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Background: Clinical management of subsolid nodules (SSNs) is defined by the suspicion of tumor 
invasiveness. We sought to develop an artificial intelligent (AI) algorithm for invasiveness assessment of lung 
adenocarcinoma manifesting as radiological SSNs. We investigated the performance of this algorithm in 
classification of SSNs related to invasiveness.
Methods: A retrospective chest computed tomography (CT) dataset of 1,589 SSNs was constructed to 
develop (85%) and internally test (15%) the proposed AI diagnostic tool, SSNet. Diagnostic performance 
was evaluated in the hold-out test set and was further tested in an external cohort of 102 SSNs. Three 
thoracic surgeons and three radiologists were required to evaluate the invasiveness of SSNs on both test 
datasets to investigate the clinical utility of the proposed SSNet.
Results: In the differentiation of invasive adenocarcinoma (IA), SSNet achieved a similar area under the 
curve [AUC; 0.914, 95% confidence interval (CI): 0.813–0.987] with that of the 6 doctors (0.900, 95% CI: 
0.867–0.922). When interpreting with the assistance of SSNet, the sensitivity of junior doctors, specificity 
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Introduction

Previously, it has been reported that a reduction of 
mortality with low-dose computed tomography (CT) in a 
number of lung cancer screening trials (1-3). Consequently, 
lung cancer screening is more and more being implemented 
in the past two decades. With the increased use of CT and 
pulmonary subsolid nodules (SSNs), SSNs are increasingly 
being detected. Imaging assessment of invasiveness of SSNs 
is essential in the clinical management of patients. However, 
the histological prediction of SSNs, which has been 
reported to have a 9% detection rate in screening trials, 
poses several challenges (4,5). The degree of invasiveness 
is used as the basis for clinical management decisions. 
Lung adenocarcinoma appearing as SSN can present with 
a variety of morphological and imaging features, which 
can be related to different degrees of invasiveness and 
prognosis. Reported evidence of high intra-observer and 
interobserver variability in the invasiveness classification of 
SSNs has highlighted concerns about undertreatment and 
overtreatment. Therefore, an accurate diagnostic system or 
assistant tool can have a beneficial clinical impact (6). 

To overcome these diagnostic challenges, a number 
of solutions for malignancy evaluation have been 
previously proposed (7-11), including radiological density, 
morphological features, and clinical features. Risk-
assessing tools based on clinical and radiological features 
have been used to determine cancer risk and standardize 
clinical management recommendations (8,12). Additionally, 
quantitative analyses have been carried out to evaluate 
malignancy depending on accurate delineation of nodule 
borders and feature engineering (13-16). However, the 

application of previous methods relies on subjective 
interpretation or manual segmentation, indicating the 
implementation of automated approaches remains unsolved. 

Recently advanced AI models have demonstrated 
specialist-level classification performance in medical 
image diagnosis (17-24). AI models which automatically 
correspond representative features from medical image 
data to specific task, have recently been introduced as a 
novel technique (25,26). The development of an accurate 
AI system could reduce the inconsistency among doctors 
with different expertise and provide management decision 
support. There is limited research on developing AI 
algorithm classifying invasiveness of pulmonary nodules 
(7,27,28). Attempts at assessing SSN invasiveness have been 
limited to binary classification or simple comparison with 
doctors (27,29). Previous researches constructed algorithms 
based on 2D image rather than 3D volume, which has 
limited the performance of AI techniques. Rare evidence 
has been reported in external validation in developing 
invasiveness classification AI system. Nevertheless, the 
clinical utility of AI-assisted diagnostic models needs to be 
investigated (6). 

In the present study, we aimed to elucidate the 
applicability and reliability of a 3D AI algorithm to assess 
the invasiveness of SSNs by comparing both against the 
diagnostic performance of chest radiologists and thoracic 
surgeons and our previously developed feature-based 
radiomic signature (10). We investigated the practicality of 
our proposed AI algorithm by evaluating the improvement 
of prediction performance when the proposed method 
served as a second opinion. To further investigate the 
clinical utility, the proposed AI system was validated in 

of senior doctor, and their accuracy were significantly improved. In the external test, SSNet (AUC: 0.949, 
95% CI: 0.884–1.000) achieved a better AUC than doctors (AUC: 0.883, 95% CI: 0.826–0.939) whose 
AUC increased (AUC: 0.908, 95% CI: 0.847–0.982) with SSNet assistance. In the histological subtype 
classifications, SSNet achieved better performance than practicing doctors. The AUCs of doctors were 
significantly improved with the assistance of SSNet in both 4-category and 3-category classifications to 0.836 
(95% CI: 0.811–0.862) and 0.852 (95% CI: 0.825–0.882), respectively. 
Conclusions: The AI diagnostic system achieved non-inferior performance to doctors, and will potentially 
improve diagnostic performance and efficiency in SSN evaluation.
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an external cohort with chest radiologists and thoracic 
surgeons. To our knowledge, this is the first investigation of 
how AI assists doctors in SSN malignancy evaluation. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://dx.doi.org/10.21037/
tlcr-21-971).

Methods

Patient selection and study materials

Consecutive patients who underwent pulmonary resection 
for lung adenocarcinoma between January 2013 and 
December 2015 in Shanghai Pulmonary Hospital were 
retrospectively collected. Using the descriptive events 
including “subsolid nodule”, “part-solid nodule”, “non-
solid nodule”, “mixed nodule”, “ground-glass nodule” or 
“ground glass opacity”, we retrieved the preoperative CT 
examinations of patients and 4,679 scans were confirmed. 
The CT scans were reviewed and SSNs were included 
under the following criteria: (I) the maximum diameter of 
lesion ≤3 cm on thin-section CT images (<1.5 mm) within 
2 weeks prior to the surgery; (II) pulmonary nodules were 
histopathologically confirmed as atypical adenomatous 
hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA), or invasive adenocarcinoma 
(IA) according to the lung tumor classification; (III) 
patients without a history of malignancy or surgery. For 
patients with multiple lesions, cases without corresponding 
confirmed pathological diagnosis were excluded. A total of 
1,471 patients with 1,589 SSNs from Shanghai Pulmonary 
Hospital (Shanghai, China) were included in the present 
study. A total of 1,349 (85%) nodules from 1,262 patients 
comprised the development set, including a training subset 
(n=1,191, 75%) and an internal subset (n=158, 10%); 240 
nodules (15%) from 209 patients comprised a hold-out 
test dataset, of which data were unseen during the training 
course. To independently test the diagnostic value of the 
proposed framework, an external test dataset of 100 patients 
with 102 SSNs was included according to the same criteria 
from Hwa Mei Hospital (Ningbo, China). The workflow of 
patient inclusion is shown in Figure S1. In the internal test 
dataset, 14 (5.8%) patients were diagnosed with AAH, 67 
(27.9%) with AIS, 55 (22.9%) with MIA, and 104 (43.4%) 
of with IA. In the external test dataset, 5 (4.9%) patients 
were diagnosed with AAH, 25 (24.5%) with AIS, 24 
(23.5%) with MIA, and 48 (47.1%) with IA. The study was 
conducted in accordance with the Declaration of Helsinki 

(as revised in 2013). This retrospective study was approved 
by the Shanghai Pulmonary Hospital Institutional Review 
Board (No. L20-344). The need for informed consent was 
waived. 

Data extraction and annotations

Chest CT images were acquired on two different scanners: 
Somatom Definition AS+ (Siemens Medical Systems, 
Germany, n=1,263) and iCT256 (Philips Medical Systems, 
Netherlands, n=308). All image data were reconstructed 
with slice thickness of <1.5 mm (30) and matrix of 512 mm 
× 512 mm. All CT scans were download form our picture 
archiving and communications systems (PACS) as digital 
imaging and communications in medicine (DICOM) 
images. The personal information of patients in CT images 
including name, medical number and hospital name were 
eliminated and images were transformed into NIfTI (NII) 
format by using an in-house software. The lung CT NII 
format images were imported into 3D slicer (version 4.8.0, 
Brigham and Women’s Hospital) for labelling. The region 
of interest (ROI) of SSNs was annotated with a bounding 
box including the SSN by 2 junior thoracic surgery 
doctors (Y.S. and J.D. with 4 and 2 years of experience, 
respectively), then the consensus of ROI was obtained 
by discussion with an expert chest radiologist (J.S. with  
28 years of experience). Bronchi and pulmonary vessels were 
excluded as far as possible from the ROI. Then the image 
data of ROI was extracted in the “rcsv” format for further 
analysis. Each segmented ROI was annotated by a specific 
histopathologic label according to the specific histologic 
subtype of AAH, AIS, MIA, and IA. The histologic slides 
and results were reviewed by two experienced pathologists 
(L.H. and C.W.) separately with hematoxylin and eosin 
slides of the study cases in the absence of any clinical or 
radiologic information. And these histologic labels were 
reported in accordance with the updated classification of 
lung cancer (31). 

Study design

As illustrated in Figure 1, an AI algorithm for invasiveness 
assessment, SSNet, was constructed for the histological 
classification of lung adenocarcinoma appearing as 
pulmonary SSNs on CT scans (Details of algorithm 
development are shown in Appendix 1). SSNet was 
developed and tested by using a retrospective dataset with 
patients with available CT images and corresponding 

https://dx.doi.org/10.21037/tlcr-21-971
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histological diagnoses (31). The diagnostic performance 
of SSNet was evaluated by comparing with those of our 
previously reported radiomic feature-based signature (10)  
(Appendix 1) and three chest radiologists and three thoracic 
surgeons with experience ranging from junior to senior 
(clinical experience of three to more than 20 years). The 
6 doctors were asked to evaluate the SSNs again with 
the prediction of SSNet to investigate the clinical utility 
based on performance improvements. Both the diagnostic 
accuracy and clinical utility for SSNs were further examined 
in an external test cohort.

Clinical interpretation of CT images

All included cases were reviewed independently in a 
blinded fashion by six independent doctors from junior to 
senior degree in thoracic surgery and imaging (Y.S. and 
T.W. of junior degree with less than 5 years of experience, 
J.M. and J.S. of intermediate degree with 5–15 years of 
experience, D.X. and X.S. of senior degree with more than 
25 years of experience in thoracic imaging, respectively). 
All readers subjectively were asked to provide categories 
of four histological subtypes, then the predicted labels 
were regrouped according to different tasks for evaluation. 

To evaluate the increments of diagnostic performance 
assisted by the SSNet, the six doctors were asked to re-
evaluate the SSNs at least 4 weeks after the first evaluation 
with the predictions of SSNet as a second opinion. Inter-
observer variability and diagnostic performance were 
compared against those from the first evaluation. Clinical 
interpretation was done without time constrain in RadiAnt 
Viewer (version 4.6.9, Medixant, https://www.radiantviewer.
com). Raters were free to adjust the display window setting 
and use electronic caliper provided in the software. 

Performance testing and statistical analysis

In the discrimination of IA from non-IA, including AAH, 
AIS, and MIA, the diagnostic performance of SSNet was 
compared to practicing doctors and radiomic signature 
using area under receiver-operating characteristic (ROC) 
curve (AUC) metric (Appendix 1). Comparisons of the 
diagnostic performance between SSNet and the practicing 
doctors were also done in 3- and 4-category classifications 
in a similar manner. Statistically significant differences in 
AUCs were assessed with Bonferroni-corrected confidence 
intervals (CIs; 1–0.05/n). Interobserver variability in 
participant level was evaluated by kappa concordance index. 

Figure 1 Flowchart of the study design. Artificial intelligence diagnostic tool, SSNet, was first developed and validated using retrospective 
datasets, then evaluated in an external dataset for its clinical utility. SSNs, subsolid nodules. ROI, region of interest. 

Internal test set (n=240) External test 
(n=102)

Invasive 
adenocarcinoma 

differentiation
Invasiveness 
classification

Utility of SSNet 
assistance

Internal and 
external test

Evaluation without 
SSNet interpretation

Evaluation with 
SSNet interpretation

Al system development

SSNs dataset 
(1691 nodules)

SSNet

SSNet

Doctors

Radiomics

Doctors

SSNet

Training

validationValidation set 
(n=158)

Training set 
(n=1191)

Channels

Height
Depth

Width

32×48×48×8
16×24×24×16

3D convolution 
3D max-pooling 
Full connection

32×48×48×1 8×12×12×32
4×6×6×64

2×3×3×128
1×1×1×25 1×1×1×512

Annotation

ROI

Input

Backbone network - 3D VGG16

https://cdn.amegroups.cn/static/public/TLCR-21-971-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-971-Supplementary.pdf


4578 Deng et al. AI in SSNs evaluation

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(12):4574-4586 | https://dx.doi.org/10.21037/tlcr-21-971

Performance metrics of sensitivity, specificity, accuracy, 
positive predictive value, and negative predictive value of 
each method were measured. Area under the precision-
recall curve (AUPRC) and the F1 score were used to 
evaluate the multiple-category classification performance 
and reported as the macro average and micro average. 
Performance-evaluation metrics of practicing doctors were 
reported in group level and participant level, respectively. 
McNemar’s test was used to compare the statistical 
difference of sensitivity, specificity, and accuracy between 
the performance of SSNet and that of practicing doctors, as 
well as between the performance of practicing doctors with 
and without the interpretation assistance of SSNet in the 
binary classification task. Statistical analyses were performed 
in MedCalc (version 15.2.0; Mariakerke, Belgium), SPSS 
(version 23.0; IBM, Armonk, NY, USA), and R software 
(version 3.6.2; https://www.r-project.org/). P<0.05 was 
considered statistically significant.

Results

Baseline information

The internal dataset consisted of 1,589 SSNs from  
471 patients (median age: 57 years, range, 23–82 years) and 
the external test dataset cohort included 102 SSNs from  
100 patients (median age: 56 years, range, 28–75 years). The 
distribution of histological subtypes was similar between the 
2 test datasets. There was no significant difference in age 
and sex of the 2 cohorts (Table S1).

Diagnostic performance in invasive classification

In the differentiation of IA from minimally invasive/pre-
invasive lesions, the ROC curves for the 3 approaches are 
illustrated in Figure 2A, and comparisons of AUCs are 
reported in Table 1. The SSNet algorithm (AUC: 0.914, 
95% CI: 0.813–0.987) performed as well as practicing 

Figure 2 ROC curves showing the diagnostic performance in binary (A,D), 3-category (B,E), and 4-category (C,F) classifications. (A-
C) ROC curves measure performance on the methodology-level, including practicing doctors with and without SSNet served as a second 
viewer. (D-F) ROC curves measure performance on the participant-level of practicing doctors, indicating the performance improvement 
with the assistance of SSNet. ROC, receiver-operating characteristic; AUC, area under ROC curve.
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doctors (AUC: 0.900, 95% CI: 0.867–0.922). The radiomic 
signature was inferior to the practicing doctors, with an 
AUC of 0.845 (95% CI: 0.806–0.883) and a statistically 
significant difference. 

In the differentiation of pre-invasive, minimally 
invasive, and invasive lesions, the ROC curves for SSNet 
and practicing doctors are illustrated in Figure 2B, and 
comparisons of AUCs are reported in Table 1. The SSNet 
algorithm (AUC: 0.874, 95% CI: 0.832–0.909) performed 
better than that of practicing doctors (AUC: 0.844, 95% CI: 
0.816–0.864). 

In the differentiation of all 4 histological subtypes of lung 
adenocarcinoma, the ROC curves for SSNet and practicing 
doctors are illustrated in Figure 2C, and comparisons 

of AUCs are reported in Table 1. The SSNet algorithm 
(AUC: 0.869, 95% CI: 0.824–0.892) performed better than 
practicing doctors (AUC: 0.835, 95% CI: 0.817–0.862). 

Performance of SSNet in assisting readers

In the performance test using the SSNet algorithm, AUCs 
of clinicians were 0.937, 0.852, and 0.836 for differentiating 
IA from non-IA, MIA, AIS, and for differentiating IA from 
AAH and MIA, AIS, and AAH, respectively (Figure 2D-2F;  
Table 1). Compared with the diagnostic performance of 
subjective evaluation only, increments of AUCs were 
0.037, 0.008, and 0.001, respectively, and those in multiple-
category classification were statistically significant (Table 1).  

Table 1 Diagnostic performance and clinical utility in the internal and external test

Tasks AUC 95% CI Difference (Bonferroni corrected CI) Advantage

Internal test 

Two classifications

SSNet 0.914 0.813–0.987 – –

Human (unassisted) 0.900 0.867–0.922 –0.014 (–0.090 to 0.060)* No difference

Human (assisted) 0.937 0.911–0.970 0.037 (–0.078 to –0.014)† Human (assisted) 

Radiomics 0.845 0.806–0.883 0.067 (–0.034 to 0.145)* No difference

0.071 (0.032–0.110)‡ Human (unassisted)

Three classifications

SSNet 0.874 0.832–0.909 – –

Human (unassisted) 0.844 0.816–0.864 –0.030 (0.000–0.087)* SSNet

Human (assisted) 0.852 0.825–0.882 0.008 (-0.015-0.042)† No difference

Four classifications

SSNet 0.869 0.824–0.892 – –

Human (unassisted) 0.835 0.817–0.862 –0.034 (0.012–0.098)* SSNet

Human (assisted) 0.836 0.811–0.862 0.001 (–0.030 to 0.036)† Human (assisted)

External test

Two classifications

SSNet 0.949 0.884–1.000 –

Human (unassisted) 0.883 0.826–0.939 –0.066 (0.037–0.212)* SSNet

Human (assisted) 0.908 0.847–0.982 0.025 (–0.092 to 0.029)† Human (assisted)

*, AUC difference was calculated as the AUC of the algorithm minus the AUC of the doctors (unassisted) or the AUC of radiomics. 
†, AUC difference was calculated as the AUC of the doctors (assisted) minus the AUC of the doctors (unassisted). ‡, AUC difference 
was calculated as the AUC of the doctors (unassisted) minus the AUC of the radiomics. To account for multiple hypothesis testing, 
the Bonferroni corrected CI (1−0.05/n, 97.5% for 2 classifications; 98.3% for 3 classifications; 98.8% for 4 classifications) around the 
difference was computed. AUC, area under the receiver-operating characteristic curve; CI, confidence interval.
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Figure 3 Box graph demonstrating the evaluation metrics in binary (A), 3-category (B-D), and 4-category (E-H) classifications. 1, 
performance of SSNet; 2, performance of previously constructed radiomic signature; 3–8, performance of practicing doctors without 
artificial intelligence interpretation; and 9–14, performance of practicing doctors with artificial intelligence interpretation. NPV, negative 
predictive value; PPV, positive predictive value.

Specifically, in the differentiation of IA, the sensitivity 
of 1 of the junior doctors improved from 0.750 to 0.885 
(P=0.004), and the specificity of 1 of the senior doctors 
increased from 0.897 to 0.949 (P=0.039). In the multiple-
category classification, improvements in multiple statistics 
were observed in 3 practicing doctors (Tables S2,S3). 
Improvements were seen in the evaluation metrics in all 
classes for 3-category classification and were more often 
in classes of lower-grade invasiveness in the 4-category 
classification. Kappa statistics improved from 0.480 to 0.496 
for 4-category classification but decreased from 0.601 to 
0.596 for 3 classifications, respectively. 

Performance evaluation in details

In discriminating invasive lesions, performance-evaluating 

results, including sensitivity, specificity, and accuracy were 
shown in Figure 3A and Table 2. In terms of the approach 
level, SSNet achieved a sensitivity of 0.933, which was 
higher than the micro-average sensitivity of practicing 
doctors (0.846), and a radiomic signature of 0.885. SSNet 
accuracy was 0.921, which was higher than the micro-
average accuracy of practicing doctors (0.919) and that 
of the radiomic signature (0.866). For the 3-category 
classification, SSNet had better performance for most of 
the evaluation metrics when compared with practicing 
doctors as a group and individually (Figure 3B-3D; 
Tables S2,S4). For the 4-category classification, SSNet 
demonstrated better performance for all evaluation metrics 
when compared with group or individual performance of 
practicing doctors (Figure 3E-3H; Tables S3,S4). SSNet 
maintained better performance in terms of micro-average 

https://cdn.amegroups.cn/static/public/TLCR-21-971-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-971-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-971-Supplementary.pdf
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Figure 4 ROC curves showing the diagnostic performance (A) for invasive adenocarcinoma discrimination in prospective validation by 
SSNet and practicing doctors (B). ROC, receiver-operating characteristic; AUC, area under ROC curve.

AUPRC than junior doctors and 1 of the mid-career 
doctors. A mid-career and a senior doctor achieved a higher 
micro-average AUPRC than SSNet.

External test for diagnostic performance

The primary outcome was evaluated for 102 SSNs. SSNet 
demonstrated excellent diagnostic performance, with an 
AUC of 0.949 (95% CI: 0.884–1.000), and was better than 
that of the practicing doctors (AUC: 0.883, 95% CI: 0.826–
0.982) (Table 1; Figure 4). The sensitivity and accuracy of 
the differentiation for IA by SSNet was 0.958 and 0.932, 
respectively, which was significantly higher than the micro-
average sensitivity (0.819) and accuracy (0.904) of practicing 
doctors as a group, respectively. In the evaluation of clinical 
utility, the AUC of practicing doctors was significantly 
improved from 0.883 to 0.908 with the assistance of SSNet 
(Table 1; Figure 4). Sensitivity and specificity micro averages 
of practicing doctors also improved. For the participant 
level of performance improvement, the accuracy of a junior 
doctor significantly improved from 0.867 to 0.897 (Table 2). 
The kappa statistic also improved from 0.632 to 0.649.

Discussion

Clinical management for SSNs between invasive and pre-
invasive lesions is different. Therefore, the use of a risk-
prediction tool that distinguishes invasive lesions from 
pre-invasive ones is significant. In the present study, we 
demonstrated that a simple 3D AI diagnostic tool, SSNet, 
based on CT images enabled the differentiation of IA from 

pre-invasive/minimally invasive lesions and histological 
subtype classification in lesions that appeared as SSNs  
(<3 cm) on chest CT. Performance was equal between 
SSNet,  radiomic signature and doctors in binary 
discrimination on an internal test but better for SSNet than 
doctors on external test in the classification of more than 
two categories. In addition, the use of SSNet enhanced 
doctors’ SSN interpretations.

Evaluation by radiomic signature, which was previously 
developed for discriminating IAs, did not reach its optimal 
performance in our internal test. A possible reason for 
performance discrepancy would be the spectrum effect 
(25,32). The population used for the construction of a 
radiomic signature had a higher proportion of invasive 
lesions (>50%), while the rate of IA was relatively low 
in the present study (<50%) (10). A similar performance 
drop was also seen in another validation experiment using 
a similar population (33). Previous models developed to 
differentiate invasive lesions by CT features had an AUC 
of 0.64–0.91 (7,10,34-38). However, these models have not 
been validated in an external cohort. The performance of 
the SSN evaluation model based on predefined features 
was limited by the subjectivity and proficiency in CT 
interpretation, whereas the AI-based evaluation model 
is able to learn representative features from raw medical 
image without specifying radiological features. Recently, 
Wang et al. proposed an AI system using a 3D convolutional 
neural network for differentiating pre-invasive lesions 
from IA appearing as SSNs no larger than 3 cm (29). In 
their study, the proposed architecture with an AUC of 
0.892 outperformed the performances of 4 radiologists, 
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who yielded an AUC between 0.805 and 0.867. However, 
the model was not designed for further discrimination of 
specific lung adenocarcinoma histological subtypes and the 
model was not fully investigated or externally validated for 
its clinical utility. In our study, the 3D SSNet utilized the 
volumetric data of thin-section CT from 1,471 patients 
and the proposed AI system achieved a competitive 
AUC of 0.914 in terms of differentiating IA from pre-
invasive and minimally invasive lesions compared with 
doctors. In addition, the external diagnostic evaluation 
found that SSNet outperformed practicing doctors in IA 
discrimination.

Concerns remain regarding the actual help of an AI-
based evaluation system in clinical practice. To date, limited 
studies have investigated the benefits of an AI system in 
assessing invasiveness (7,20,39,40). In the present study, 
we investigated the improvement with the assistance of 
AI interpretation as a reference. Based on our results, 
the performance of practicing doctors improved with the 
assistance of SSNet in invasive discrimination and multiple-
category invasiveness assessments. Although the AUPRC, 
a metric evaluating a classifier’s performance in imbalanced 
data, of SSNet was lower than some of the practicing 
doctors in terms of multiple-category classification, the 
accuracy of doctors improved with SSNet. These findings 
support the role of the AI system as a second viewer that 
would increase the AUPRC in diagnosing cases that doctors 
might misinterpret or miss.

In the present study, SSNet achieved better performance 
than practicing doctors in identifying lesions with lower 
grade of invasiveness, which was shown in the 3- and 
4-category classifications. The F1 scores for AAH class and 
MIA class were relatively low due to the number of samples, 
which could limit the performance of the AI system. It is 
recommended that patients with AAH are routinely followed 
up or undergo resection after comprehensive evaluation. 
MIA is defined as small nodules with ≤5 mm predominantly 
lepidic invasion, Lim et al. inferred that invasion ≤5 mm 
might not greatly contribute in the emergence of increased 
attenuation on CT scan (41). Therefore, MIA appearing as 
SSNs can easily be misclassified as AIS or IA by doctors and 
the AI system (Figure S2).

In the present study, there was no incorrect prediction 
of SSNet as AAH being misclassified as IA or IA as 
AAH (Figure S2). SSNet achieved a higher AUPRC in 
differentiating histological subtypes than junior doctor in 
multiple-category classification. Although the AUPRC of 
SSNet was not higher than those of intermediate and senior 

doctors, the reduced time in interpretation of SSNs and 
the improved diagnostic performance would streamline 
the workflow and reduce subjectivity bias. Additionally, 
several underestimated predictions can be corrected by the 
AI system, as radiological features indicating malignancy 
could be absent or not fully identified (Figure S2). This 
was also proved by the highest sensitivity by SSNet and 
the confusion matrices. The SSN evaluation process is 
simple. Only a cuboid box that fully embraces SSN at its 
mass center is required for the invasiveness evaluation. 
Therefore, the incorporation of SSNet into the workflow 
would improve efficiency and accuracy in identifying SSNs 
and the workload of radiologists.

The present study has several limitations. First, data 
of this study only reflects this particular study population 
and cannot extrapolated to a screening setting. Secondly, 
though the proposed AI algorithm showed discriminative 
ability in classifying invasiveness of SSNs, the relevant 
image features that dominate model for decision-making 
were not reflected due to the black box nature of deep 
learning algorithm. Further explainable deep learning 
modes with good performance are necessary to improve 
the transparency and re reliability for humans. Additionally, 
the generalizability of our proposed method should be 
confirmed with more external and prospective validation. In 
the present study, the test dataset was split prior to model 
development and treated as a hold-out dataset to evaluate 
diagnostic performance. An external test cohort was used 
for validation. It should be acknowledged that although 
geographically external validation as applied, the SSN 
interpretation was done in a non-clinical environment and 
would not change clinical decisions that happened to the 
included patients. There is a potential decision threshold 
shift that could bias the actual clinical utility of the AI 
diagnostic tool. Therefore, further prospective studies 
for clinical decision making with long-time follow-up are 
needed to warrant the clinical utility of this diagnostic AI 
system and the value of improving patient outcome for such 
an AI diagnostic system designed for clinical management 
decision support. Multi-institutional randomized controlled 
trials are critical to test the benefit of incorporating AI into 
workflow.

In conclusion, the proposed SSNet is helpful in 
evaluating SSNs and can be used to assess invasiveness. 
The implementation of SSNet in practice has the potential 
to improve patient care workflow and optimize clinical 
decision support. The safety and feasibility of AI-assisted 
tools in supporting clinical decisions for SSNs are warranted 

http://Figure S2
http://Figure S2
http://Figure S2
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in long-term and multi-institutional trials.

Acknowledgments

The authors appreciate the academic support from the 
AME Thoracic Surgery Collaborative Group. The authors 
would like to thank biostatistician, Professor Aihong Zhang 
(Department of Medical Statistics, Tongji University 
School of Medicine, Shanghai, China), for guidance on the 
statistical analysis in this research.
Funding: This study was supported by National Natural 
Science Foundation of China (No. 8210071009); Shanghai 
Science and Technology Commission (No. 21YF1438200); 
Shanghai Municipal Health Commission (No. 2019SY072); 
the Science-Technology Foundation for Young Scientists 
of Gansu Province (No. 18JR3RA305, 21JR1RA107); and 
the Natural Science Foundation of Gansu Province (No. 
21JR1RA118, 21JR1RA092). 

Footnote

Reporting Checklist: The authors have completed the 
STARD reporting checklist. Available at https://dx.doi.
org/10.21037/tlcr-21-971

Data Sharing Statement: Available at https://dx.doi.
org/10.21037/tlcr-21-971

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/tlcr-21-971). SZ reports employment at Tailai 
Biosciences Inc., Shenzhen, Chinia. SJ reports employment 
at Dianei Technology, Shanghai, China. The other authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This retrospective study was approved 
by the Shanghai Pulmonary Hospital Institutional Review 
Board (No. L20-344). The need for informed consent was 
waived. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 

License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Field JK, Duffy SW, Baldwin DR, et al. UK Lung Cancer 
RCT Pilot Screening Trial: baseline findings from 
the screening arm provide evidence for the potential 
implementation of lung cancer screening. Thorax 
2016;71:161-70.

2.	 de Koning HJ, van der Aalst CM, de Jong PA, et al. 
Reduced Lung-Cancer Mortality with Volume CT 
Screening in a Randomized Trial. N Engl J Med 
2020;382:503-13.

3.	 Rzyman W, Szurowska E, Adamek M. Implementation of 
lung cancer screening at the national level: Polish example. 
Transl Lung Cancer Res 2019;8:S95-105.

4.	 Yankelevitz DF, Yip R, Smith JP, et al. CT Screening for 
Lung Cancer: Nonsolid Nodules in Baseline and Annual 
Repeat Rounds. Radiology 2015;277:555-64.

5.	 Henschke CI, Yip R, Smith JP, et al. CT Screening for 
Lung Cancer: Part-Solid Nodules in Baseline and Annual 
Repeat Rounds. AJR Am J Roentgenol 2016;207:1176-84.

6.	 Kauczor HU, von Stackelberg O. Subsolid Lung Nodules: 
Potential for Overdiagnosis. Radiology 2019;293:449-50.

7.	 Varghese C, Rajagopalan S, Karwoski RA, et al. 
Computed Tomography-Based Score Indicative of 
Lung Cancer Aggression (SILA) Predicts the Degree 
of Histologic Tissue Invasion and Patient Survival in 
Lung Adenocarcinoma Spectrum. J Thorac Oncol 
2019;14:1419-29.

8.	 McWilliams A, Tammemagi MC, Mayo JR, et al. 
Probability of cancer in pulmonary nodules detected on 
first screening CT. N Engl J Med 2013;369:910-9.

9.	 Li Y, Chen KZ, Wang J. Development and validation of 
a clinical prediction model to estimate the probability 
of malignancy in solitary pulmonary nodules in Chinese 
people. Clin Lung Cancer 2011;12:313-9.

10.	 She Y, Zhang L, Zhu H, et al. The predictive value of CT-
based radiomics in differentiating indolent from invasive 
lung adenocarcinoma in patients with pulmonary nodules. 
Eur Radiol 2018;28:5121-8.

11.	 Maldonado F, Boland JM, Raghunath S, et al. Noninvasive 
characterization of the histopathologic features of 

https://dx.doi.org/10.21037/tlcr-21-971
https://dx.doi.org/10.21037/tlcr-21-971
https://dx.doi.org/10.21037/tlcr-21-971
https://dx.doi.org/10.21037/tlcr-21-971
https://dx.doi.org/10.21037/tlcr-21-971
https://dx.doi.org/10.21037/tlcr-21-971
https://creativecommons.org/licenses/by-nc-nd/4.0/


4585Translational Lung Cancer Research, Vol 10, No 12 December 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(12):4574-4586 | https://dx.doi.org/10.21037/tlcr-21-971

pulmonary nodules of the lung adenocarcinoma spectrum 
using computer-aided nodule assessment and risk yield 
(CANARY)--a pilot study. J Thorac Oncol 2013;8:452-60.

12.	 American College of Radiology. Lung-RADS Version 1.1. 
2019. Accessed 13 Jan 2019. Available online: https://www.
acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRA
DSAssessmentCategoriesv1-1.pdf?la=en 

13.	 Lee SM, Park CM, Goo JM, et al. Invasive pulmonary 
adenocarcinomas versus preinvasive lesions appearing as 
ground-glass nodules: differentiation by using CT features. 
Radiology 2013;268:265-73.

14.	 Heidinger BH, Anderson KR, Nemec U, et al. Lung 
Adenocarcinoma Manifesting as Pure Ground-Glass 
Nodules: Correlating CT Size, Volume, Density, and 
Roundness with Histopathologic Invasion and Size. J 
Thorac Oncol 2017;12:1288-98.

15.	 Qi L, Xue K, Li C, et al. Analysis of CT morphologic 
features and attenuation for differentiating among 
transient lesions, atypical adenomatous hyperplasia, 
adenocarcinoma in situ, minimally invasive and invasive 
adenocarcinoma presenting as pure ground-glass nodules. 
Sci Rep 2019;9:14586.

16.	 Kim H, Goo JM, Kim YT, et al. Consolidation-to-tumor 
ratio and tumor disappearance ratio are not independent 
prognostic factors for the patients with resected lung 
adenocarcinomas. Lung Cancer 2019;137:123-8.

17.	 Esteva A, Kuprel B, Novoa RA, et al. Corrigendum: 
Dermatologist-level classification of skin cancer with deep 
neural networks. Nature 2017;546:686.

18.	 Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest 
radiograph diagnosis: A retrospective comparison of the 
CheXNeXt algorithm to practicing radiologists. PLoS 
Med 2018;15:e1002686.

19.	 Nam JG, Park S, Hwang EJ, et al. Development and 
Validation of Deep Learning-based Automatic Detection 
Algorithm for Malignant Pulmonary Nodules on Chest 
Radiographs. Radiology 2019;290:218-28.

20.	 Zhang Y, Wu X, He L, et al. Applications of hyperspectral 
imaging in the detection and diagnosis of solid tumors. 
Transl Cancer Res 2020;9:1265-77.

21.	 Tschandl P, Codella N, Akay BN, et al. Comparison of 
the accuracy of human readers versus machine-learning 
algorithms for pigmented skin lesion classification: an 
open, web-based, international, diagnostic study. Lancet 
Oncol 2019;20:938-47.

22.	 Gulshan V, Peng L, Coram M, et al. Development and 
Validation of a Deep Learning Algorithm for Detection 
of Diabetic Retinopathy in Retinal Fundus Photographs. 

JAMA 2016;316:2402-10.
23.	 Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et 

al. Diagnostic Assessment of Deep Learning Algorithms 
for Detection of Lymph Node Metastases in Women With 
Breast Cancer. JAMA 2017;318:2199-210.

24.	 Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer 
using deep convolutional neural network models applied 
to sonographic images: a retrospective, multicohort, 
diagnostic study. Lancet Oncol 2019;20:193-201.

25.	 Faes L, Wagner SK, Fu DJ, et al. Automated deep learning 
design for medical image classification by health-care 
professionals with no coding experience: a feasibility study. 
Lancet Digit Health 2019;1:e232-42.

26.	 Castiglioni I, Rundo L, Codari M, et al. AI applications to 
medical images: From machine learning to deep learning. 
Phys Med 2021;83:9-24.

27.	 Zhao W, Yang J, Sun Y, et al. 3D Deep Learning from 
CT Scans Predicts Tumor Invasiveness of Subcentimeter 
Pulmonary Adenocarcinomas. Cancer Res 2018;78:6881-9.

28.	 Kim H, Lee D, Cho WS, et al. CT-based deep learning 
model to differentiate invasive pulmonary adenocarcinomas 
appearing as subsolid nodules among surgical candidates: 
comparison of the diagnostic performance with a size-
based logistic model and radiologists. Eur Radiol 
2020;30:3295-305.

29.	 Wang S, Wang R, Zhang S, et al. 3D convolutional 
neural network for differentiating pre-invasive lesions 
from invasive adenocarcinomas appearing as ground-
glass nodules with diameters ≤3 cm using HRCT. Quant 
Imaging Med Surg 2018;8:491-9.

30.	 Guchlerner L, Wichmann JL, Tischendorf P, et 
al. Comparison of thick- and thin-slice images in 
thoracoabdominal trauma CT: a retrospective analysis. Eur 
J Trauma Emerg Surg 2020;46:187-95.

31.	 Travis WD, Brambilla E, Nicholson AG, et al. The 
2015 World Health Organization Classification of Lung 
Tumors: Impact of Genetic, Clinical and Radiologic 
Advances Since the 2004 Classification. J Thorac Oncol 
2015;10:1243-60.

32.	 Riley RD, Ensor J, Snell KI, et al. External validation 
of clinical prediction models using big datasets from 
e-health records or IPD meta-analysis: opportunities and 
challenges. BMJ 2016;353:i3140.

33.	 Ransohoff DF, Feinstein AR. Problems of spectrum and 
bias in evaluating the efficacy of diagnostic tests. N Engl J 
Med 1978;299:926-30.

34.	 Liang J, Xu XQ, Xu H, et al. Using the CT features to 
differentiate invasive pulmonary adenocarcinoma from 



4586 Deng et al. AI in SSNs evaluation

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(12):4574-4586 | https://dx.doi.org/10.21037/tlcr-21-971

pre-invasive lesion appearing as pure or mixed ground-
glass nodules. Br J Radiol 2015;88:20140811.

35.	 Son JY, Lee HY, Kim JH, et al. Quantitative CT analysis of 
pulmonary ground-glass opacity nodules for distinguishing 
invasive adenocarcinoma from non-invasive or minimally 
invasive adenocarcinoma: the added value of using iodine 
mapping. Eur Radiol 2016;26:43-54.

36.	 Zhang Y, Shen Y, Qiang JW, et al. HRCT features 
distinguishing pre-invasive from invasive pulmonary 
adenocarcinomas appearing as ground-glass nodules. Eur 
Radiol 2016;26:2921-8.

37.	 Jin C, Cao J, Cai Y, et al. A nomogram for predicting the 
risk of invasive pulmonary adenocarcinoma for patients 
with solitary peripheral subsolid nodules. J Thorac 
Cardiovasc Surg 2017;153:462-469.e1.

38.	 Baldwin DR, Gustafson J, Pickup L, et al. External 

validation of a convolutional neural network artificial 
intelligence tool to predict malignancy in pulmonary 
nodules. Thorax 2020;75:306-12.

39.	 Hwang EJ, Nam JG, Lim WH, et al. Deep Learning 
for Chest Radiograph Diagnosis in the Emergency 
Department. Radiology 2019;293:573-80.

40.	 Hwang EJ, Park S, Jin KN, et al. Development and 
Validation of a Deep Learning-based Automatic Detection 
Algorithm for Active Pulmonary Tuberculosis on Chest 
Radiographs. Clin Infect Dis 2019;69:739-47.

41.	 Lim HJ, Ahn S, Lee KS, et al. Persistent pure ground-glass 
opacity lung nodules ≥ 10 mm in diameter at CT scan: 
histopathologic comparisons and prognostic implications. 
Chest 2013;144:1291-9.

(English Language Editor: R. Scott)

Cite this article as: Deng J, Zhao M, Li Q, Zhang Y, Ma M, 
Li C, Wang J, She Y, Jiang Y, Zhang Y, Wang T, Wu C, Hou L,  
Zhong S, Jin S, Qian D, Xie D, Zhu Y, Tandon YK, Snoeckx A,  
Jin F, Yu B, Zhao G, Chen C; on behalf of the MultiomIcs 
claSSIfier for pulmOnary Nodules (MISSION) Collaborative 
Group. Implementation of artificial intelligence in the 
histological assessment of pulmonary subsolid nodules. Transl 
Lung Cancer Res 2021;10(12):4574-4586. doi: 10.21037/tlcr-
21-971



© Translational Lung Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tlcr-21-971

Appendix 1

1. Artificial intelligence algorithm

We designed a 3D Deep Learning algorithm, SSNet, with 13 3D convolutional layers, 5 max pooing layers, and 2 fully 
connected layers (Figure 1). The input images were 3D shaped data cropped from the CT scan with a volume of size 32 mm × 
48 mm × 48 mm at the mass center of a ROI with a histological label. The output of the proposed algorithm was probabilities 
for different categories. The artificial intelligence algorithm was trained from scratch for three differentiation tasks: (I) 
aggressive (IA) or indolent (AAH, AIS, MIA); (II) categories of different invasiveness, pre-invasive (AAH, AIS), minimally 
invasive (MIA), invasive (IA); (III) categories of four histological subtypes.

2. Algorithm training and interpretation

The training of the algorithm was performed on a computer with an NVIDA GTX 1080 (NVIDIA, Santa Clara, Calif) 
graphics processing unit (GPU) and used the TensorFlow deep learning framework (Google, Mountain View, CA). 
Momentum optimizer was used to minimize the Softmax cross-entropy between the outputs and reference labels with a batch 
size of 64 and initial learning rate of 0.01, decayed every 300 iterations using an exponential rate of 0.99. We augmented 
the samples by randomly rotating each patch to 0, 90, 180, and 270 degrees along the Z axis, and randomly flipping them in 
the X, Y, and Z directions. To prevent overfitting, we used L2 regularization during training. Our training loss converged 
after 3,000 iterations. The model with the lowest validation loss was selected eventually. To increase the understandability 
and dependability of the proposed SSNet, we adopted class activation mapping method to generate heat maps to indicate 
invasiveness in input images by using the feature map extracted from the developed network. The heat mapping was done 
with the “Matplotlib” module and all programming was conducted in Python version 3.6.4. 

3. Interpretation by a feature-based machine learning method

To exploit the potential difference from traditional feature-based AI technique in interpretation of nodule aggressiveness, 
our previously published radiomic signature was utilized (10), and analysis was performed with extracted radiomic features. 
Tumor segmentation, feature extraction, and inter-/intra-observer variability was reported previously. The malignancy risk 
was computed according to the input features and classified the nodules into IA and non-IA (binary classification). 

4. Receiver operating characteristic curves analysis 

Instead of a continuous value describing invasiveness, only a binary label was provided by doctors. Thus, the receiver 
operating characteristic (ROC) curves were estimated for six practicing doctors as a group, radiomic signature, and AI model 
using partial least-squares regression with constrained splines as previously described to warrant a fair comparison (18). Then 
linear interpolation and the composite trapezoidal rule were applied to estimate the area under ROC curve (AUC) for three 
approaches. At last, the confidential intervals (CI) of AUCs were obtained through 10,000 bootstrap replicates drawn from 
test set, on which three approaches were measured using the same replicate. The difference between AUCs was calculated 
on these same replicates by the stringent Bonferroni-corrected CIs of 1–0.05/k (k stands for number of classes). There is 
evidence of difference when 0 was not included in the interval. Similar way for AUC calculation was introduced by Rajpurkar 
et al. previously (18).

Supplementary
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Figure S1 Flowchart of patient allocation in the retrospective dataset and external dataset. Number in parentheses of the left panel 
represents the percentage of each histological subtype for SSNs. SSN, subsolid nodule; AIS, adenocarcinoma in situ; IA, invasive 
adenocarcinoma; CT, computed tomography MIA, minimally invasive adenocarcinoma; ROI, region of interest. 

Table S1 Summary statistics of patients in the Shanghai cohort (training dataset and test dataset) and Ningbo cohort

Characteristics Development dataset (n=1,262) Testing dataset (n=209) External dataset (n=100) P1 P2

Age (years) 0.209 0.692

<65 1,008 (79.9) 159 (76.1) 74 (74.0)

≥65 254 (20.1) 50 (23.9) 26 (26.0)

Sex 0.174 0.952

Male 435 (34.5) 62 (29.7) 30 (30.0)

Female 827 (65.5) 147 (70.3) 70 (70.0)

Nodule count 0.003 0.956

Solitary 1,168 (92.6) 205 (98.1) 98 (98.0)

Multiple 94 (7.4) 4 (1.9) 2 (2.0)

P1 value, training dataset compared with testing dataset; P2 value, training dataset compared with external dataset.
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Table S2 Comparison of SSNet and practicing doctors to differentiate AAH/AIS, MIA, and IA

Performance metrics SSNet

Practicing doctors

Unassisted Assisted

Junior Middle Senior
Micro average

Junior Middle Senior Micro 
average1 2 1 2 1 2 1 2 1 2 1 2

Sensitivity 

Class 1 0.803 0.790 0.740 0.914 0.815 0.802 0.802 0.811 0.852 0.840 0.790 0.901 0.827 0.728 0.823 

Class 2 0.309 0.327 0.418 0.218 0.382 0.382 0.691 0.403 0.345 0.273 0.309 0.273 0.273 0.618 0.348 

Class 3 0.933 0.894 0.702 0.750 0.933 0.933 0.923 0.856 0.798 0.731 0.885 0.885 1.000 0.769 0.845 

Micro average 0.746 0.782 0.749 0.751 0.808 0.805 0.870 0.734 0.771 0.757 0.777 0.816 0.814 0.797 0.727 

Specificity

Class 1 0.887 0.887 0.818 0.730 0.887 0.893 0.962 0.863 0.774 0.730 0.887 0.836 0.918 0.855 0.833 

Class 2 0.919 0.897 0.746 0.924 0.919 0.919 0.881 0.881 0.886 0.838 0.870 0.941 0.946 0.800 0.880 

Class 3 0.794 0.794 0.934 0.860 0.831 0.816 0.904 0.857 0.912 0.941 0.816 0.831 0.772 0.949 0.870 

Micro average 0.873 0.871 0.818 0.853 0.886 0.884 0.889 0.867 0.865 0.823 0.868 0.858 0.889 0.847 0.863 

PPV 

Class 1 0.783 0.674 0.793 0.786 0.780 0.915 0.786 0.750 0.657 0.613 0.780 0.737 0.838 0.720 0.716 

Class 2 0.531 0.329 0.583 0.583 0.486 0.633 0.583 0.502 0.475 0.333 0.415 0.577 0.600 0.479 0.464 

Class 3 0.776 0.890 0.795 0.808 0.769 0.881 0.808 0.820 0.874 0.905 0.786 0.800 0.770 0.920 0.833 

Micro average 0.746 0.705 0.803 0.806 0.780 0.821 0.806 0.747 0.769 0.715 0.775 0.771 0.811 0.752 0.736 

NPV

Class 1 0.898 0.861 0.899 0.904 0.892 0.905 0.904 0.899 0.911 0.899 0.892 0.943 0.913 0.861 0.902 

Class 2 0.817 0.812 0.833 0.833 0.818 0.906 0.833 0.832 0.820 0.795 0.809 0.813 0.814 0.876 0.820 

Class 3 0.939 0.804 0.941 0.942 0.908 0.939 0.942 0.886 0.855 0.821 0.902 0.904 1.000 0.843 0.880 

Micro average 0.873 0.848 0.886 0.888 0.872 0.921 0.888 0.867 0.866 0.853 0.869 0.889 0.891 0.877 0.864

F1 score

Class 1 0.793 0.706 0.798 0.800 0.785 0.855 0.800 0.779 0.742 0.708 0.785 0.811 0.832 0.724 0.766 

Class 2 0.391 0.368 0.462 0.462 0.391 0.661 0.462 0.447 0.400 0.300 0.354 0.370 0.375 0.540 0.398 

Class 3 0.847 0.785 0.858 0.866 0.827 0.901 0.866 0.838 0.834 0.809 0.833 0.840 0.870 0.838 0.839 

Micro average 0.746 0.726 0.804 0.807 0.781 0.845 0.807 0.779 0.770 0.735 0.776 0.793 0.812 0.774 0.766 

Accuracy 

Class 1 0.858 0.884 0.926 0.926 0.921 0.952 0.926 0.916 0.889 0.868 0.921 0.924 0.940 0.897 0.907 

Class 2 0.779 0.803 0.886 0.886 0.868 0.912 0.886 0.871 0.865 0.829 0.852 0.881 0.884 0.863 0.863 

Class 3 0.854 0.909 0.929 0.933 0.912 0.954 0.933 0.923 0.926 0.919 0.916 0.921 0.931 0.931 0.924 

Micro average 0.831 0.884 0.922 0.923 0.945 0.937 0.923 0.924 0.907 0.888 0.910 0.915 0.926 0.906 0.921 

AUPRC

Macro average 0.685 0.668 0.620 0.606 0.709 0.706 0.806 0.659 0.606 0.657 0.674 0.692 0.701 

Micro average 0.750 0.729 0.650 0.683 0.767 0.763 0.829 0.713 0.663 0.721 0.750 0.775 0.721

Fleiss’ kappa 0.601 0.596

1, 2 represents doctors 1 and 2; class 1 represents AAH/AIS, class 2 represents MIA, and class 3 represents IA. AAH, atypical adenomatous hyperplasia. AIS, adenocarcinoma in situ; AUPRC, area under precision-
recall curve; IA, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma; NPV, negative predictive value; PPV, positive predictive value.
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Table S3 Comparison of SSNet and practicing doctors to differentiate AAH, AIS, MIA, and IA

Performance metrics SSNet

Practicing doctors

Unassisted Assisted

Junior Middle Senior
Micro average

Junior Middle Senior
Micro average

1 2 1 2 1 2 1 2 1 2 1 2

Sensitivity 

Class 1 0.286 0.429 0.286 0.429 0.071 0.286 0.571 0.345 0.429 0.429 0.071 0.286 0.143 0.571 0.321

Class 2 0.761 0.358 0.597 0.791 0.687 0.791 0.701 0.654 0.687 0.552 0.761 0.836 0.731 0.642 0.701

Class 3 0.309 0.327 0.418 0.218 0.382 0.382 0.691 0.403 0.345 0.273 0.309 0.273 0.618 0.273 0.348

Class 4 0.933 0.894 0.702 0.750 0.933 0.933 0.923 0.856 0.798 0.731 0.885 0.885 0.769 1.000 0.845

Micro average 0.704 0.588 0.583 0.621 0.688 0.729 0.788 0.641 0.642 0.559 0.671 0.696 0.688 0.708 0.640

Specificity

Class 1 0.991 0.836 0.929 0.956 0.965 1.000 0.960 0.941 0.942 0.858 0.991 0.982 0.996 0.934 0.951

Class 2 0.850 0.913 0.838 0.723 0.832 0.855 0.960 0.854 0.769 0.792 0.838 0.798 0.827 0.919 0.824

Class 3 0.919 0.897 0.746 0.924 0.919 0.919 0.881 0.881 0.886 0.838 0.870 0.941 0.800 0.946 0.880

Class 4 0.794 0.794 0.934 0.860 0.831 0.816 0.904 0.857 0.912 0.941 0.816 0.831 0.949 0.772 0.870

Micro average 0.901 0.863 0.861 0.874 0.896 0.91 0.925 0.908 0.881 0.853 0.890 0.899 0.896 0.903 0.913

PPV 

Class 1 0.667 0.140 0.200 0.375 0.111 1.000 0.471 0.266 0.316 0.158 0.333 0.500 0.667 0.348 0.287

Class 2 0.662 0.615 0.588 0.525 0.613 0.679 0.870 0.634 0.535 0.507 0.646 0.615 0.620 0.754 0.606

Class 3 0.531 0.486 0.329 0.462 0.583 0.583 0.633 0.502 0.475 0.333 0.415 0.577 0.479 0.600 0.464

Class 4 0.776 0.769 0.890 0.804 0.808 0.795 0.881 0.820 0.874 0.905 0.786 0.800 0.920 0.770 0.833

Micro average 0.704 0.588 0.583 0.621 0.688 0.729 0.788 0.588 0.642 0.558 0.671 0.696 0.688 0.708 0.587

NPV

Class 1 0.957 0.959 0.955 0.964 0.944 0.958 0.973 0.959 0.964 0.960 0.945 0.957 0.949 0.972 0.958

Class 2 0.902 0.786 0.843 0.899 0.873 0.914 0.892 0.864 0.864 0.820 0.901 0.926 0.888 0.869 0.877

Class 3 0.817 0.818 0.812 0.799 0.833 0.833 0.906 0.832 0.820 0.795 0.809 0.813 0.876 0.814 0.820

Class 4 0.939 0.908 0.804 0.818 0.942 0.941 0.939 0.886 0.855 0.821 0.902 0.904 0.843 1.000 0.880

Micro average 0.901 0.863 0.861 0.874 0.896 0.910 0.929 0.888 0.881 0.853 0.890 0.899 0.896 0.903 0.888

F1 score

Class 1 0.400 0.235 0.444 0.087 0.211 0.516 0.301 0.400 0.364 0.231 0.118 0.364 0.235 0.432 0.303

Class 2 0.708 0.593 0.731 0.648 0.453 0.777 0.644 0.631 0.601 0.529 0.699 0.709 0.671 0.694 0.651

Class 3 0.391 0.368 0.462 0.462 0.391 0.661 0.447 0.296 0.400 0.300 0.354 0.370 0.540 0.375 0.398

Class 4 0.847 0.785 0.858 0.866 0.827 0.901 0.838 0.776 0.834 0.809 0.833 0.840 0.838 0.870 0.839

Micro average 0.704 0.583 0.729 0.688 0.588 0.788 0.643 0.621 0.642 0.558 0.671 0.696 0.688 0.708 0.644

Accuracy 

Class 1 0.950 0.943 0.979 0.952 0.897 0.968 0.874 0.961 0.954 0.909 0.968 0.970 0.972 0.954 0.879

Class 2 0.825 0.871 0.912 0.884 0.863 0.940 0.812 0.852 0.854 0.841 0.899 0.894 0.889 0.914 0.807

Class 3 0.779 0.803 0.886 0.886 0.868 0.912 0.796 0.865 0.865 0.829 0.852 0.881 0.863 0.884 0.788

Class 4 0.854 0.909 0.929 0.933 0.912 0.954 0.847 0.897 0.926 0.919 0.916 0.921 0.931 0.931 0.848

Micro average 0.852 0.884 0.927 0.915 0.885 0.944 0.951 0.895 0.902 0.876 0.910 0.918 0.915 0.921 0.955

AUPRC

Macro average 0.559 0.471 0.495 0.526 0.516 0.624 0.714 0.550 0.467 0.501 0.571 0.571 0.593 

Micro average 0.667 0.588 0.583 0.621 0.688 0.729 0.788 0.642 0.558 0.671 0.696 0.688 0.675

Fleiss’ kappa 0.480 0.496

1, 2 represents doctors 1 and 2; class 1 represents AAH, class 2 represents AIS, class 3 represents MIA, and class 4 represents IA. AAH, atypical adenomatous hyperplasia. AIS, adenocarcinoma in situ; AUPRC, area 
under precision-recall curve; IA, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma; NPV, negative predictive value; PPV, positive predictive value.
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Table S4 Performance details of different categories in multiclass differentiation on the participant level

AUC SSNet

Practicing doctors

Unassisted Assisted

Junior Middle Senior Junior Middle Senior

Three class

Class 1 0.879 0.841 0.888 0.921 0.829 0.884 0.870 

Class 2 0.696 0.652 0.703 0.829 0.641 0.665 0.768 

Class 3 0.914 0.900 0.882 0.928 0.913 0.876 0.946 

Four class

Class 1 0.718 0.703 0.752 0.878 0.751 0.718 0.850 

Class 2 0.850 0.776 0.796 0.898 0.736 0.828 0.857

Class 3 0.724 0.652 0.703 0.829 0.641 0.665 0.768

Class 4 0.916 0.900 0.882 0.928 0.913 0.876 0.946 

In the 3-class differentiation, class 1 represents AAH/AIS, class 2 represents MIA, and class 3 represents IA. In the 4-class differentiation, 
class 1 represents AAH, class 2 represents AIS, class 3 represents MIA, and class 4 represents IA. AAH, atypical adenomatous 
hyperplasia; AIS, adenocarcinoma in situ; AUC, area under receiver operating characteristic curve; IA, invasive adenocarcinoma; MIA, 
minimally invasive adenocarcinoma.
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Figure S2 Confusion matrix demonstrating the correlation between prediction (row) and observed (column) labels of subsolid nodules by 
practicing doctors. (A) Junior rank, (B) middle rank, and (C) senior rank in 4-category classification. AAH, atypical adenomatous hyperplasia; 
AIS, adenocarcinoma in situ; IA, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma.
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