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Objective: The objectives of this review are to discuss: the definition, clinical and biologic features of 
oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in 
oligometastatic NSCLC. 
Background: A substantial proportion of patients diagnosed with lung cancer present with metastatic 
disease, and a large portion of patients who present with localized disease later develop metastases. 
Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic 
disease, where there may be a role for curative localized therapy approach by treating the primary tumor and 
all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients 
with lung cancer, the identification of patients who might benefit from this approach is yet to be well 
characterized. 
Methods: After a systematic review of the literature, a PubMed search was performed using the English 
language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative 
treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved 
between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to 
oligometastatic NSCLC were reviewed and included in the discussion of this paper. 
Conclusions: Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic 
NSCLC accurately using a combination of clinical and biologic features and treating them with localized 
consolidative approach appropriately results in improvement of outcome. Further understanding of the 
molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for 
future studies. 
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Introduction

Rationale

Traditionally, using established methods of cancer staging, 
lung cancer has been broadly categorized into localized and 
metastatic disease (1). According to expert guidelines for 
advanced non-small cell lung cancer (NSCLC), whether the 
burden of metastatic disease is limited or widespread, these 
cases fall into the same category of incurable disease (2).  
More recently, there has been growing recognition of a 
subset of patients who have limited number of metastases 
(“oligometastatic disease”), who demonstrate long-term 
survival and, in some cases, curative outcomes when the 
primary tumor and the metastatic sites are treated with 
localized therapy (3-5). Interest in an aggressive local 
therapy approach for oligometastatic NSCLC has grown 
over the last decade. Factors leading to this interest include: 
improved imaging technology to better characterize sites 
of disease leading to upstaging of some cases [positron 
emission tomography (PET), computed tomography (CT), 
and magnetic resonance imaging (MRI)]; the introduction 
of better systemic therapies to control micro-metastatic 
disease; and better local therapy options including 
minimally invasive surgery and stereotactic radiation 
therapy. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/tlcr-21-448).

Objectives

In this review we will discuss: the definition, clinical and 
biologic features of oligometastatic NSCLC, as well as the 
concept of treating oligoprogression in oligometastatic 
NSCLC. 

Methods

After a systematic review of the literature, a PubMed 
search was performed using the English language and the 
key terms: Oligometastatic, non-small cell lung cancer 
(NSCLC), localized consolidative treatment (LCT), 
biomarkers, biologic features, clinical features. Over  
500 articles were retrieved between 1889–2021. A total 
of 178 papers (ranging from 1907 until 2021) discussing 
the definition, clinical and biologic factors leading to 
oligometastatic cancer with a focus on NSCLC were 
reviewed and included for discussion of this paper. 

The mechanism of metastatic progression

It is now clear that the metastatic process is more 
complex than the orderly progression from primary 
tumor to regional lymph nodes and then distant organs 
initially proposed in the 1800s (6). According to the 
seed and soil hypothesis formulated in the late 1980s (7), 
metastases are not only driven by the circulatory patterns 
but rather a predetermined process that depends on 
the microenvironments of both the primary tumor and 
the target organ. In 1995 Helman and Weichselbaum 
postulated that metastases develop over several consecutive 
steps correlating with the biology of tumor progression, 
from localized disease that is curable with localized ablative 
approach, to limited metastatic disease in limited organs 
which is amenable to improved survival by localized therapy, 
to diffuse metastases (8).

Cancer cells that become metastatic have characteristics 
that distinguish them from other cancer cells in the primary 
tumor. To colonize new organs, these cells experience loss of 
cellular adhesion, intravasation, survival in the circulation, 
and extravasation (9,10). Cancer cells that remain localized 
usually lack one or more of these features (Figure 1) (11). 
Primary tumors may contain certain subsets of tumor cells 
or clones that are predisposed to metastasize. These subsets/
clones may not necessarily aid in the growth of the primary 
tumor but can promote the development of metastases at 
a very early stage through hematogenous dissemination 
(12,13). This suggests that there are some patients who 
have a disease that is clinically metastatic, but would result 
in only a few metastases (biologically is oligometastatic) and 
might benefit from aggressive local therapy and of course 
tumors that are prone to have wide spread metastases. The 
potential characteristics of these two are summarized in 
Table 1 (14).

The definition of oligometastatic disease

Clinically, oligometastatic disease is defined as a subtype 
of metastatic disease that is limited in total disease burden 
by the number of metastatic sites (15). Biologically, 
oligometastatic disease may represent a distinct category 
with specific molecular characteristics which results in a 
disease state in between localized and widespread systemic 
disease (Table 1). Currently, there is no consistent clinical 
distinction between oligometastatic disease and diffuse 
metastatic disease. While some studies define limited 
number of metastases as being six or fewer metastatic sites, 
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Figure 1 The different biologic factors that control the metastatic potential in NSCLC, including: tumor microenvironment, miRNAs, 
genetic signatures. Abbreviations: NSCLC, non-small cell lung cancer; CAF, cancer associated fibroblasts; JAK2, Janus kinase 2; IL-6, 
interleukin 6; STAT3, signal transducer and activator of transcription 3; KRAS, Kirsten rat sarcoma viral oncogene homolog; SMAD4, 
SMAD family member 4; TGFBR2, transforming growth factor beta receptor 2; ROCK2, Rho-associated protein kinase 2.

Table 1 Key biological differences between oligometastatic and systemic metastatic disease

Oligometastatic disease 

Limited metastatic growth potential

Biologic factors in the primary tumor preventing the development of metastases

Cancer cells that migrate out of the primary tumor cannot survive the circulation or invade into target organ sites

Cancer cells land in inhospitable target organs

Systemic metastatic disease 

Unlimited widespread metastatic growth potential

Biologic factors in the primary tumor promoting metastases

Cancer cells that actively migrate out of the primary tumor can survive the circulation and invade into target organ sites

Cancer cells land in hospitable target organs

other studies define oligometastatic disease as ≤5 metastases, 
while still others use a threshold of ≤4 sites (16). This 
definition will likely continue to mature through clinical 
trials and biomarker studies and the effect of localized 
consolidative approaches will be better characterized. For 
NSCLC, this represents an important area of investigation, 
as it is estimated that up to 50% of patients with metastatic 

have a limited number of metastases (17). 

Clinical features of oligometastatic disease

Using contemporary, highly sensitive imaging techniques, 
we can now reliably characterize cancers according 
to tumor size, number of metastases, and disease-free 
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interval. Among cases that meet one common clinical 
criterion of oligometastatic disease (i.e., ≤6 sites), larger 
primary tumors, greater number of visualized metastases, 
more advanced mediastinal lymph node involvement, 
synchronous metastases, advanced age, bone metastatic 
disease and squamous histology are associated with higher 
likelihood of occult, micro-metastatic disease and thus 
higher risk of recurrence after localized consolidative 
therapy (Table 2) (18-22). Conversely, patients who 
have longer disease-free interval and slower pace of 
dissemination typically have lower risk of recurrence after 
localized consolidative therapy (23,24).

While these clinical features can help in the selection 
process for patients who would benefit from localized 
therapy to metastatic sites, in some cases they may 
inaccurately categorize a systemic disease with limited 

number of visible metastases and diffuse occult metastases 
as oligometastatic disease. Such patients typically have poor 
outcomes despite aggressive localized treatment to clinically 
apparent oligometastatic sites. On the other hand, some 
patients considered high risk for recurrence based on clinical 
features may derive long-benefit from localized treatments. 
Accordingly, there is growing interest in biologic factors 
underlying these distinct and unpredictable scenarios. 

Biologic factors associated with oligometastatic 
disease

Although localized therapy for oligometastatic disease 
with surgery and/or radiation has been offered to patients 
for decades (3-5), clinical trials establishing this treatment 
strategy generally have not explored the molecular 
characteristics of these cases (25). Currently, the selection 
of oligometastatic patients for such trials is primarily based 
on the number of metastases present, and the length of the 
disease-free interval (26). Improved understanding of the 
molecular features, expression signatures and other biologic 
hallmarks might allow a more reliable selection of patients 
who could benefit from oligometastatic guided therapy (27). 
Although studies of biologic factors in NSCLC are limited, 
more extensive data from breast cancer, prostate cancer, 
ovarian cancer, and other malignancies may provide relevant 
insights. Such studies have suggested that numerous 
factors are associated with tumor metastatic potential, 
including genomic alterations, epigenetic modifications, 
tumor metabolism, tumor microenvironment, microRNAs 
(miRNAs), and immune signature (Figure 1). In the 
following sections, we review each of these categories. 

Genomic alterations

In lung cancer, certain genomic alterations are linked to 
more aggressive tumors, higher metastatic potential, and 
worse survival, while other signatures are linked to slower 
growth and oligometastatic disease (Table 3). 

To elucidate the cellular dynamics in lung adenocarcinoma 
progression, comprehensive single-cell transcriptome 
profiling of primary and metastatic samples has been 
performed (37). A pattern consistent with aggressive cell 
movement and abnormal proliferation or apoptosis was 
predominantly identified in cells isolated from the late-stage 
biopsies or metastases, suggesting an association with tumor 
progression and metastasis. Furthermore, patients with this 
signature had worse overall survival. 

Table 2 Clinical characteristics of lung cancers associated with 
improved outcomes after consolidative localized therapy to 
metastatic sites

Patients with ≤3 metastatic sites (18)

No lymph nodes involvement (19,20)

Patients with no bone metastatic disease (20)

Non-squamous histology (19)

Metachronous disease (19)

Smaller primary tumor (20)

Age <60 years (20)

Table 3 Genomic alterations associated with metastatic potential

Alteration Function Ref. 

KRAS mutation Increases metastatic potential (28-31)

SMAD4 mutation Increases metastatic potential (32)

NOTCH signaling Increases metastatic potential (33)

TGFBR2 and ROCK2 
mutations

Decreases metastatic potential (34)

FGFR3 mutation Increases metastatic potential (35)

RASSF1A promotor 
methylation

Increases metastatic potential (36)

Abbreviations: KRAS, Kirsten rat sarcoma viral oncogene homolog; 
SMAD4, SMAD family member 4; TGFBR2, transforming growth 
factor beta receptor 2; ROCK2, Rho-associated protein kinase 2; 
FGFR3, fibroblast growth receptor 3; RASSF1A, Ras association 
domain-containing protein 1 isoform A.



3355Translational Lung Cancer Research, Vol 10, No 7 July 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(7):3351-3368 | https://dx.doi.org/10.21037/tlcr-21-448

Tumor microenvironment

Tumor metabolism
The metabolic microenvironment can influence tumor 
stroma and affect the metastatic potential. It has been 
suggested that changes in the metabolism surrounding the 
primary cancer cells can dictate its metastatic potential (38).  
For example, a high sugar diet, obesity, and a diet high 
in fat has been shown to promote metastatic potential in 
several types of cancer (39-42). Contrary to normal cells 
most cancer cells depend on aerobic glycolysis instead of 
mitochondrial oxidative phosphorylation as the energy 
source, and thus cancer cells have increased glucose uptake 
and glycolysis utilization leading to lactate production 
which is also known as the “Warburg effect” (43). Fructose 
derived from the sucrose was found to be responsible for 
the development of lung metastases through induction 
of 12-LOX signaling (39). Conversely, a decrease in 
fructose consumption limits metastatic potential (44). 
Obesity has also shown to promote metastasis through 
increased lipogenesis, increased vascularity and decreased 
M1/M2 macrophage ratios which accounts for enhanced 
tumorigenicity (41).

Under hypoxia and acidosis, cancer cells exhibit 
increased metastatic potential and that is mediated by 
proteoglycan-dependent endocytosis (45). In diabetic 
patients, hyperglycemia can impair tumor growth in early 
stages via attenuation of angiogenesis; however, this biology 
may also enhance metastatic seeding through neutrophil 
impairment with reduced production of granulocyte-colony 
stimulating factor (G-CSF) (46). 

Cancer-associated fibroblasts (CAFs)
In NSCLC, CAFs can modulate cancer cell proliferation, 
angiogenesis, invasion, and metastasis through interplay 
with tumor cells and the tumor microenvironment (47). 
CAFs isolated from human lung cancer tissues secrete 
interleukin-6 (IL-6), which stimulates Janus kinase  
2 (JAK2)-signal transducer and activates signal transducer 
and activator of transcription 3 (STAT3) signaling in human 
lung cancer cells to increase metastasis in vivo (48). CAFs 
also drive expression of α11β1 integrin, leading to increased 
extracellular matrix stiffness that contributes to increased 
growth and metastasis of patient-derived xenografts (49). On 
the other hand, CAFs can modulate immune responses in 
the tumor microenvironment and are able to cross-present 
antigens complexed with major histocompatibility complex 
class I (MHC I) to antigen-specific CD8+ T cells (50).  

CAFs may also enhance the recruitment and activation of 
anti-tumor CD8+ T cells through expression of CCL19. 
This interaction between fibroblasts and immune cells can 
strongly restrict cancer progression through an enhanced 
immune response (51). The detection of CAFs in the blood 
is linked to metastatic disease in breast cancer and can be 
investigated as promising biomarker for metastasis in lung 
cancer (52). 

MiRNAs

MiRNAs are a class of small, noncoding RNAs that suppress 
gene expression through direct interaction with the target 
messenger RNA (53). They have been demonstrated to 
regulate multiple steps in the metastatic cascade, including 
epithelial-mesenchymal transition (EMT), a process that 
promotes motility and invasiveness, and allows cancer 
cells to detach from the primary tumor and relocate to a 
secondary site (54-56). MiRNA expression profiling of 
tumor samples may accurately distinguish between patients 
with limited metastatic disease who are truly oligometastatic 
versus those who will likely develop widespread metastatic 
disease later (24,57). Lussier and colleagues analyzed the 
miRNA patterns in samples taken from resected lung cancer 
metastases from patients with oligometastatic cancers 
and found that a specific set of miRNAs that are known 
to be associated with tumor-suppression functions were 
down-regulated in a group of patients with a high rate of 
progression (24). They also investigated miRNA profiles 
and expression patterns in primary and metastatic samples 
from cancer patients and found that high expression of 
miR-200c in metastatic tumors resulted in a significant 
increase in the metastatic burden and was shown to predict 
progression towards polymetastases through regulation of 
EMT-related pathways (57). 

Patients with NSCLC with and without metastasis, 
exhibit different miRNA profiles (58,59). Specific miRNAs 
have been found to control certain functional pathways and 
thus believed to contribute to the lung cancer metastatic 
potential: hsa-let-7a (inhibits cell proliferation through 
suppression of RAS and repression of the HMGA2 
oncogene and associated with prolonged survival in 
NSCLC), hsa-miR-221 (inhibits angiogenesis in lung 
cancer), hsa-miR-137 (promotes lung cancer invasion), hsa-
miR-372 (promotes tumor proliferation), and hsa-miR-182 
(promotes lung cancer invasion) (58) (Table 4). Wang  
et al. identified a panel of 10 miRNAs that could distinguish 
the oligo- from polymetastatic lung cancer (71). MiR-654-
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Table 4 MicroRNAs associated with metastatic potential in lung 
cancer

MiRNA Target Ref.

(I) Pro-metastatic miRNAs

miRNA-19 PTEN (60)

miRNA-21 Pdcd4 (61)

miRNA-26a PTEN (62)

miRNA-98 Twist (63)

MiRNA-105 mcl-1 (64)

miRNA-126 Snail (65)

miRNA-135b LZTS1, Hippo pathway (66)

miRNA-137 Transcription factor AP-2 
gamma (TFAP2C)

(67)

miRNA-150 FOXO4 (68)

miRNA-191 HIF-2α –

miRNA-196a HOXA5 (69)

miRNA-205 Integrin α5 (70)

miRNA-216 – (71)

miRNA-221 PTEN, TIMP3 (72)

miRNA-222 PTEN, TIMP3 (72)

miRNA-328 PRKCA (73)

miRNA-346 Snail (74)

miRNA-455-5p SOCO3 (75)

miRNA-506 – (71)

miRNA-544a Cadherin 1 (76)

miRNA-590-3p OLFM4 (77)

miRNA-664 AKT (78)

(II) Anti-metastatic miRNAs

miRNA-1 Slug (79)

miRNA-22 Snail (80)

miRNA-30a BCL11A (81)

miRNA-33a Twist (82)

miRNA-33b Zeb1 (83)

miRNA-34a Zeb1 (84)

miRNA-92b Twist (85)

miRNA-98 Twist –

miRNA-101 Zeb1 (86)

miRNA-124 Zeb1 (87)

Table 4 (continued)

Table 4 (continued)

MiRNA Target Ref.

miRNA-126 Snail (88)

miRNA-127-3p – (24)

miRNA-127-5p – (24,56)

miRNA-128 VEGF-C (89)

miRNA-132 Zeb2 (90)

miRNA-133a-3p – (91)

miRNA-135a – (24)

miRNA-136 Smad2/3 (92)

miRNA-138 Zeb2 (93)

miRNA-144 Zeb1 (94)

miRNA-145 Zeb2 (95)

miRNA-148a ROCK1 (96)

miRNA-148b ROCK1 (97)

miRNA-154 Zeb2 (98)

miRNA-155-5p Zeb2 (99)

miRNA-181b – (100)

miRNA-183 MTA1 (101)

miRNA-191 HIF-2α (102)

miRNA-195 MYB (103)

miRNA-199-5p Zeb1 (104)

miRNA-199b Zeb1 (105)

miRNA-200s Zeb1 (106)

miRNA-205-5p Smad4 (107)

miRNA-206 Met (108)

miRNA-215 Zeb2 (109)

miRNA-216a Zeb1 (110)

miRNA-218 Zeb2 (111)

miRNA-296-3p – (24)

miRNA-298 – (24)

miRNA-299-3p (24)

miRNA-302b-3p GCNT3 (112)

miRNA-328-3p γ-H2AX (113)

miRNA-412 – (24)

miRNA-431 – (71)

miRNA-329 – (24,71)

Table 4 (continued)
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Table 4 (continued)

MiRNA Target Ref.

miRNA-330-5p – (24)

miRNA-361-3p SH2B1 (114)

miRNA-369-3p – (24,56)

miRNA-380 – (24)

miRNA-381 Twist (115)

miRNA-388-3p – –

miRNA-448 DCLK1 (116)

miRNA-452 BMI1 (117)

miRNA-453 – –

miRNA-455-3p Zeb1 (118)

miRNA-485-3p – (71)

miRNA-455-3p Zeb1 (118)

miRNA-485-5p IGF2BP2 (119)

miRNA-489 SUZ12 –

miRNA-491-5p IGF2BP1 (120)

miRNA-497 MTDH (121)

miRNA-502-5p – (24)

miRNA-506-3p COTL1 (122)

miRNA-520a-3p Rad22A (123)

miRNA-520g – (24)

miRNA-541 – (24)

miRNA-576-5p – (24)

miRNA-590-5p ADAM9 (124)

miRNA-598 Zeb2 (125)

miRNA-654-5p – (24,71)

miRNA-655 – (56,71)

miRNA-876-5p BMP-4 (90)

miRNA-887 – (71)

miRNA-891 – (71)

miRNA-1199-5p Zeb1 –

miRNA-1260b PTPRK (126)

miRNA-Let-7family N-RAS, K-RAS, MYC 
HMGA2, ERCC6 and 
MAP3K3

(127)

5p, miR-485-3p, miR-329, miR-655, miR-431, miR-891a, 
and miR-887 were associated with oligometastatic disease. 
MiR-205, miR-216b, and miR-506 were associated with 
polymetastatic disease. 

The immune microenvironment

Innate and adaptive immune cells in the lung tumor 
microenvironment harbor both tumor-promoting and 
tumor-suppressing activities, and the interaction between 
the two predicts clinical outcome (128,129). To understand 
the immune signature in lung adenocarcinoma, Kim 
et al. performed comparative analysis between normal 
epithelial and tumor cells, and between primary tumor 
and metastatic foci from surgical resection samples (130). 
Primary tumors were enriched with T lymphocytes and 
myeloid cells, indicating the activation of adaptive immune 
responses. Myeloid cells were abundant in metastatic 
lymph nodes compared to normal lymph nodes indicating 
an association of myeloid infiltration with metastasis 
(Figure 2). In both primary tumor and metastatic sites, 
there was a simultaneous decrease of regulatory T cells and 
an increase in the proportions of plasmacytoid dendritic 
cells, creating an immunosuppressive microenvironment 
with sub-optimal tumor antigen presentation (130,131). 
Exhaus ted  CD8 + T ce l l s  and  monocyte-der ived 
macrophages were increased in the metastatic lesions and 
metastatic lymph nodes. The relative proportion of B 
cells was increased in primary tumors, compared to the 
normal lung tissue, suggesting highly activated humoral 
immune responses in some lung adenocarcinoma patients. 
Genome-wide expression analysis has begun to provide 
molecular insights into this tumor-induced reprogramming 
of infiltrating lymphoid and myeloid cells, with myeloid 
cells from tumors and matched adjacent non-neoplastic 
lung tissue exhibiting differentially regulated genes 
(132,133). Among them, expression of gene encoding 
osteopontin (OPN), a secreted phosphoglycoprotein that 
has been shown to contribute to tumor progression and 
metastasis, was >1,000-fold upregulated in intra-tumoral 
myeloid cells (134). Thrombospondin-1 (TSP1), an anti-
tumorigenic factor that inhibits angiogenesis by reducing 
endothelial cell migration and survival, is downregulated 
in intra-tumoral myeloid cells, which promotes NSCLC 
growth (133,135). Studies have also shown discordance in 
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PD-L1 expression in the tumor cells of NSCLC between 
the primary and metastatic sites (136,137). 

Further evidence on how the immune signature 
controls tumor progression comes from a study done 
by Pitroda et al., where colorectal cancer samples were 
divided into three cohorts based on immune signaling. 
Among these subtypes, the immune enriched subtype was 
associated with limited metastases and better outcome (27). 
Van den Eynde et al. predicted risk of recurrence using 
the “Immunoscore”, which is a representation of T cell 
infiltration of colorectal tumor specimens (138). Patients 
with a high Immunoscore (representative of high immune 
infiltrate) and 1 to 3 metastases had a significantly better 
outcome than patients with either a high Immunoscore 
and ≥4 metastases or a low Immunoscore.

Biomarkers to identify oligometastatic disease

Circulating tumor DNA (ctDNA) 

Often referred to as “liquid biopsy”, it is now possible 

to detect double-stranded DNA fragments released 
from tumor cells into the circulation during apoptosis 
or the necrotic process (variably termed ctDNA or cell-
free DNA). This technology appears potentially useful 
for distinguishing oligometastatic from polymetastatic 
disease. On a molecular level, ctDNA carries important 
genomic information from the total burden of the tumor, 
which may help identify dynamic changes that occur 
in metastatic tumor progression (139). For example, in 
pancreatic cancer ctDNA KRAS mutations are identified 
more frequently in patients with metastatic disease and 
are associated with poor survival (140). Alterations in 
RAS, BRAF, ERBB2 genes detected through ctDNA are 
more frequently observed in colorectal cancer patients 
with high tumor burden (141). Compared to other serum 
biomarkers, such as carcinoembryonic antigen (CEA), 
and carbohydrate antigen 19-9 (CA19-9), these ctDNA 
alterations occurred earlier and had greater sensitivity and 
specificity (140). ctDNA may also provide information 
regarding epigenetic modifications, including methylation 

Figure 2 The differences in immune cells distribution in the normal tissue compared to primary tumor and metastatic lesions.
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of specific genes promoting metastasis development (141). 
For example, loss of 5-hydroxymethylcytosine (5hmc), a 
DNA pyrimidine nitrogen base with epigenetic functions, 
in lung tumor DNA is associated with progression into 
metastatic disease (142). 

Separately, the concentration of ctDNA in plasma 
correlates with tumor burden. Patients with higher 
concentrations of ctDNA in plasma are more likely to 
have higher tumor burden and distant disease (143). 
Using ctDNA assays in oligometastatic disease in patients 
that are candidates for local consolidative therapy in the 
pre-treatment and post-treatment setting improves the 
accuracy of early detection of metastatic disease and disease 
recurrence (144). By measuring circulating tumor specific 
biomarkers, ctDNA and/or ctRNA assays may also facilitate 
discovery of prospective biomarkers for patients who are 
most likely to benefit from local consolidative therapy, 
as obtaining a tissue biopsy in these patients can often be 
challenging. A key limitation relevant to oligometastatic 
disease, the lower the burden of the disease, the less 
sensitive ctDNA profiling becomes and more genomic 
alterations are missed (143).

Cytokines

Cytokines play indispensable roles in inflammation and 
antitumor immune response. Tang et al. investigated the 
peripheral blood cytokines and correlated the findings with 
survival in NSCLC (144). The results showed that certain 
peripheral cytokines—such as IL-1α, which is known to 
initiate an inflammatory cascade that facilitates neutrophil 
mobilization and antitumor activity—are associated with 
survival (144,145). Several proangiogenic cytokines are also 
present at the tumor site such as: platelet-derived growth 
factor (PDGF), fibroblast growth factor (FGF)-2, FGF-6, 
IL-6, IL-8, vascular endothelial growth factor (VEGF) and 
angiopoietin which are responsible for promoting tumor 
growth and increasing tumor blood vessel density (146).  
NSCLC tumor cells secretes IL-17 which in turn 
attracts tumor associated macrophages. Tumor associated 
macrophages secretes cyclogenase-2 (COX2), matrix 
metalloproteinase-9 (MMP9), PDGF-B, VEGFA, hepatocyte 
growth factor (HGF), cathepsin-k to increase tumor 
invasiveness (147). Adenocarcinoma-associated CAFs also 
secrete immunomodulatory cytokines such as transforming 
growth factor β (TGF-β) and VEGF inducing forkhead box 
P3 expressing regulatory T-cells that are correlated with 
a poor outcome in lung adenocarcinoma (148). Moving 

forward, cytokine analysis may be used to determine the 
potential for progression into polymetastatic disease (144).

Circulating tumor cells (CTCs)

The detection of tumor cells that shed from the tumor to 
the circulation correlates with prognosis and therapeutic 
efficacy (149-151). Termed CTCs, they may also be used to 
monitor for postsurgical cancer relapse (152). Some studies 
have used identification of aneuploid CTCs (apCTCs) 
as a marker to predict oligometastatic disease (153,154). 
Circulating tumor endothelial cells (CTECs) may provide 
additional information regarding the cancer invasiveness, 
metastatic potential, and progression (155,156). In 
addition, cancer associated fibroblasts have been proposed 
to circulate together with CTCs to help support cancer 
metastasis. A strong reciprocal interaction between the 
CTCs and the blood microenvironment including the 
platelets and the neutrophils has been reported. The 
CTCs activate and educate the platelets, while the platelets 
protect the CTCs (157). The ATP released through CTC-
induced platelet aggregation binds to the P2Y2 receptor, 
stimulating intravasation and metastases development (158). 
Furthermore, the adherence of platelets at the surface 
of CTCs protects the CTCs from being recognized by 
the immune cells thereby promotes CTCs survival (159). 
Blocking this interaction using P2Y12 inhibitor (ticagrelor) 
or aspirin, has been studied as a tool to reduce metastases 
(160,161). Another important interaction is between the 
neutrophils and the CTCs. The neutrophils generate 
neutrophil extracellular traps by secreting their chromatin 
content (162). While this process was initially thought to 
be a mechanism to kill bacteria, recent reports show that 
this mechanism promotes metastases though increased 
migration and proliferation of CTCs (163).

Similarity network fusions (SNFs) 

SNF is a new computational method for data integration. 
Briefly, it entails constructing networks of samples 
(e.g., patients) for each available data type (such as 
mRNA expression data, DNA methylation, clinical data, 
questionnaires, imaging data, etc.), and then efficiently 
fusing these into one network that represents the full 
spectrum of underlying data. SNF excels over single data 
type analysis and established integrative approaches when 
identifying cancer subtypes as it reduces collection bias and 
noise in different data types and is effective for predicting 
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survival. Data on the correlation of SNFs and metastatic 
virulence in lung cancer are lacking. However, certain 
SNFs were found to be associated with distinct molecular 
subtypes as well as distinct clinical outcomes in other 
malignancies (27). For example, using SNFs, Pitroda et al. 
stratified patients with colorectal carcinoma with limited 
liver metastases into three distinct molecular subtypes: (I) 
canonical (II) immune and (III) stromal (27). The immune 
subtype was associated with lower recurrence rate and 
longer survival after hepatic metastasectomy, while the 
canonical and the stromal subtypes were associated with 
poor survival. Furthermore, integration of the resultant 
molecular subtypes with clinical risk stratification yielded 
three prognostic risk groups: low-risk, intermediate-risk, 
and high-risk. The integrated low-risk group showed 
significantly longer distant metastasis-free survival and 
overall survival and was largely consistent with the 
oligometastatic phenotype. 

The concept of treating oligoprogression

Differences between primary and metastatic cancer lesions 

Most research into genomic and molecular characteristics 
of cancer is based on primary tumor samples, even in cases 
of metastatic disease. As a result, molecular features of 
metastatic sites and their association with clinical outcomes 
represents an understudied area. In lung cancer, driver 
mutations are classified into trunk (initiating) mutations 
and branching mutations (164,165). While trunk driver 
mutations initiate the formation of the primary tumor, 
branching driver mutations lead to subclonal evolution of 
the malignancy. Most activating mutations in the EGFR, 
BRAF, KRAS, MET, RET, ROS1 and ALK are trunk 
drivers (165) and are commonly concordant in primary 
and metastatic tumors. However, many reports have shown 
discordant trunk mutations between paired primary and 
metastatic lung cancer specimens suggesting the presence 
of tumor heterogeneity (166). Different metastatic sites 
from the same patient may feature different genomic and 
epigenetic signatures and thus can have different malignant 
potential (12-14,164,167-171). Furthermore, within a 
primary tumor, cells may have varying metastatic potential 
(172,173). In lung adenocarcinoma, it has been shown that 
lymph node metastases have greater expression of ALK (8% 
vs. 1%), EGFR (50% vs. 42%), PD-L1 (36% vs. 25%) and 
ROS-1 (3% vs. 1%) compared to primary tumors. Distant 
organ metastases also exhibited higher cMET amplification 

(7% vs. 3%) than primary tumors. Similarly, squamous 
carcinomas showed higher ALK expression (10% vs. 1%) 
and PD-L1 expression (42% vs. 33%) in lymph node 
metastases compared to the primary tumor (33%) (136). 
It has been suggested that oligo- or poly-metastases may 
either originate from different clones or may be part of a 
sequential development, with oligometastasis representing a 
transient state in the metastatic process (56).

The approach to molecularly targetable oligometastatic 
NSCLC

The current gold standard to identify the oligometastatic 
state is to determine the number of metastatic sites evident 
on conventional imaging. However, this definition does not 
account for tumor markers and genomic signatures, which 
may strongly influence survival. The list of molecularly 
defined subtypes of NSCLC—which have distinct prognosis 
and treatment—continues to expand. While more data 
are needed regarding the differences in clinical outcomes 
between molecularly targetable oligometastatic NSCLC 
and non-targetable oligometastatic NSCLC; it is clear 
that these clinical entities require different therapeutic 
approaches. Incorporation of EGFR mutation status in 
advanced NSCLC further differentiates survival curves in 
the metastatic setting and predicts survival more precisely 
than the number of metastatic sites (174). Patients with 
oligometastatic disease who harbor the EGFR mutation 
and receive molecularly targeted therapies have superior 
outcomes compared to oligometastatic patients without the 
EGFR mutation (175). 

Treating oligoprogression in molecularly targetable 
oligometastatic NSCLC
Although patients with NSCLC harboring driver mutations 
have high rates of response to tyrosine kinase inhibitors 
(TKIs), depending on the molecular target resistance 
generally develops after 10–20 months of treatment, even 
with use of state-of-the-art third generation TKIs such as 
osimertinib (176). One of the frequently seen situations 
when treating these patients is the progression of a single 
or few clinically detectable metastatic lesions while other 
metastases respond to treatment. This represents the 
“escape” of a resistant subclone that drives progression. 
This suggests that future diagnostic and therapeutic 
decision-making will need to be based on tissue retrieved 
directly from metastatic tissue rather than inferred from 
previously resected primary tumor. Several studies have 
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shown that aggressive localized management of these 
resistant subclones may preserve the efficacy of a relatively 
nontoxic systemic treatment and leave the patient with 
more options over time (177,178). 

Conclusions

The current approach to identifying oligometastatic disease 
incorporates baseline imaging characteristics and clinical 
behavior, while reserving aggressive, local treatment of both 
primary and oligometastatic site(s) until after 6–12 months 
of systemic therapy designed to allow the natural history of 
disease to declare itself, such approaches are far from ideal. 

Earlier understanding of a true oligometastatic state, 
through integration of molecular prognostic classifiers such 
as SNFs, ctDNA, CTCs and cytokines along with other 
clinical features, might allow earlier and more effective use 
of local therapies. It would also enhance understanding and 
reduce uncertainty among patients. Although still largely 
exploratory, incorporating molecular characteristics and 
biomarkers with clinical features and conventional imaging 
studies appears highly promising for improving the accuracy 
of defining and classifying oligometastatic NSCLC. Such 
advances may decrease morbidity and cost by eliminating 
futile localized therapies, improve the efficacy of indicated 
localized therapies, and ultimately enhance the quality and 
quantity of life for patients with lung cancer. 
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