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Introduction

A variety of geometrical uncertainties may affect the 
accuracy of lung cancer radiation therapy (RT), thus 
influencing the accuracy of imaging, treatment planning and 
treatment delivery: respiratory motion, tumour delineation, 
microscopic disease definition, inter-fraction setup errors 
and baseline shifts (1). Those inaccuracies are in generally 
overcome by applying safety margins around the target, in 
order to generate the planning target volume (PTV) (1).  

However, larger margins result in increased irradiated 
healthy tissue, possibly leading to increased toxicity.

Motion-management is of pivotal importance in 
reducing geometrical uncertainties in lung RT. The 
European Organisation for the Research and the Treatment 
of Cancer (EORTC) guidelines recommend the adoption 
of motion management strategies, in order to avoid the 
sue of free breathing computed tomography (CT) scans in 
the treatment planning process, because it may capture the 
random position of a tumour and/or artefacts (2). 
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According to the American Association of Physicists in 
Medicine (AAPM) (3), if the magnitude of the motion is 
very small (<5 mm), the extra effort of using a respiratory 
management technique is “unwarranted, unless significant 
normal tissue sparing can be gained with the respiratory-
management technique”. The 5-mm threshold was used 
because it can generate significant motion artefacts or 
systematic errors (3), and can be reduced when stereotactic 
body radiotherapy (SBRT) is performed. 

The main aim of this narrative review is to describe 
intra-fraction tumour motion and summarize the principal 
motion management strategies in thoracic radiotherapy for 
lung cancer.

We present the following article in accordance with the 
narrative review reporting checklist (available at http://
dx.doi.org/10.21037/tlcr-20-856).

Methods

A formal literature search was not carried out. Published 
studies were identifies through “pearl growing” and citation 
chasing. Only studies in English published after 2000 were 
included.

Measuring tumour respiratory motion 

Respiratory motion is a complex mechanism, affected 
by various patient-related (i.e., interstitial fibrosis, lung 
emphysema, pleural effusion, previous thoracic surgery/
RT or chemotherapy, muscular fatigue) and tumour-
related factors (i.e., tumour location, for example: upper 
lobes versus lower lobes, proximity to the heart) (4). The 
extent of respiratory movements in lung cancer has been 
detailed by Seppenwoolde et al. (5): the authors inserted 
gold markers in 20 patients into or near the tumour mass, 
and tracked their motion using a fluoroscopic real-time 
tumour tracking system able to determine the 3D position 
of the tumour by performing 30 images per second. The 
conclusions were that the average amplitude of tumour 
motion was the greatest in the cranial-caudal direction for 
tumours located in the lower lobe and not attached to rigid 
structures (such as chest wall and vertebrae) compared to 
upper lobe and attached to rigid structures [12±6 mm (SD) 
versus 2±2 mm (SD)]. The lateral and anterior-posterior 
movement was small in all cases [1.2±0.9 mm (SD) for the 
left-right direction and 2.2±1.9 mm (SD) for the anterior-
posterior direction]. The time-averaged position was closer 
to the exhale position, because the tumour spent more time 

in the exhalation phase than in the inhalation phase. In the 
average trajectory of the tumour, hysteresis was observed 
in 50% of the patients: the tumour followed a different 
path during the inhalation than during the exhalation. 
The breathing technique (diaphragm and chest breathing 
combined asymmetrically), lung’s dynamic properties (the 
tumour motion may be delayed compared to the motion of 
the chest wall and the diaphragm) and even the heartbeat 
may influence a measurable tumour motion. Finally, in the 
case of lung cancer with mediastinal node involvement, it 
has been showed that the movement of the primary tumours 
and the lymph nodes is not necessarily in the same phase (6). 
Pantarotto et al. (6) examined the pattern of movement of 
100 lymph nodes from 41 patients and concluded that the 
magnitude of the nodal motion was often >5 mm, mostly in 
cranial-caudal direction and strongly associated with nodal 
station (with lower mediastinal nodes showing the highest 
motion). Phase offsets between the primary tumour and 
the lymph nodes were minimal at end-inspiration (phase 
offset of one phase in 12% of nodes) and maximal at end-
expiration (phase offset of one phase of 33% and 12% of 
two phases).

In a study on intra-fractional variability of tumour 
position and tumour motion (27 lesions and 66 treatment 
fractions), Guckenberger et al. (7) showed that intra-fraction 
tumour drift was <48 mm in 90% of all fractions, with a 
maximum tumour drift of 72 mm. No correlation was found 
between any clinical, planning or treatment parameter and 
intra-fractional tumour position variability.

How to deal with respiratory motion?

Respiratory correlated imaging, individualized and 
population margins

Respiratory correlated imaging
In order to reduce the artefacts induced by respiratory 
motion, several groups developed respiratory-correlated 
acquisition techniques (8). A 4-dimensional (4D) CT 
dataset is obtained from 3D images at multiple phases of 
the respiratory cycle by retrospectively sorting the data 
using the information from the patient’s breathing cycle. 
The 4D-CT is to date considered the standard to gain 
detailed information about range and pattern of breathing 
respiratory motion (2).

Motion compensated cone beam CT (MC-CBCT) have 
been developed as well (9).

However, a 4D-CT or an MC-CBCT still contain 
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artefacts due to residual breathing irregularities and are 
only a “snapshot” of the patient’s breathing behaviour.

Steiner et al. (10) showed an under-prediction of the 
target motion in 4D-CT end 4D CBCT in all directions: 
the errors were larger in the inhale phases and smaller in 
the end-exhale phase. The authors showed that a 5-mm 
margin was sufficient to cover the 4D-CT-based motion 
measurements in 76% of the treatment fractions, with short 
times of exceeding motion (ranging from 1–20% of the 
treatment time).

Wolthaus et al. (11) developed a mid-ventilation 
approach to exploit the 4D-CT data, by extracting a single 
frame of 4D-CT where the tumour is the closest to its 
time-averaged position (the mid-ventilation CT). In order 
to limit the breathing artefacts derived by using a single-
frame image, the same authors (in a subsequent publication) 
developed a mid-position approach, by deforming all the 
phases of the 4D-CT in order to produce a single image 
representing the time-weighted position of all images (12). 
Respiratory motion, similarly to random errors, blur the 
cumulative dose distribution, with limited effect on final 
dose distribution (13).

Individualized margins
Separate margins have been proposed for tumour motion 
(internal margins) and setup (setup margins). The use 
of an internal target volume (ITV) encompasses motion 
and shape changes over the respiratory cycle, based on a 
composite delineation on an inspiration and expiration 
breath-hold scans, all/several phases of a 4D-CT or on 
a 4D-CT maximal intensity projection (1). The ITV is 
expanded to the PTV to account for setup margins. Even 
with an accurate set-up, internal displacement of the tumour 
may be significant: Hansen et al. (14) reported a standard 
deviation of the overall tumour displacement of respectively 
2, 3 and 4 mm in the left-right, anterior-posterior and 
cranial-caudal directions. Set-up based on volumetric 
CBCT has now become the standard of care (15). The 
use of daily CBCT could minimize the ITV-PTV setup 
margins. Grills et al. (16) showed that the margins required 
to account for setup error alone would be 9 mm (right-left 
and anterior-posterior) and 13 mm (cranial-caudal) when 
using a stereotactic body frame (without image guidance). 
However, when image guidance (CBCT) was added to the 
body frame, the setup margins were reduced to 1–2 mm 
(residual error alone) or 2–4 mm (residual error + intra-
fraction drift).

The recently developed 4D-CBCT (9) and the gated 

CBCT (17) may reduce the motion artefacts and image 
blurring. 

Limitations of the 4D-CT include motion artefacts, 
irregular breathing patterns and the rigorous quality 
assurance (18).

Population margins
Geometrical uncertainties can be incorporated into the 
treatment planning process by taking population-based 
margins around the clinical target volume (CTV), in order 
to define the PTV. Amongst others, the so-called “van 
Herk recipe” calculates the margin around the CTV that 
is needed to deliver at least 95% of the prescribed dose to 
90% of the patients (13). To calculate the CTV to PTV 
margin, apart from the SD (standard deviation) of the 
systematic and random errors, the width of the penumbra 
modelled by a cumulative Gaussian and the inverse 
cumulative standard-normal distribution at the prescribed 
PTV minimum dose level. In the lung where in photon 
therapy the increased range of secondary electrons results in 
a broadening of the beam penumbra, the additional margin 
for random errors is small. Systematic errors therefore have 
a dominant effect on the cumulative dose, especially in the 
lungs.

Management of the intra-fraction movement: breath-hold 
techniques, gating and tracking

When toxicity is of particular concern, the reduction of the 
respiratory motion can be achieved by irradiating the target 
when only in a pre-defined phase (breath-hold techniques) 
or window (gating) of its breathing trajectory or by tracking 
the tumour throughout the treatment in free breathing 
(tracking) (19).

Breath-hold techniques
In the deep-inspiration breath-hold (DIBH), the patient 
attempted a maximum inhalation during simulation and 
treatment, by using spirometer linked to a video glasses or a 
screen (20). This technique allows the displacement of heart 
and lung from the high-dose region (21,22). Rosenzweig 
et al. (23) showed that normal tissue complication in lung 
decreased with the DIBH technique compared with free-
breathing. However, a limitation of this technique is 
patient compliance: Mah et al. (24) showed that only 50% 
of the lung cancer patient in their study could perform this 
method.

In order to increase the stability of the breath-hold 
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procedures, the Active Breathing Coordinator™ (ABC, 
Elekta, Stockholm Sweden) was developed: this system 
uses a combination of a valve system shutting off airflow 
and a visual guidance to the patient. Breath-hold during 
expiration is more stable (and more comfortable for the 
patient) than during inspiration, but the choice of using 
expiration or inspiration breath-hold will depend from 
dosimetric concerns. A compromise could be to use a 
moderate DIBH. Panakis et al. (25) showed that the use of 
the ABC system was associated with a mean reduction in 
physical lung parameters of 18–25% compared to the free-
breathing.

The main drawback of these techniques is the patient 
compliance and reproducibility, which can be enhanced 
by patient training and coaching, using audio and video 
guidance (26-29). Inter-fraction variations can be significant 
(mostly in the cranial-caudal direction; mean variation in 
the GTV centre of mass: 5.1 mm), and could be limited by 
using daily image-guided RT (IGRT) (30), such as daily 
CBCT, with soft-tissue registration (31).

Gating
In the respiratory gating, the beam is turned on and off 
in synchronization the breathing cycle, and the target 
is irradiated only when in a pre-defined window (the so 
called “gating window”) of the breathing cycle. A breathing 
monitoring device for providing the trigger signal is 
required, and both internal fiducial markers or external 
surrogates (external optical skin markers, pressure sensors 
or abdominal belts) can be used (32). The correspondence 
between the surrogate motion and the target motion should 
be established before the treatment and verified regularly, in 
order to avoid the underdosage of the tumour (3,33). The 
comparison between external and internal surrogates shows 
a superiority of the latter (34).

The gating can be phase-based (delivering is planned in a 
specific phase) or amplitude-based (delivery is in a window, 
where the maximum and minimum limits are pre-defined).

Tracking
Recent technological advances in radiotherapy delivery 
allowed developing solutions that can beam continuously at 
the moving target. 

As said before, the gating and the tracking are based on 
the assumption that the tumour motion can be predicted 
using surrogates (internal or external). In addition, tracking 
relies on a prediction model of the respiratory motion, 
which can anticipate the future position of the tumour. 

Real-time motion compensation was firstly implemented 
in  2002 with the Cyberknife  System™ (Accuray, 
Sunnyvale, CA, USA). The robotic arm of the Cyberknife 
is programmed to move synchronously with the breathing 
cycle, in a trajectory following the projected 3D motion of 
the target. The target motion is not monitored directly: a 
series of orthogonal radiographic images is acquired (by two 
orthogonal cameras) before the starting of the treatment 
and a mathematical model between the target motion 
and the motion of a set of surface markers is generated. 
During the beam on phase, intermittent orthogonal images 
are acquired, in order to verify the target position and 
eventually correct the model. 

Four image guidance protocols are used for lung tumours 
treated with the Cyberknife System™: (I) synchrony 
tracking of fiducial markers (placed in the tumour or close 
to the tumour); (II) XSight lung tracking (direct tracking 
of the tumour by two cameras or one camera, which is 
fiducial-less); (III) Xsight spine tracking (tracking of the 
adjacent vertebral body) (35). The use of the fiducials is 
associated with a risk of pneumothorax ranging between 
18% and 25% (36,37), with fiducial displacement/migration 
and longer treatment delays (38).

The XSight spine does not really track the movement of 
the tumour during treatment, and it requires a larger ITV 
(accounting for the tumour motion in the different phases 
of the respiratory cycle). Fiducial-less treatments performed 
with Xsight lung may allow tumour tracking (by the means 
of soft-tissue tracking). This tracking modality needs 
adequate tumour visualisation, which must be assessed with 
a tumour visualisation test performed before the treatment. 
In case of negative test (tumour not well visualised), the 
patient has to be addressed to another treatment system. In 
a retrospective series, Bahig et al. (38) showed that XSight 
lung tumour visualisation test was satisfactory in 66% of 
patients, with larger tumour volume and higher tumour 
density being predictive factors of a successful test.

No randomised prospective data comparing the clinical 
outcome of different tracking techniques has been published 
(and such trials are virtually impossible: few institutions 
have this choice in terms of equipment). However, Claude 
et al., in an observational prospective multicentric study, 
found no differences in terms of local control, progression-
free survival, overall survival and toxicity in two cohorts  
treated either with a Linac- or a Cyberknife-delivered 
SBRT (39).

Dynamic multileaf collimator (MLC) tracking for a 
standard gantry-based Linac has been recently used for 
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prostate cancer, with potential applications also in lung 
cancer treatment (40).

The recent development of an magnetic resonance 
imaging (MRI)-Linac hybrid technology allow to combine 
real-time tracking and MR-guided daily adaptive workflow, 
and is currently under investigation in few selected  
centres (41).

Main remaining challenges

Very few studies reporting the clinical benefits of 
respiratory management have been published (and none of 
them is randomized). The issue of the choice of the optimal 
system is rather complex. In the decision-making process, 
several factors need to be considered, the most significant 
being the available technical equipment of the radiotherapy 
department and the patient selection (with an individualized 
estimate of the benefit of tumour management strategy on 
each patient on the basis of the amplitude of the breathing 
motion or the regularity of the breathing). The regularity 
of the breathing determines the success of respiratory 
management: the more regular the pattern, the more 
reliable is model built on the target motion and the external 
surrogates that guide the beam position. 

Many challenges should be solved in the future, with the 
increased use of proton therapy in thoracic oncology (42), 
dose-painting and adaptive RT. In this review, the motion 
management in combination with protons has not been 
elaborated, but it has been the subject of a number of papers 
[see (43,44) for the evaluation of plan robustness evaluation 
and the potential interplay effect].

Further analyses are required to confirm the impact 
of tumour management on the therapeutic index (45), 
especially for patients’ systemic treatments [i.e., cardiotoxic 
chemotherapy (46)]. 

Summary

Tumour motion management remains a pivotal challenge 
for lung cancer treatment

Due to a very limited literature comparing the outcomes 
of patients treated with different motion management 
strategies, it is quite difficult to quantify the real impact of 
novel technologies on the therapeutic window.

Clinical trials investigating the best strategy for a given 
clinical presentation and for a given patient are needed. 
More widely available technical solutions are awaited.
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