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Introduction

Lung cancer, which is the leading cause of cancer-related 
death worldwide, is responsible for 270,000 deaths yearly 
in Europe (1). Although the lung cancer mortality rate in 
men is projected to decline, in women it is predicted to rise, 
mainly due to the dissimilarity of gender-related smoking 

habits across generations, thus confirming the impact that 
cigarette smoking has on lung cancer in both sexes (2). 
Therefore, the first crucial step in lung cancer prevention 
should be smoking interruption, a point that is discussed 
with every single patient enrolled in lung cancer screening 
(LCS) protocols.
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Most lung cancer patients are diagnosed in an advanced 
stage, with an overall 5-year survival of 18% (3). As the 
prognosis of lung cancer depends on tumor size and stage at 
diagnosis, early detection is critical to achieving a curative 
treatment and to reducing mortality.

It is well established that low-dose computed tomography 
(LDCT) is a highly sensitive technique for detecting 
noninvasive early lung tumors in the screening of high-risk 
populations (LCS) (4-13). Published in 2011, the large-sample, 
randomized National Lung Screening Trial (NLST) in the 
United States demonstrated that LDCT performed in high-
risk patients reduces lung cancer mortality by more than 20% 
compared with groups screened by chest X-ray (13).

In Europe, several randomized screening trials 
comparing LDCT scan versus chest X-ray were released 
but had insufficient statistical power to demonstrate 
any mortality benefit (14). Recently, however, a large-
sample European randomized controlled trial, the Dutch-
Belgian Randomized Lung Cancer Screening Trial 
(NELSON study) reported that the 10-year lung cancer 
mortality in the LDCT screening group was 2.5 deaths per  
1,000 person-years, while that in the control group was 3.30. 
The screening arm therefore showed a 24% lung cancer 
mortality reduction (cumulative incidence ratio for death 
from lung cancer of 0.76; P=0.01). It should be noted that in 
the screening arm, about 77.6% of diagnosed cancers were 
early stage (IA to II), while 71.6% of patients in the control 
arm were stage III to IV at diagnosis, indicating that early-
stage diagnosis leads to a reduction in mortality (15).

Other European single-arm studies have analyzed 
oncological  outcomes. In Milan for instance,  the 
Continuous Observation of Smoking Subjects (COSMOS), 
a single-center nonrandomized LDCT screening study, 
showed high sensitivity (90.3%) and specificity (99.4%) for 
the first 5 years of follow-up and confirmed that 78% of 
detected tumors were localized (N0 M0); a high proportion 
(87%) of cancers were radically treated, and long-term 
oncological results were satisfactory with an overall 5-year 
survival of 78% (16).

Potential drawbacks

Despite its widely recognized value, LDCT screening 
in Europe has to overcome several obstacles in its 
implementation, especially regarding its economic impact 
(which is discussed below), ionizing radiation exposure, 
overdiagnosis (defined as the detection of a lung cancer that 
would not lead to patient’s death because of a slow growth 

rate and competing age-related risks for death), and false 
positives.

According to the retrospective evaluation in the  
10-year COSMOS study, cumulative radiation exposure and 
a lifetime risk of radiation-induced cancer can be acceptable 
if we consider the substantial mortality reduction associated 
with LCS; in fact, in a worst case scenario, only 1 radiation-
induced cancer would be expected in every 108 lung cancers 
detected after 10 years of LDCT-LCS. Nevertheless, it 
would be possible to further reduce exposure by improving 
the diagnostic flowchart and excluding low-risk patients 
to minimize unnecessary radiologic examinations (17). 
Furthermore, new CT scanners with optimized acquisition 
protocols that can reduce the dose by up to 40% and new 
reconstruction algorithms that can reduce the radiation 
dose by up to 80% and obtain an equivalent image quality 
are now available (18-20).

Some authors consider LDCT screening of limited 
utility in changing the natural history of lung cancer due 
to overdiagnosis (21-23) of indolent early-stage cancers 
considered of uncertain clinical relevance (23). Together 
with the potentially high false-positive rate, overdiagnosis is 
one of the most criticized drawbacks of LDCT screening. A 
retrospective analysis on the COSMOS population suggests 
that changes in size on sequential LDCT screening can help 
in the discrimination of aggressive versus indolent tumors by 
measuring the volume-doubling time (VDT) to classify them 
as fast growing (<400 days), slow growing (400 to 599 days), 
or indolent (>600 days). VDT seems to be an acceptable 
indicator of cancer aggressiveness and its analysis shows 
that only fewer than 10% of resected screened lung cancers 
have a VDT higher than 600, thus minimizing the problem 
of overdiagnosis. As this 10% of indolent cancers may 
include some of the overdiagnosed cancers and nonsurgical 
treatments, such as stereotactic ablative radiotherapy (SABR) 
or minimally invasive (video-assisted/robot-assisted), limited 
resections should be considered to reduce overtreatment (24).  
In the ITALUNG trial, a randomized controlled trial 
carried out in Tuscany from 2004 comparing LDCT-LCS 
to standard care, the number of cancer cases diagnosed was 
similar in the two arms, showing no overdiagnosis after an 
adequate follow-up period (25).

As far as false positives are concerned, during the first 
6 years (from 2004–2005 to 2010) of the COSMOS study, 
only 14% of benign lesions underwent surgical biopsy (24) 
due to the application of positron emission tomography-CT 
(PET-CT) for preoperative assessment of indeterminate 
screening-detected lung nodules and the repetition of 
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LDCT after 1 month in case of suspected inflammatory 
lesions (26). Even if the nodules had typical benign 
characteristics, half of them were PET-positive and half of 
them had a VTD in the rate of malignancy, and thus surgery 
was performed; fine-needle aspiration biopsy (FNAB) 
was not routinely used in this screening protocol. This 
percentage is lower than that reported in the NLST, where 
25% of suspicious cases underwent invasive procedures for 
benign nodules (27), and that in the NELSON study, where 
27% and 21% of cases underwent surgery for benign disease 
at baseline and in subsequent rounds, respectively (12).  
By contrast, the Danish LCS Trial reported that only 
10% of benign cases underwent surgery using a protocol 
that combined PET-CT with VDT (28). Improved 
diagnostic protocols, a prolonged period of follow-up, and a 
multidisciplinary approach are critical to reducing invasive 
procedures for benign nodules that often cause unnecessary 
morbidity and resource utilization. Screening is therefore 
an important tool for reducing deaths from lung cancer and 
can be considered effective and safe.

In this review we explore some aspects of the screening 
process, particularly those regarding the cost-effectiveness 
analysis (CEA) and the optimization of target population 
selection and recruitment.

CEA in the European and International setting

It is necessary to demonstrate that LDCT-LCS can be cost-
effectively implemented. LCS costs were initially (from 
2000 to 2007) a predominantly North American interest, 
and early studies were published in the USA and Canada 
(29,30-42). A CEA based on NLST data, which compared 
an LDCT screening arm with a standard care arm in over 
53,000 individuals, estimated a cost of USD $81,000 per  
quality-adjusted life-year (QALY) gained (30-36).  
Thus, the US Preventive Services Task Force (USPSTF) 
recommended screening for high-risk individuals (aged 55 
to 80 years, with at least 30 pack-years smoking history and 
fewer than 15 years of smoking abstinence immediately 
before screening) (43), with private and public institutions 
covering costs. In Canada, a group conducted a CEA 
comparing patients undergoing LDCT against nonscreened 
individuals: the high-risk screening cost was estimated to be 
CAD $20,724 (in 2015) per QALY gained (34,35).

Nevertheless, it is difficult to apply these results to the 
European framework, where costs and reimbursements 
are markedly different from those in North America. Only 
recently (from 2014 to 2019), CEAs have been published 

in Europe (44-49). Two studies published in Germany 
examined the incremental cost-effectiveness ratio (ICER): 
one reported €19,302 per life-year gained and €30,241 per 
QALY and the other reported €16,754–23,847 per life-year 
(45,46). In the UK, two studies found an ICER lower than 
£11,000 per QALY (44,47); a more recent study found an 
ICER between £20,000 and £30,000 per QALY, but under 
extreme assumptions (very small cost advantage in treating 
stage I and stage IV, no increase in average survival between 
the screening and nonscreening scenarios) (48). Meanwhile, 
a Polish study reported an ICER of €1,353 per life-year 
gained (49).

For Italy, our group found an ICER of €3,297 per 
QALY gained and €2,944 per life-year gained (50). This 
is the most recent study covering this issue and included 
the new treatment options of advanced stage lung cancer. 
This model is based on a decision tree presenting the main 
contributors to costs, with each branch representing a 
divergence in the management of the screened patient; usual 
care arms and the alternatives were assigned probabilities 
of occurrence. Real-world cost data were estimated by 
summing all reimbursements paid to the hospital for 
hospitalizations, outpatient appointments, examinations, and 
medications, sorted by year of diagnosis and disease stage. 
The screening arm was composed of individuals enrolled 
in the COSMOS study (51) who represented a high-risk 
population, adapted by considering only those who met the 
more stringent eligibility criteria of the USPSTF. Patients 
diagnosed and treated for lung cancer in the Lombardy 
region of Italy constituted the nonscreening arm. Data on a 
sample of subjects surveyed in 2015 (52) were extrapolated 
to estimate individuals at high risk of lung cancer in Italy in 
2017: the Italian National Institute of Statistics (ISTAT) (53) 
estimated a population of 17,757,163 people aged 55–80 
years old in 2017, including 2,166,374 individuals at high 
risk of lung cancer. Based on the obtained ICERs, screening 
this population for 5 years would require an investment 
by the Italian Health Service of around €600 million at 
€120 million/year, which represents 2.4% of the yearly 
Italian budget for disease prevention (€5 billion). Further 
investigation of sensitivity using Monte Carlo simulations 
demonstrated a 55% probability of the ICER per life-year 
being less than €5,000, an 80% probability of being less 
than €10,000, a 90% probability of being less than €15,000, 
and a 98.1% probability of being less than the threshold of 
€25,000, as indicated by the UK’s the National Institute for 
Health and Care Excellence (NICE) introduction for new 
medical technologies (54). These low ICERs imply that 
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screening can be implemented throughout Italy at relatively 
low cost, thereby cost-effectively saving the lives of many 
lung cancer patients.

The recent introduction of new targeted therapies with 
monoclonal antibodies and immunotherapy in the treatment 
of late-stage lung cancer has changed the natural history 
of mutation-bearing diseases. Despite their undeniable 
efficacy, these treatments are extremely expensive: 
osimertinib treatment, for example, could be more effective 
than chemotherapy in advanced lung cancer patients with an 
acquired epidermal growth factor receptor (EGFR) T790M 
mutation; nevertheless, this benefit has been associated 
with a significant cost increase, with average ICERs greater 
than US $200,000 per QALY in the United States and 
greater than US $30,000 per QALY in China. Considering 
the threshold of US $100,000 and US $23,815 per QALY 
gained in the USA and in China, respectively, osimertinib 
was not considered a cost-effective therapeutic strategy (55); 
now, however, owing to its associated survival advantage, 
osimertinib has been indicated as first-line therapy in the 
treatment of non-small cell lung cancer (NSCLC) since 
2018. The capability of LCS to identify lung cancer in 
the early stages may decrease the total burden of overall 
lung cancer treatment by reducing the number of patients 
diagnosed at a late stage and thus those requiring molecular 
profile identification and expensive targeted therapies.

Selection of target population and screening 
interval: risk models

European healthcare systems are mainly nationalized, with 
charges being covered by governments. Costs are probably 
one of the factors that have limited the introduction of LCS 
into clinical practice. The use of different risk models can 
have a dual purpose: for one, it allows for the identification 
of subjects at higher risk of developing lung cancer; for 
another, it can create a tailored screening interval profile 
useful for designing a more personalized and cost-effective 
screening schedule. The NLST recruitment of subjects 
was based on pack-years ≥30, quit-time in former smokers 
of ≤15 years, and age 55 to 74 years. The USPSTF and 
the Centers for Medicare and Medicaid Services (CMS) 
recommendations applied the same criteria as the NLST, 
but used the ages of 55–80 and 55–77 years, respectively 
(43,56). The risk model associated with NLST has the 
power to identify 1 tumor out of 320 screened subjects (57). 
These values are difficult to apply in a European scenario.

LCS recruitment is based on smoking status and age. 

Assuming that age and cigarette smoking are the most 
important but not the sole risk factors for lung cancer 
development and considering the need for a more powerful 
system to select people at high risk of lung cancer, several 
risk models have been proposed over the years (51,58-76). 
However, many of them have been considered unsuitable, 
as they were validated in restricted or non-European 
populations or have only modest predictive power 
(59,60,62-68,70,71,73-76).

The Prostate ,  Lung,  Colorecta l ,  and Ovar ian 
(PLCOm2012) Cancer Screening Trial (69) was thus remade 
in 2012 to estimate cancer development risk over 6 years. 
The model was built on a cohort of 80,375 individuals 
and with an external validation of 37,332 subjects. The 
PLCOm2012 prediction rules were evaluated at a 1.34% 
risk threshold. The PLCOm2012 model was demonstrated 
to be more successful than the NLST criteria: “sensitivities 
were 83.0% versus 71.1% (P<0.001), the specificities were 
62.7% versus 62.9% (P=0.54), and the positive predictive values 
were 4.0% versus 3.4% (P=0.01)” (72). The model in fact 
identified 81 more cancers more than the NLST did.

Similarly, the Liverpool Lung Project (LLP) model was 
used to calculate the 5-year lung cancer risk in a population 
aged 40 to 80 years. The model was designed using  
1,736 case-control-matched individuals in a population 
from Liverpool, UK. The LLP model was used in the 
United Kingdom Lung Screening trial. The trial used 
LDCT for the early detection of lung cancer in high-
risk subjects (>5% risk over 5 years, according to the LLP 
model) aged 50 to 75 years (77). The high-risk threshold 
may be a cost-effective method, as it excludes a high 
proportion of controls, but it will, however, only capture 
a small proportion of cases. The United Kingdom Lung 
Screening uses a single screen rather than multiple screens 
of the identified individuals. This is done to maximize the 
yield of the screening test, making it more cost-effective (78). 
Recently, the NHS England Lung Health Projects (79) has 
been using both the PLCOM2012 and the LLP v.2 model, 
with the thresholds adopted for screening the eligibility of 
PLCOM2012 being ≥1.3%, ≥1.5%, and ≥2.0%.

In order to improve screening and limit its costs, in 2011, 
we developed a risk model to optimize the interval between 
the screening rounds according to individual risk. We 
stratified the population of the COSMOS study integrating 
characteristics of the subjects (i.e., age, gender, smoking 
habit) with findings of baseline CT scans (emphysema and 
features of nodules) (51). Presence of nonsolid nodules [risk 
ratio (RR): 10.1, 95% confidence interval (CI): 5.57–18.5], 



2399Translational Lung Cancer Research, Vol 10, No 5 May 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(5):2395-2406 | http://dx.doi.org/10.21037/tlcr-20-677

Figure 1 In this schematic model, the current SMAC screening strategy is reapplied. We identify subjects to be screened using the 
PLCOm2012 risk model to select the population at high risk of developing lung cancer. After the first CT scan, a second risk (Maisonneuve 
model) model is used to determine the correct interval to perform the second round of CT in order to improve the effectiveness of the 
screening.

SCREENING

SCREENING 
INTERVAL

nodule size more than 8 mm (RR: 9.89, 95% CI: 5.84–16.8), 
and emphysema (RR: 2.36, 95% CI: 1.59–3.49) at baseline 
CT were all significant predictors of malignity.

The PLCOm2012 risk model associated with the 
Maisonneuve model that integrates CT findings at baseline 
screening could help in both the selection of target 
population and the definition of the optimal interval of 
screening. The Italian SMAC study represents an external 
validation of this model. Other studies have been aimed in 
this direction: in 2019, Pastorino et al. presented the results of 
a risk model to the World Conference on Lung Cancer (80);  
they reported that baseline blood microRNA associated 
with LDCT could predict lung cancer risk and mortality 
at 4 years and that lung cancer risk was significantly higher 
in subjects with a single-positive [hazard ratio (HR): 6] and 
double-positive test (HR: 36.6). According to this model, 
blood microRNA plus LDCT would allow optimal screening 
intensity and reduce unnecessary repetition of LDCT, thus 
improving the efficacy of screening (80) (Figure 1).

Future perspectives

Many aspects of LCS have been overlooked over the years 
to improve its cost-effectiveness. The future perspectives 
of LCS in Europe will involve several aspects. First, as 
LCS addresses the smoking population, LCS may be 

applied to the screening of other smoking-related diseases, 
including both cardiovascular and pulmonary disorders [e.g., 
emphysema/chronic obstructive pulmonary disease (COPD) 
and idiopathic pulmonary fibrosis (IPF)] (81,82). Notably, 
an early diagnosis of IPF might induce an early prescription 
of antifibrotic therapy with beneficial effects on survival (83).

Secondly, as LCS allows for the detection of more tumors 
at early stages, there should be a subsequent increase in the 
number of minimally invasive parenchyma-sparing surgical 
procedures. Other objectives could be the improvement 
of the CT reading process using artificial intelligence (AI) 
software and the search for biomarkers to facilitate speedier 
diagnoses without the need of invasive procedures.

Prevention and detection of cardiovascular diseases (CVD)

CVD were reported to be responsible for the majority of 
total deaths in LDCT study arms (13). Coronary artery 
calcification (CAC), extracoronary cardiac calcifications, 
and aortic aneurysm can all be detected on LDCT scans.

LCS gives offers the attractive opportunity to reduce 
CVD mortality through the concomitant assessment of 
CVD risk via coronary artery calcium quantification, a 
recognized marker of atherosclerosis (84).

CAC alone, however, is not sufficient for evaluating 
CVD risk (85). A recent consensus paper reported that 
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Figure 2 Lung cancer stage distribution in different randomized LDCT screening [NLST in (A), Nelson in (B)], and nonrandomized 
studies [COSMOS in (C)].

NLST NELSON

COSMOS

C

BA

CAC on a basal CT associated to the Framingham score 
can refine risk stratification (86). The NICE guidelines 
recommend the use of statin (atorvastatin 20 mg) in the 
case of poor control of cholesterol values associated with 
CAC expression (QRISK 2 ≥10%) (87). The QRISK 2 is 
an algorithm developed by the UK National Health Service 
that calculates the risk of heart attack or stroke over the 
ensuing 10 years (87).

In 2019, Ruparel et al.’s study demonstrated the following 
phenomena: (I) in a cohort of individuals undergoing an 
LDCT for LCS, 62% of participants had coronary calcium; 
(II) an increased QRISK 2 was associated with s higher 
value of CAC on LDCT; and (III) 98% of LCS-eligible 
individuals met the ≥10% 10-year CVD risk threshold 
required for statin primary prevention of CVD events in 
the UK (88). LDCT could therefore not only serve an 
important role in secondary prevention for lung cancer but 
also aid in the primary prevention of CVD.

Increase in minimally invasive surgical procedures

The main goal of LCS is to reduce mortality. However, to 
increase the effectiveness of LCS, other treatments should 
to be adapted and improved upon. Specifically, because of 
the increasing number of small, early-stage tumors detected 

by LCS, there should be a concurrent increase in the 
number of minimally invasive procedures that are associated 
with better and shorter postoperative hospitalizations and 
reduced costs.

Surgical results of the NLST indicated that 80% of patients 
received lobectomy, 4.1% pneumonectomy, and 16.1% 
sublobar resection (69% wedge resection), while only 29.6% 
(n=305) of the cohort had a thoracoscopic resection (89).

In the Danish LCS trial, 84% of surgical procedures on 
screen-detected cancers were performed by video-assisted 
thoracic surgery (90). This high number of minimally 
invasive procedures was not reported in other screening 
programs (91,92). Similarly, in the SMAC study, we treated 
the majority of cancers using a minimally invasive approach, 
specifically, a robot-assisted technique.

Abundant evidence supports the superiority of minimally 
invasive surgery of thoracotomy in terms of perioperative 
and oncological outcomes and postoperative quality of 
life and pain control (93-96). However, few data have 
been reported for anatomic sublobar resections for 
tumors diagnosed by screening. In the NLST, only 5% of 
resections were anatomic segmentectomies (89), while in 
the Danish LCS trial, this figure was only 2% (90) (Figure 2). 
Nevertheless, the number of anatomic segmentectomies is 
expected to increase in the future.
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In recent years, robotic surgery has shown benefits in 
reducing mortality, shortening length of stay, and decreasing 
the severity of hospitalization (97). Moreover, it has been 
associated with a lower conversion-to-open rate and a lower 
30-day complication rate (98). Robotic surgery has also 
demonstrated advantages in the field of segmentectomy  
(99-103). Robotic segmentectomies seem to be characterized 
by absence of major bleeding, an “oncologically acceptable” 
number of lymph nodes removed, 0% mortalities, and 
only 3.4% 30-month local recurrence (100). Robotic 
segmentectomies also show precise identification of the 
intersegmental plane in 100% of cases, thus facilitating 
radical resection (104). Minimally invasive sublobar 
resections could be the standard for slow-growing and small 
tumors detected at screening.

AI for radiological analysis

If screening is covered by the NHS, the number of LDCT 
scans will greatly increase. Guidelines today help in 
therapeutic decision-making when a solitary lung nodule is 
detected (105,106); however, the radiological reporting of 
the exams requires a significant amount of medical expertise 
and labor. New software based on AI can aid in analyzing 
nodule size, margins, attenuation, and other radiological 
features without the subjective judgement of the radiologist. 
In the UK, the IDEAL study (Artificial Intelligence and 
Big Data for Early Lung Cancer Diagnosis), developed by 
Optellum Ltd., used AI to evaluate the probability of a lung 
nodule to be malignant. As a risk prediction model, the lung 
cancer prediction convolutional neural network (LCP-CNN) 
was constructed using a machine learning algorithm (107).  
Recently Baldwin (108) and colleagues compared the 
performance of the LCP-CNN with the Brock University 
model recommended in UK guidelines. Their results showed 
an area under curve of 89.6% for LCP-CNN (95% CI: 
87.6–91.5), compared with 86.8% (95% CI: 84.3–89.1) of 
the Brock model (P≤0.005). The LCP-CNN score provided 
better discrimination, with a larger proportion of benign 
nodules identified without missing cancers, thus reducing the 
proportion of follow-up CT scans and saving resources. As 
AI technology progresses, CT reports will serve as their own 
validation, making the CT screening faster and more cost-
effective.

Liquid biopsies for preoperative diagnosis

The potential risk related to the rising number of lung 

nodules detected by LDCT may translate into an increase 
in invasive diagnostic procedures and diagnostic surgery. 
Liquid biopsy may be the solution to this issue. Circulating 
exosomes (109), microRNA (110), cell-free DNA (cfDNA), 
and circulating tumor cells (CTCs) are being evaluated for 
their clinical utility (111). Thus far, research into cfDNAs 
and CTCs has yielded the most promising results. cfDNA 
is the portion of circulating DNA in bloodstream that 
is passively released from apoptotic and necrotic cells or 
indirectly by tumor-associated macrophages. Migration of 
CTCs in the bloodstream is an early event in carcinogenesis: 
they are released by cancer tissue as single cells or clusters of 
cells that can be isolated in the peripheral blood in different  
ways (111). Ilie et al. examined the presence of “sentinel” 
CTCs in COPD patients without radiologically detectable 
lung cancer and screened them annually with LDCT: CTCs 
were detected in 3% of COPD patients, and, in 1 to 4 years, 
these patients developed a radiologically detectable lung 
nodule, leading to prompt surgical intervention of an early-
stage tumor (112).

These results support the use of liquid biopsies as a tool 
for noninvasive preoperative diagnosis of lung cancers in 
the LCS setting, which can reduce the number of invasive 
diagnostic procedures, such as endobronchial ultrasound-
guided transbronchial needle aspiration, CT-guided biopsies 
and diagnostic surgeries, and improve the effectiveness 
of the treatment by reducing the time required for these 
preoperative invasive diagnostic procedures.

Conclusions

It is well established that the application of LCS can reduce 
mortality, justifying its adoption by European public 
healthcare systems. This, however, strictly necessitates that 
LCS be rendered as cost-effective as possible. To improve 
effectiveness, risk models should be used according to the 
individual risk of the subjects both for the selection of the 
screening population and for the identification of optimal 
screening round intervals. This would provide suitable 
subjects for screening and individually tailored screening 
intervals.

CVD are the major cause of morbidity and mortality 
in populations eligible for screening: as the risk factors 
between lung cancer and CVD overlap, LCS could play 
an important role in prevention of smoking-related 
pathologies.

Finally, the use of AI in the interpretation of CT images 
and liquid biopsies for the histological and molecular 
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definition of neoplasms could further improve the 
effectiveness of screening.
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