Tumors 
with an advanced stage (stage III and stage IV) yielded lower 
estimate and immune scores than early-stage tumors (stage 
I and stage II) (Kruskal Wallis test, P=0.028 and P=0.027 for 
estimate score and immune score, respectively).

Illustrations of optimal cutoff identification for estimate, 
stromal, and immune score are displayed in Figure 1B. 
Patients with high estimate scores had better overall 
survival than those with low estimate scores (log-rank test, 
P=0.0035) (Figure 1C). Patients with high stromal scores 
showed a trend of better overall survival than lower group 
(log-rank test, P=0.066), and this trend seemed more 
obvious after 5 years of follow-up (Figure 1D). Patients with 
high immune scores yielded better overall survival than 

Table 1 (continued)

Characteristics
Whole cohort  

(n=514)
Risk score =0 

(n=124)
Risk score =1 

(n=130)
Risk score =2 

(n=139)
Risk score =3 

(n=121)
P value

Estimate score (%) <0.001

High 257 (50.0) 111 (89.5) 82 (63.1) 49 (35.3) 15 (12.4)

Low 257 (50.0) 13 (10.5) 48 (36.9) 90 (64.7) 106 (87.6)

Immune score (%) <0.001

High 453 (88.1) 124 (100.0) 128 (98.5) 122 (87.8) 79 (65.3)

Low 61 (11.9) 0 (0.0) 2 [1–5] 17 (12.2) 42 (34.7)

Stromal score (%) 0.003

High 26 (5.1) 13 (10.5) 8 (6.2) 4 (2.9) 1 (0.8)

Low 488 (94.9) 111 (89.5) 122 (93.8) 135 (97.1) 120 (99.2)

*Patients with information unavailable on stage (7 patients, 1.36%), pathologic M (4 patients, 0.78%), and pathologic N (1 patient, 0.19%) 
were excluded from the comparison.
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Figure 1 Association of Estimate, Stromal and Immune scores with lung adenocarcinoma demographic (gender), pathology and prognosis. 
(A) Comparisons and distributions of Estimate, Stromal and Immune scores among gender, different pathologic T, pathologic M, and TNM 
stage. (B) The optimal cutoff identification for Estimate, Stromal and Immune scores. The standardized log-rank statistic value is shown 
in the scatter plot. A vertical dashed line indicates the optimal cutoff (Estimate score =1,057.39, Stromal score =−102.58, Immune score 
=1,211.05). The density distribution for low- and high-Estimate-Stromal-Immune score groups is shown in the lower histogram. (C) Overall 
survival for patients with high vs. low Estimate scores (Kaplan-Meier plot). (D) Overall survival for patients with high vs. low Stromal scores 
(Kaplan-Meier plot). (E) Overall survival for patients with high vs. low Immune scores (Kaplan-Meier plot). 
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Figure 2 The profiles of expression and Estimate, Stromal and Immune score-related DEGs’ biological functions. (A) Volcano plots 
showing the DEGs of Estimate, Stromal and Immune score (high vs. low). (B) Overlap of Estimate score-, Stromal score- and Immune 
score-related up-regulated DEGs. (C) Overlap of Estimate score-, Stromal score- and Immune score-related down-regulated DEGs. (D) 
Heatmaps showing expression profiles for Estimate-Stromal-Immune score related DEGs. (E) Top 10 KEGG pathways enriched by the 
DEGs. (F) Top 10 Gene Ontology terms enriched by the DEGs. DEGs, differentially expressed genes.
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Figure 3 Forest plot of hazard ratios for 37 Estimate, Stromal-Immune score-related prognostic DEGs. The Cox proportional hazard 
regression model was used to estimate the Hazard ratios and corresponding 95% confidence intervals. DEGs, differentially expressed genes.

those with low immune scores (log-rank test, P=0.0077), 
and this survival advantage was more remarkable after 5 
years of follow-up (Figure 1E). 

Comparison of gene expression profiles by estimate, 
stromal, and immune scores in LUAD

The expression profiles of LUAD patients with high 
estimate (high stromal and high immune) scores were 
compared with those of patients with low estimate (low 
stromal and low immune) scores to identify DEGs related 
to estimate-stromal-immune score. 

The DEGs related to Estimate, stromal, and immune 
score are visualized in volcano plots (Figure 2A). There were 
86 shared up-regulated DEGs (Figure 2B) and 3 down-
regulated DEGs (Figure 2C) in the estimate, stromal, and 
immune score groups. A heatmap was created to visualize 
the expression profiles of the selected 89 DEGs. 

Identified DEGs had distinct expression profiles from 
the unsupervised hierarchical clustering analyses. Patients 
with high and low Estimate (stromal or immune) scores 
could be distinguished effectively according to these DEGs 
(Figure 2D). 

KEGG pathways enriched by the DEGs were related to 
staphylococcus aureus infection, phagosome, tuberculosis, 
and cell adhesion molecules (Figure 2E). The stromal-
related DEGs were enriched in protein digestion and 
absorption, focal adhesion, and extracellular matrix receptor 
interaction (Figure S1A). Meanwhile, the immune score-
related DEGs were enriched in antigen processing and 
presentation, the chemokine signaling pathway, and Th1 
and Th2 cell differentiation (Figure S1B). GO analysis 
showed that the DEGs were enriched in the immune 
response-activating and -regulating cell surface receptor 
signaling pathway, MHC class II protein complex antigen 
processing, and presentation of peptide antigen via MHC 

0.5                  0.8           1            1.2                                       1.8                        2.2

GenesI                 Effect 95% CI

https://cdn.amegroups.cn/static/public/TLCR-21-223-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-223-supplementary.pdf
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class II (Figure 2F). Separate GO enrichment analyses 
were carried out and showed that the stromal scores were 
enriched in extracellular matrix organization, connective 
tissue development, collagen trimer, and extracellular matrix 
structural constituent (Figure S1C). The immune scores 
were enriched in T-cell activation, positive regulation of 
innate immune response, T-cell receptor complex, and C-C 
chemokine receptor activity (Figure S1D). 

Identification of prognostic DEGs in LUAD

These prognostic genes were defined from the above 
89 estimate-stromal-immune score-related DEGs and 
comprised 36 up-regulated DEGs and 1 down-regulated 
DEG. A forest plot showing the prognostic effects of these 
37 DEGs is displayed in Figure 3.

As recently illustrated in clinical trials boosting T-cell 
responses, 7 genes were summarized as follows: PDCD1, 
LAG3, HAVCR2, CTLA4, KIR2DL3, TNFRSF18, and 

TNFRSF9. These 7 genes and the 37 prognostic DEGs 
selected from TCGA were screened using the STRING 
(Search Tool for the Retrieval of Interacting Genes/
Proteins) database, and the protein–protein interaction 
(PPI) network was constructed. Finally, IL-7R (interleukin 
7 receptor), CD52, CD53, HCK (hemopoietic cell kinase), 
and CYBB (Cytochrome B-245 Beta Chain) were found to 
interact most closely with the immune checkpoint inhibitors 
(ICIs) based on the number of links (Figure S2).

Gene signature based on the estimate, stromal, and 
immune scores and risk stratification model for LUAD

Thirty-seven DEGs were selected to identify the gene 
signature with the most prognostic significance. Based 
on the AIC and the smallest values for the negative log-
likelihood statistics, CD74, JCHAIN, and PTGDS were 
identified as the optimal signature genes (Table 2). These 3 
genes were significantly associated with favorable survival 

Table 2 Prognostic gene signature selection based on a robust likelihood- based survival model

Gene Symbol Negative log-likelihood AIC Forward selection

CD74 973.92 1,949.83 Y

JCHAIN 971 1,946 Y

PTGDS 969.98 1,945.96 Y

HLA-DRA 969.95 1,947.9 -

HLA-DRB5 969.07 1,948.13 -

HLA-DOA 968.91 1,949.82 -

C7 968.89 1,951.78 -

PTPRC 968.89 1,953.77 -

HLA-DQA1 968.7 1,955.39 -

HLA-DMB 966.91 1,953.81 -

CHIT1 966.85 1,955.7 -

CPA3 965.89 1,955.78 -

CSF2RB 965.89 1,957.78 -

HLA-DPB1 965.86 1,959.72 -

CD79A 965.06 1,960.13 -

S100P 963.13 1,958.25 -

HLA-DQB2 962.83 1,959.66 -

HLA-DRB1 962.72 1,961.45 -

CD52 962.65 1,963.31 -

AIC, Akaike Information Criterion; a smaller statistic value indicates better predictive ability.

https://cdn.amegroups.cn/static/public/TLCR-21-223-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-223-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-223-supplementary.pdf
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Figure 4 Estimate-Stromal-Immune score-based gene signature and risk stratification mode. (A) Overall survival for patients grouped 
by expression of three signature genes, CD74, JCHAIN, PTGDS were shown in the Kaplan-Meier plots. (B) The algorithm for risk 
stratification model was based on the expression of three signature genes. (C) Correlation between lung adenocarcinoma patient living 
months and risk score. (D) Overall survival for all patients according to risk score (Kaplan-Meier plot). (E) Overall survival for patients with 
stage I lung adenocarcinoma according to risk score (Kaplan-Meier plot). (F) Overall survival for patients with stage II lung adenocarcinoma 
according to risk score (Kaplan-Meier plot). (G) Overall survival for patients with stage III lung adenocarcinoma according to risk score 
(Kaplan-Meier plot).
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outcomes (Figure 4A). For risk stratification, an individual-
level score was developed based on the 3 signature genes 
(Figure 4B). A lower risk score was found to be significantly 
associated with a longer survival time, and patient living 
months increased as the risk score decreased (Figure 4C). 
Using this risk score stratification model, 4 groups were 
classified according to their survival outcomes (log-rank 
test, P=0.005) (Figure 4D). Further validation of the risk 
stratification model was carried out among patients with 
stage I, II, and III LUAD (Figure 4E,F,G).

Relationship of estimate-stromal-immune score-based risk 
group with overall survival in patients with LUAD

The prognostic value of the estimate-stromal-immune 

score-based risk stratification model was evaluated through 
multivariate cox regression (Table 3). After adjusting the 
variables of age, sex, race, and pathologic stage, risk group 
was identified as a significant prognostic factor (P=0.009). 

After the integration of clinicopathological risk 
factors and risk group (based on the estimate, stromal, 
and immune scores), a nomogram was built for precise 
prediction of OS (Figure 5A). A higher points total was 
associated with improved survival. However, the difference 
in points between pathologic stages III and IV was not 
obvious. This result was also observed in relation to sex, 
with the difference between females and males being less 
than 7 points. Compared against the ideal model, the 
calibration plot showed our nomogram to perform well 
(Figure 5B).

Table 3 Multivariate Cox regression analyses of risk factors for overall survival

Characteristics Hazard ratio 95% Cl P value

Risk Score 1 vs. 0 1.31 (0.82–2.11) 0.262

2 vs. 0 1.41 (0.88–2.24) 0.151

3 vs. 0 1.84 (1.16–2.91) 0.009

Stage II vs. 1 2.42 (1.68–3.48) <0.001

III vs. 1 3.42 (2.30–5.08) <0.001

IV vs. 1 3.53 (2.02–6.18) <0.001

Figure 5 Nomogram for predicting overall survival of lung adenocarcinoma. (A) The 1-, 3-, and 5-year overall survival probability was 
predicted by integrating the Estimate, Stromal, and Immune score-based risk group and clinicopathologic risk factors from nomogram. (B) 
Plot shows the calibration of nomogram in terms of the agreement between predicted and observed outcomes. The dotted line shows the 
nomogram’s performance in the plot. This represents the perfect prediction.
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Figure 6 The Estimate-Stromal-Immune score-based risk stratification model was validated in two independent cohorts. (A) Overall 
survival for patients from GSE68571, grouped by expression of three signature genes, CD74, JCHAIN, and PTGDs (Kaplan-Meier plots). 
(B) Correlation between living months for patients and risk scores from GSE68571. (C) Overall survival according to risk score for patients 
from GSE68571 (Kaplan-Meier plot). (D) Overall survival for patients fromGSE72094, grouped by expression of three signature genes, 
CD74, JCHAIN, and PTGDs (Kaplan-Meier plots). (E) Correlation between living months for patients and risk scores from GSE72094. (F) 
Overall survival according to risk score for patients from GSE72094 (Kaplan-Meier plot).
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Validation of the risk stratification model in 2 external 
cohorts

GSE68571 cohort: among 96 patients, those with a high 
expression of JCHAIN and PTGDS had better OS (log-
rank test, P=0.025, and P=0.038, respectively) (Figure 6A). 
A negative correlation was found between the risk scores 
calculated from these 3 signature genes and patient living 
months (Figure 6B). The patients in the validation cohort 
were classified into 4 groups using the 3-gene model, and 
the survival outcomes in the groups were found to be 
significantly different (log-rank test, P=0.027) (Figure 6C). 

GSE72094 cohort: among 442 patients, high expression 
levels of CD74, JCHAIN, and PTGDS were significantly 
associated with favorable overall survival (log-rank test, 
P<0.001, P=0.023, and P=0.008, respectively) (Figure 6D). A 
negative correlation was also found between risk score and 
patient living months (Figure 6E). Significantly different 
survival outcomes were also observed in the 4 risk-score 
groups (log-rank test, P<0.001) (Figure 6F). 

Discussion

We report a signature for prognostication of LUAD beyond 
TNM stage, notably to assist the use of adjuvant therapy 
after surgery for early stage LUAD. The signature based 
on the ESTIMATE-stromal-immune score could predict 
the prognosis of patients with LUAD. Eight to forty-seven 
percent of LUAD patients experience disease progression, 
indicating that occult metastases already exist at the 
time of “curative” surgery (7). Traditional TNM staging 
classification relies solely on the characteristics of tumor 
cells, regardless of the effect of the host immune response. 
In fact, the onsite and progression of tumors are affected 
both by the tumor cells and the TIME. Tumor progression 
and patient outcomes have been found to be related to the 
TIME. Tumor-infiltrating immune cells and stromal cells 
are 2 major components of the TIME. These cells have 
been shown to play important roles in recent studies. It 
is essential to consider immune parameters as prognostic 
factors and to improve the accuracy of cancer classification 
using the immunescore.

The immunescore is  derived from the immune 
contexture, and is defined by immune cell infiltration 
based on single-sample gene set enrichment analysis. It was 
initially established to evaluate the prognosis of patients 
with stage I, II, and III colon cancer (19). For early-stage 
patients, the relapse and 5-year survival rates for the high-

immunescore group were 4.8% and 86.2%, respectively. 
However, the relapse and 5-year survival rates for the low-
immunescore group were 72% and 27.5%, respectively (20). 
Therefore, patients in the low-immunescore group could 
potentially have benefited from adjuvant therapy. Recent 
studies have proved that the immunescore can also play a 
role in prognostic prediction in other human malignancies 
such as hepatocellular carcinoma, pancreatic cancer, 
melanoma, lung cancer, and even brain metastasis (21,22). 
Two advantages of the immunescore are as follows: firstly, 
it appears to be the strongest prognostic factor for survival 
outcome; and secondly, it provides a tool or target for novel 
therapeutic approaches (23,24). 

In 2006, the relationship between the immunescore and 
clinicopathological features of patients with non-small cell 
lung cancer (NSCLC) was studied (25). To improve the 
prognostic, and most possible a predictive tool for NSCLC, 
Roy M. recommended that the immunescore should be 
added to the TNM classification (TNM-I) (26). A study 
showed that the former displayed T-cells, Interferon, and 
M1 macrophage signatures and was associated with a better 
prognosis, while the latter presented with M2 macrophage 
signatures and immunosuppressive factors such as WNT/
transforming growth factor-β (27). 

In LUAD, T cells may cooperate to suppress the tumor. 
Many subtypes of T cells have been discovered due to the 
development of immunohistochemical technology. CD3+ 
is expressed in all T lymphocytes and is thus considered to 
be a biomarker. CD4+ T helper lymphocytes (Th), CD8+ 
cytotoxic T lymphocytes (CTLs), CD45RO+ memory T 
cells, and FoxP3+ (forkhead box P3 lymphocytes, regulatory 
T cells) regulatory cells (Tregs) are other subtypes of 
T-lymphocyte cell surface markers (28). High CD3+, CD8+, 
and CD4+ T-cell infiltration is an independent favorable 
prognostic factor (29). CD45RO+ has been proposed as a 
risk factor for disease-free survival (HR =1.79, P=0.001), 
disease-specific survival (HR =1.80, P=0.001), and OS (HR 
=1.61, P=0.001) (30). FoxP3 contributes to more aggressive 
behavior of LUAD (such as solid-predominant subtype), 
and is associated with poor OS (31). Our result revealed 
that the stromal component in pulmonary tissue might act 
as a barrier in tumorigenesis by constraining tumor cell 
proliferation. Detailed molecular analysis of lung stroma 
might be important for long-term health management of 
LUAD patients. Patients with high immune scores yielded 
better overall survival than those with low immune scores, 
and this survival advantage was more remarkable after  
5 years of follow-up. This finding suggested that, from the 
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beginning of the tumor formation, there was a stronger 
adaptive immune response in LUAD patients with higher 
immune scores than in patients with lower immune scores. 

Apart from the subtypes of TILs, spatial organization 
of tumor cells, stromal cells, and lymphocytes also plays an 
important role in tumor progression and metastasis. The 
immunescore comprises 2 parts, namely the tumor core 
and its invasive margin. Compared with those in the tumor 
nest, the numbers of infiltrating CD8+ or CD4+ T cells in 
the tumor stroma are much higher. Furthermore, the CD8+ 
T cell stromal score also seems to be superior to the tumor 
score. More specifically, CD8+ T-cell stromal scoring at the 
invasive margin is a strong prognostic factor (32).

It is unclear how tumor-infiltrating B cells (TIBs) and 
antibodies interact with each other in the microenvironment. 
For Kirsten RAt Sarcoma (KRAS) mutation-type LUAD, 
a low proportion of IgA isotype and a high proportion of 
IgG1 among all intratumorally produced immunoglobulins 
were specifically associated with improved overall survival. 
In STK11 mutation-type LUAD, a high level of IgG4-
producing TIBs was associated with better overall survival. 
The specificity of protective B-cell populations might 
provide basic information for the development of efficient 
targeted immunotherapies (33).

MHC-II is an essential component of the adaptive 
immune system and is critical for antigen presentation 
to CD4+ T lymphocytes. Accumulating evidence has 
demonstrated that tumor-specific MHC-II is associated 
with favorable outcomes (34). Furthermore, positive MHC-
II expression in tumor cells was found to be associated with 
improved disease-free survival in triple-negative breast 
cancer patients with lymph node metastasis (35). Park IA 
also found that aberrant expression of MHC II in triple-
negative breast cancer might trigger an antitumor immune 
response that reduces the rate of relapse and enhances 
progression-free survival (36). In anti-PD-1-treated 
melanoma patients, MHC-II positivity of tumor cells was 
associated with the therapeutic response (37). For Hodgkin 
lymphoma, Roemer MGM. reported that genetically driven 
PD-L1 expression and MHC-II positivity were potential 
predictors of favorable outcome after PD-1 blockade (38).

In this study, a TIME-related prognostic model was 
constructed to predict the outcomes of LUAD patients 
based on differentially expressed stromal and immune 
signature genes. Yue found that a 3-gene signature 
(ADAM12, BTK, and ERG) could be an independent 
prognostic factor (39). A total of 37 DEGs related to the 
estimate, stromal, and immune scores were identified in our 

study. A gene signature containing CD74, JCHAIN, and 
PTGDS was utilized to develop a risk stratification model.

CD74, also known as the invariant chain (Ii), is the 
molecular chaperone of MHC-II. It is a high-affinity 
receptor of the macrophage migration inhibitory factor 
(MIF), a proinflammatory cytokine. Lee found that CD74-
ROS1 fusion represented a genomic signature in early 
oncogenesis (40). Secretory polymeric immunoglobulins 
(IgA dimers and IgM pentamers) are unique because, 
as well as light and heavy chains, they contain joining 
chains (J-chains) responsible for their oligomerization. 
These antibodies constitute parts of the local adaptive 
immune system, acting on the mucosa membranes of 
the respiratory and digestive systems as the first barrier 
of protection against potential infectious agents (41). 
JCHAIN is the coding gene of immunoglobulin J-chains. 
It has been reported to be related to the clinical outcomes 
of acute lymphoblastic leukemia patients (42). Along with 
CHAC2, CLEC9A, and 8 other genes, JCHAIN was 
also found to be associated with survival in head and neck 
squamous cell carcinoma (43). Moreover, You reported that 
JCHAIN might exert a critical influence on resistance and 
tumorigenesis in Marek’s disease (44).

Prostaglandin is well known to be essential for tumor 
angiogenesis and growth. Mast cell-derived prostaglandin 
D2 governs the tumor microenvironment by limiting 
excessive responses to TNF-α production and vascular 
permeability (45). When added exogenously, PTGDS 
reportedly suppressed the hyperproliferation and migration 
of A549 cells (46). Furthermore, Shyu found that 
overexpression of PTGDS could inhibit the invasion of 
H-rev107-mediated testis tumor cells through the PGD2-
cAMP-SOX9 signaling pathway (47).

Immunotherapy has emerged as a key pillar of cancer 
treatment. Seven 7 genes (PDCD1, LAG3, HAVCR2, 
CTLA4, KIR2DL3, TNFRSF18, and TNFRSF9) and the 
37 prognostic DEGs selected from TCGA were screened 
using the STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) database, and the protein–
protein interaction (PPI) network was constructed. In the 
current study, PTPRC, FGL2, CD74, HLA-DRB1, CD52, 
CSF2RB, LY86, PLEK, HLA-DPA1, and HLA-DQB1 
were the top 10 immunotherapy target genes in the PPI 
network. PTPRC, also known as CD45, encodes some 
members from the protein tyrosine phosphatase (PTP) 
family. Proteins from this family are commonly activated 
in tumors. PTPRC has been shown to be an essential 
regulator of T- and B-cell antigen receptor signaling (48). 
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Fibrinogen-like protein 2 (FGL2) is essential for both 
innate and adaptive immunity. FGL2 might promote tumor 
progression by activating cancer-associated fibroblasts in 
the tumor microenvironment (49). HLA-DRB1 is strongly 
associated with the risk of lung cancer and seemed to 
affect antigen presentation. Qin provided evidence for 
the substantial contributions of HLA II molecules to 
lung cancer susceptibility (50). CD52 is present on the 
surface of mature lymphocytes. It inhibits T-cell activation 
by impairing phosphorylation of the T-cell receptor-
associated kinases Lck and Zap70 (51). Taken together, 
most prognostic DEGs from this study play essential roles 
in the tumor immune response and interact with immune 
checkpoint genes that have been verified in recent clinical 
trials. These newly discovered genes may be the potential 
targets for future immunotherapy. A nomogram was built 
after integration of clinicopathological risk factors and 
estimate, stromal, and immune scores. A higher points 
total was associated with improved survival. This objective 
evaluation method was consistent with the risk score model 
established in the current study.

In conclusion, tumor progression and survival outcomes 
in LUAD depend on the microenvironmental characteristics 
in the tumor tissue. Gene signatures based on estimate, 
stromal, and immune scores can provide more prognostic 
information for the TNM staging system. This risk score 
model for stratifying prognosis is essential for individualized 
treatment and follow-up.
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Figure S1 KEGG pathways and Gene Ontology terms analyses for Stromal score and Immune score seperately.
A. Top 9 KEGG pathways enriched by the Stromal score-related DEGs. 
B. Top 10 KEGG pathways enriched by the Immune score-related DEGs. 
C. Top 10 Gene Ontology terms enriched by the Stromal score-related DEGs. 
D. Top 10 Gene Ontology terms enriched by the Immune score-related DEGs.
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Figure S2 PPI network of 44 DEGs
A. 7 clinically applied immune checkpoint inhibitors target genes (red circles) and 36 selected prognostic genes (green circles) from TCGA 
have complicate interactions in the PPI network analysis.
B. Top 10 potential immunotherapy target genes and brief function introductions.
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