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Background: Risk prediction models of lung nodules have been built to alleviate the heavy interpretative 
burden on clinicians. However, the malignancy scores output by those models can be difficult to interpret in 
a clinically meaningful manner. In contrast, the modeling of lung nodule growth may be more readily useful. 
This study developed a CT-based visual forecasting system that can visualize and quantify a nodule in three 
dimensions (3D) in any future time point using follow-up CT scans. 
Methods: We retrospectively included 246 patients with 313 lung nodules with at least 1 follow-up CT 
scan. For the manually segmented nodules, we calculated geometric properties including CT value, diameter, 
volume, and mass, as well as growth properties including volume doubling time (VDT), and consolidation-
to-tumor ratio (CTR) at follow-ups. These nodules were divided into growth and non-growth groups by 
thresholding their VDTs. We then developed a convolutional neural network (CNN) to model the imagery 
change of the nodules from baseline CT image (combined with the nodule mask) to follow-up CT image 
with a particular time interval. The model was evaluated on the geometric and radiological properties using 
either logistic regression or receiver operating characteristic (ROC) curve.
Results: The lung nodules consisted of 115 ground glass nodules (GGN) and 198 solid nodules and 
were followed up for an average of 354 days with 2 to 11 scans. The 2 groups differed significantly in most 
properties. The prediction of our forecasting system was highly correlated with the ground truth with small 
relative errors regarding the four geometric properties. The prediction-derived VDTs had an area under 
the curve (AUC) of 0.857 and 0.843 in differentiating growth and non-growth nodules for GGN and solid 
nodules, respectively. The prediction-derived CTRs had an AUC of 0.892 in classifying high- and low-risk 
nodules.
Conclusions: This proof-of-concept study demonstrated that the deep learning-based model can 
accurately forecast the imagery of a nodule in a given future for both GGNs and solid nodules and is worthy 
of further investigation. With a larger dataset and more validation, such a system has the potential to become 
a prognostication tool for assessing lung nodules.
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Introduction

Multiple national clinical trials have supported that lung 
cancer screening (LCS) by low-dose computed tomography 
(LDCT) reduces mortality in high-risk populations with a 
smoking history and family history of cancer (1). The at-risk 
population eligible for LCS was estimated at over 8 million 
in the US (2), and would be several times larger in China. 
The large-scale screening program imposes a heavy burden 
on screening personnel to interpret the massive volume of 
imaging data alongside other clinical data (3,4). It is not only 
time-consuming to detect lung nodules, the early radiological 
sign of lung cancer, it is also difficult to determine the 
malignancy potential with reliable accuracy (5). 

In clinical practice, follow-up CT scans are recommended 
by lung nodule management guidelines (6) and routinely 
prescribed by radiologist to monitor the growth patterns 
of lung nodules for which the risk of malignancy cannot 
be clearly determined on baseline scans. Volume doubling 
time (VDT) (5) and consolidation-to-tumor ratio (CTR) (7)  
are 2 imaging-based metrics used in screening settings to 
characterize the growth patterns and the proportion of 
solid components of lung nodules, respectively. According 
to the British Thoracic Society (BTS) guidelines, the VDT 
of newly found solid nodules of intermediate size (4–8 mm) 
can be computed to categorize the lung nodule as stable, 
slow growth (VDT >600 days), or fast growth (VDT  
<600 days) in the follow-up examination (8). With relatively 
indolent growth patterns, sub-solid nodules generally have 
longer VDT, require longer follow-up periods, and are 
more likely to be benign or preinvasive if VDT >1,500 (9).  
Based on the growth rate indicated by the VDT, 
conventional clinical management include discharging the 
patient for stable nodule, ongoing surveillance for slowly 
growing nodule, and biopsy or resection for fast growing 
nodule. Besides VDT, the increase of consolidation 
component in sub-solid lung nodules is also considered 
a risk factor for malignancy. This notion has not only 
been mentioned in the major guidelines of lung nodule 
management but is also supported by previous studies. The 
guidelines recommend further investigation for part-solid 
nodules with increasing solid component found in follow-up  
scans (6). A retrospective study on patients with stage IA 

lung cancer found that higher CTR was associated with 
lymphatic invasion and shorter recurrence-free survival (10). 

To alleviate the heavy clinical workload in the LCS 
program, efforts have been taken to develop machine 
learning algorithms to automatical ly detect  lung  
nodules (11) and predict their probability of malignancy (12)  
on CT scans at scale. Thanks to the breakthrough in 
computer vision made possible by deep learning, these 
algorithms have achieved a precision level matching a 
senior radiologist but with far more efficiency (13). While 
most of these algorithms were built on data collected at a 
single time point (14-16), recent studies started to provide 
evidence on the additive values of using sequential imaging 
data in the analysis of lung nodules compared to data at 
single time point (17,18). For instance, the importance of 
growth properties for nodule characterization prompted the 
2018 ISBI challenge on nodule malignancy prediction using 
sequential CT scans, where the best participants reported 
higher AUC than the contestants in LUNGx challenge 
that used CT scans on a single time point as inputs (17). 
Nonetheless, no consensus has been reached regarding how 
to incorporate the malignancy scores outputted by these 
risk prediction models into the clinical workflow of lung 
nodule management. Only the Brock risk model is taken 
into consideration for managing part-solid nodules by 
the guidelines of the BTS (8). As far as the authors know, 
no advanced model based on deep learning with higher 
accuracy has been cited in guidelines of any society to date. 
It is still subject to screening personnel as to how to utilize 
these risk predictions. 

Growth pattern is an intermediate attribute of lung 
nodule that clinicians make sense of and routinely use as 
one of the deciding factors for the nodule malignancy. 
Empirically, nodule growth pattern as indicated by change 
in volume has been reported a strong predictor for nodule 
malignancy (19). The nodule growth estimate thus may 
be of greater clinical value for clinicians compared to the 
malignancy score. Nevertheless, the modeling of nodule 
growth was rarely studied, and the large volume of follow-
up CT scans were still under exploited. In the literature, 
we only found few related studies on this topic. Shi et 
al constructed binary classifier of nodule growth using 
quantitative imaging features at baseline CT scans (20), 
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which did not provide any visual clue for clinicians to 
inspect. Sheng et al reconstructed the image patches of 
lung nodule in a future scan point via predicted registration 
field based on the visual difference between previous 
two scan points (21). Although the reconstructed image 
was encouraging, their goal was to predict the nodule 
malignancy based on the reconstructed image patch 
with another neural network. While the reconstructed 
image patch of nodule was informative to clinicians, the 
growth properties such as volume change and increase of 
consolidation components were still not readily available, 
which requires nodule segmentation. 

With the real-world clinical workflow and guideline 
suggestions in mind, we were motivated to develop a CT-
based visual forecasting system of lung nodules that can 
visualize and quantify a nodule in three dimensions (3D) in 
any future time point. This system can inform the possible 
growth patterns of a nodule before the actual follow-up  
scans are taken and help screening personnel to more 
accurately assess the nodule malignancy and subsequent 
management. Concretely, we conducted a retrospective 
study to evaluate the feasibility and performance of our deep 
learning nodule growth prediction system. We present the 
following article in accordance with the STARD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-22-59/rc).

Methods

Data collection

This retrospective analysis was approved by the Institutional 
Review Board of Shanghai Chest Hospital (No. KS1956). 
All procedures performed in this study involving human 
participants were conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Given the 
retrospective nature of the analysis, the board waived the 
requirement for patients’ written consent. Anonymity was 
ensured for all patient data. 

From the radiologic database of our hospital, we 
consecutively retrieved patients with pulmonary nodules 
identified on chest CT scans between February 2012 to 
December 2018. We selected patients for our study using 
the inclusion and exclusion criteria specified in Figure 1. To 
be eligible, the patients had to have pulmonary nodules no 
larger than 30 mm on initial CT scans and have undergone 
two or more unenhanced thin sliced CT scans using 
standard algorithm at different time points. We excluded 
all patients with previously known diagnoses of malignancy 
treated with chemo/targeted therapy, radiation and surgery 
(lobectomy/wedge resection). In model development, 
we excluded all CT images with contrast. We would not 
exclude patients with contrast enhanced CT scans as long as 
they had two or more CT scans without contrast. 

Figure 1 Formation and constitution of the study cohort. CT, computed tomography.

Patients with pulmonary nodules as identified in 
the radiologic database:  328 patients

Inclusion criteria: 
Twice or more non-contrast CT scans
The follow-up period was more than 180 days
Thin-slice image with standard reconstruction 
Nodules less than 30 mm in size on initial scan

 On inclusion: 255 patients 334 nodules

Exclusion criteria: 
Contrast-enhanced CT (4 patients 5 nodules)
anti-cancer treatment (5 patients, 16 nodules)

On exclusion: 246 patients, 313 nodules

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-59/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-59/rc
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Image acquisition

Baseline chest CT scans and follow-up examinations were 
performed using the following 5 scanners: 64-detector 
row scanner (Brilliance, Philips, Cleveland, OH, USA), 
256-detector row scanner (Revolution CT, GE, Waukesha, 
WI, USA), 128-detector row scanner (Ingenuity core128, 
Philips, Suzhou, China), Discovery CT750HD CT 
scanner (GE, Waukesha, WI, USA), and a 16-detector 
row scanner (uCT S160, United Imaging, Shanghai, 
China). In the supine position, patients were scanned at the 
end of inspiration during a single breath hold. The high 
resolution (HR)CTs were performed with collimation of  
0.625–1.25 mm, pitch of 0.64, section thickness of 0.625–
1.25 mm without overlap, matrix of 512×512 or 1,024×1,024, 
field of view (FOV) of 350–400 mm, 120 kVp, and  
220–300 mA. All imaging data were reconstructed using 
the standard algorithm. Follow-up scans were performed to 
track the therapeutic effectiveness for pneumonia or stability 
of lung nodules. The mean interval between baseline CT 
examinations and follow-up scans were 354 days [mean time, 
354±224 (SD) days; range, 30 to 1,351 days]. 

Nodule characterization

The volume of interest (VOI) of the included nodules was 
manually delineated at voxel level on both baseline and 
follow-up CT scans by one radiologist (L.Z., with 5 years 
of experience in chest CT interpretation) using 3D Slicer 
(version 4.8.0, Brigham and Women’s Hospital, Boston, 
MA, USA). Then, the VOI was confirmed by another 
radiologist (X.Y. with 10 years of experience in chest CT 
interpretation). Large vessels and bronchioles were excluded 
as much as possible from the volume of the nodules. 

Based on the VOIs provided, we computed both 
geometric properties including mean CT value, diameter, 
volume, and mass at both baseline and follow-ups, as well as 
growth properties including VDT and CTR at follow-ups 
for all included nodules. From the VOI, we got the total 
number of voxels that a nodule occupies and the CT value 
in Hounsfield unit (HU) each voxel in the VOI assumes. 
Then, the volume of a nodule (V in mm3) was computed by 
multiplying voxel number and the volume of a single voxel; 
the mean CT value (A in HU) was computed by averaging 
the CT values of all voxels in the VOI. The mean diameter 
of a nodule was defined as the average of its maximal length 
and maximal orthogonal diameter on axial CT slice. Mass 
in mg was computed as follows: M = V × (A + 1,000)/1,000.

According to the nodule management guidelines, VDT 
and CTR can be used to triage patients, where above cut-off 
values indicate high-risk or referable nodules worth further 
investigation and below cut-off values mean low-risk or 
non-referable nodule that can be discharged or monitor (6).  
We computed VDTs using the following equation: [log2× 
T]/[log(Vfinal/Vinitial)], where Vfinal and Vinitial are the final and 
initial volumes of the same nodule, respectively, and T is 
the interval between the final and initial CT scans. Positive 
VDT indicated possible nodule growth and negative 
VDT indicated possible nodule shrinkage. We split all the 
nodules into 2 groups, namely a growth group and non-
growth group, based on the relative position of their VDTs 
compared to cut-off values predefined, where the cut-off for 
ground glass nodules (GGN, consisting of pure GGN and 
part-solid nodules) (22) was 1,500 days and that for solid 
nodule was 500 days. The CTR were computed only for 
GGN by dividing the nodule volume by the consolidation 
volume where the nodule regions with a CT value higher 
than −300 HU were considered as consolidations (23). For 
CTR, 50% was used as the cut-off. 

Nodule growth modelling

To model the nodule growth from baseline CT image to 
follow-up CT image with a particular time interval, we 
proposed a convolutional neural network (CNN)-based 
forecasting system (Figure 2) consisting of two U-Net (24) 
based networks, the spatial vary network (SVN) and texture 
vary network (TVN), and one temporal encoding module 
(TEM). The TEM is developed to encode the time interval 
between 2 scans into temporal features, which are then 
incorporated by the SVN and the TVN to learn spatial 
and texture transformation of a nodule during the interval, 
respectively. The system is implemented using the PyTorch 
platform (Meta, Menlo Park, CA, USA) (25) and the details 
could be found in the supplementary text.

During inference, given the baseline CT image and any 
time interval as specified by users, the system can predict 
the imagery representation, both the image and mask, of 
a pulmonary nodule in the predefined future. In other 
words, the system treats the image and segmentation mask 
of a nodule at an initial point as input and then outputs the 
possible image and segmentation mask of the same nodule 
at any later time as specified.

To both train and validate the system in a supervised 
learning fashion, we paired the images and masks at 2 
known time points of the same nodule as a data sample. 
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Although the well-trained model could predict the projected 
image of a nodule in any future time interval, we chose the 
actual time interval of a follow-up as input to the model so 
that the model prediction could have ground truth image 
to be compared with. We pre-processed the data as follows: 
CT scans are resampled isotropically into 1×1×1 mm3. The 
voxel intensity (in HU) was first clamped to interval [−1,024, 
400] and then normalized to [−1, 1]. Each data sample fed 
into the model was a cubic volume image with a nodule in 
the center and had the size of 48×48×48 mm3, which covers 
the size of all nodules in our study. Due to the limitation of 
dataset size, we discretized the follow-up time interval t∆  

using the time mapping function ' , 20
30

tt Min ∆  ∆ =     
, for 

most of the intervals are less than 600 days.

Statistical analysis

We split our dataset randomly into 5 groups on patient-
level and performed 5-fold cross validation to evaluate our 
models. That is, all nodules of 1 patient must be in the same 
subset. The cross validation in our study was nested as the 
training of our model does not involve feature selection or 
parameter tuning and the validation data was invisible to our 
model during training (26). We evaluated the performance 
of our proposed model in 3 ways. First, we evaluated the 
CT value, diameter, volume, and mass of the predicted 
nodule against ground truth using linear regression. Second, 
we tested the utilities of model predictions in the context of 
nodule management. As the system outputs both the image 
and mask of a nodule in a specified future point, we could 
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Image
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Spatial vary
network (SVN)

Texture vary
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Figure 2 Overview of the architecture of our proposed forecasting system. The system consists of an SVN and a TVN, each with a TEM, which 
encodes follow-up time interval information into the nodule representation. The SVN and TVN are two 3D CNNs based on U-Net (24), 
estimating the size and appearance variation for nodule growth respectively. During evaluation, we perform the image quality assessment and 
key indicators assessment to evaluate the generation quality of future nodules. VDT, volume doubling time; CTR, consolidation-to-tumor ratio; 
SVN, spatial vary network; TVN, texture vary network; TEM, temporal encoding module; CNN, convolutional neural network.
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compute the VDT and CTR. With the VDT and CTR 
computed from the actual follow-up CT scans, we evaluated 
how well the model performed in classifying nodule as 
high-risk versus low-risk by drawing receiver operating 
characteristic (ROC) curves of the prediction-derived VDT 
or CTR. Some patients may have many follow-up pairs 
compared to others, so we only selected the first and last 
examination of each nodule for classification to eliminate 
statistical bias.

Quantitative valuables were described as the mean ± 
standard error, whereas categorical data were presented 
as numbers (percentages).  Clinical and radiologic 
characteristics were analyzed for differences between the 
growth and non-growth groups using independent sample 
t-test for continuous variables and Pearson’s chi-squared test 
for categorical variables. A 2-sided P<0.05 was considered 
statistically significant. All analyses were performed using 
python 3.6 with scikit-learn (v.0.22; https://pypi.org/
project/scikit-learn/), SciPy (v.1.3.0; https://pypi.org/
project/scipy/), and researchpy (v.0.1.8; https://pypi.org/
project/researchpy/). 

Results 

Patient and nodule characteristics 

A total of 313 nodules (115 GGN and 198 solid nodules) 
from 246 patients (age, 58.7±10.6 years; range, 23 to 97 years)  
were included in the study. The study cohort consisted of 
114 men (age, 59.0±11.2 years; range, 23 to 97 years) and 

132 women (age, 58.5±10.2 years; range, 32 to 84 years)  
and were followed up for an average of 354 days with 3 
CT scans on average (range, 2 to 11 scans). The detailed 
characteristics of the study cohort are displayed in Table 1.

The Characteristics of GGNs and solid nodules analyzed 
in this study is summarized in Tables 2,3. For both GGN 
and solid nodules, the two groups of different growing 
patterns differed significantly in VDTs and almost all 
geometric properties, including mean CT value, diameter, 
volume, and mass at baseline scans (P<0.05). Besides, the 
CTR was also significantly different for the 2 growing 
groups for GGNs.

Model evaluation: geometric properties

We plotted the 4 metrics, including mean CT value, 
diameter, volume, and mass of the nodules predicted by our 
system with follow-up time intervals, against that of the 
nodules on actual follow-up CT scans. As shown by Figure 3,  
the prediction-derived properties were highly correlated 
with the real properties (P<0.001) with small relative errors. 
Compared with the ground truth, our forecasting system 
generated mean relative errors of 0.083 HU, 0.117 mm, 
0.351 mm3, 0.293 mg and for CT value, diameter, volume, 
and mass, respectively. 

Model evaluation: growth properties

Based on the actual CT scans, 24 out of 115 GGNs were 
high-risk with a VDT larger than 1,500 and 49 out of 
198 solid nodules were high-risk with a VDT larger than 
500. Using the same cut-off on the VDT derived from 
our forecasting system, the sensitivity and specificity in 
distinguishing high-risk from the low-risk were 75.0% and 
80.2% for GGNs and 73.5% and 86.6% for solid nodules, 
respectively. The results have been visualized in Figure 4. 
Moreover, the predicted VDT by our system had an AUC 
of 0.857, 0.843, and 0.848 for solid nodules, GGNs, and 
both types of nodules combined, respectively, in making the 
risk classification with the actual VDT based grouping as 
ground truth (Figure 5). 

Other than VDT, we also computed the CTR based on 
the mask and image of GGNs in their final CT scans. With 
50% as cut-off value for the CTR, 26 out of 115 GGNs 
were considered as high-risk nodules (Figure 6A). Our 
forecasting system had a sensitivity of 0.731, a specificity 
of 0.876 (Figure 6B), and an AUC of 0.892 (Figure 6C) in 

Table 1 Clinical characteristics of the study cohort

Characteristics Statistics

Age (years) 58.7±10.6

No. of patients 246

Female, n (%) 114 (46.3)

Male, n (%) 132 (53.7)

No. of nodules, n (%)

Solitary 192 (78.0)

Multiple 54 (22.0)

Scanning features

CT scanning times 3 [2–11]

Follow-up period (days) 354±224

CT, computed tomography.
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making the classification using CTR. 

Model evaluation: qualitative assessment

To give an indication of the performance of our forecasting 
system, we selected 4 nodules with different morphological 
types and different growth patterns and plotted both their 
images and masks at baseline scan and at the final scan 
together with those predicted by our forecasting system 
(Figure 7). As shown, our forecasting system could make 
predictions for both solid nodules and GGNs regardless 
of their real growth patterns, either fast-growing, slow-
growing, stable, or shrinkage. Also, the TVN indeed 
improved the prediction by a single SVN, which is 
especially evident for the case c in Figure 7. 

Discussion

In this proof-of-concept study, we illustrated a deep 
learning prediction system for lung nodule visualization and 
growth quantification in any future time point using CTs in 

hopes of improving the current workflow of LCS instead 
of just providing a stand-alone score, weakly interpretable 
to health workers. We evaluated the proposed forecasting 
system using both geometric and growth properties of lung 
nodules, demonstrating that the system could accurately 
forecast the imagery of a nodule in a given future for both 
GGNs and solid nodules. Although the performance is far 
from being sufficiently high for the system to be eligible for 
clinical usage, this study took the first step in the direction 
of predicting the future imagery of a nodule and laid the 
foundation for further investigation. 

Major efforts have been taken to predict the malignancy 
of lung nodules either found accidently or identified in 
the screening settings based solely on initial CT scans. 
Conventional research has focused on uncovering which 
radiological signs, such as large size, attachment to vessel, 
or poor border definition (27) predefined by experts, are 
associated with or predictive of malignancy. Recent studies 
have built neural networks under the supervised learning 
framework to automatically learn representational features 
that are discriminative for nodule malignancy (13,28). 

Table 2 Characteristics of ground glass nodules of the study cohort

Characteristics GGNs (n =115) Growth group (n=24) Non-growth group (n=91) P value of t-test

Initial CT value (HU) −436 (−943 to −197) −386±66 −476±79 <0.001

Initial diameter (mm) 10.9 (3.0 to 29.8) 11.9±5.5 9.8±4.8 <0.01

Initial volume (mm3) 394.0 (27.0 to 7,531.1) 447.0±274.5 394.0±245.1 <0.001

Initial mass (mg) 62.6 (5.2 to 5,129.3) 95.6±146 85.6±115 <0.01

VDT (days) 1,743 (−40 to 2,305) 763±548 1,805±316 <0.001

Consolidation volume 100.86 (0 to 695.4) 127.84±87.3 89.43±74.3 <0.01

Initial CTR (%) 25.6 (0.0 to 83.8) 28.6±23.4 22.7±18.6 <0.01

GGN, ground glass nodule; CT, computed tomography; VDT, volume doubling time; CTR, consolidation-to-tumor ratio.

Table 3 Characteristics of solid nodules of the study cohort

Characteristics Solid nodule (n=198) Growth group (n=49) Non-growth group (n=149) P value of t-test

Initial CT value (HU) −145 (−347 to −74) −142±56 −149±73 0.29

Initial diameter (mm) 8.1 (5 to 28.4) 8.6±5.3 7.3±6.2 0.02

Initial volume (mm3) 171.2 (38.3 to 5,447.2) 182.6±163.4 159.7±155.3 0.01

Initial mass (mg) 128.0 (7.9 to 8,309.2) 153.2±115.2 131.2±109.3 0.03

VDT (days) 543 (−30 to 1,034) 271±223.2 708±189.2, −20 (below 0) <0.001

Initial CTR (%) 100 100 100 NA

CT, computed tomography; VDT, volume doubling time; CTR, consolidation-to-tumor ratio.
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Regardless, these studies have indicated that the imaging 
snapshot of a nodule contains features informative of its 
malignancy. While previous studies (13,27,28) have made 
use of these features only to make binary classifications, this 
study went a step further by harnessing these informative 
features to model the projection from a nodule at one time 
to the same nodule at any later or future times. As shown 
by our results, this visual modeling of lung nodule growth is 
feasible and worthy of future studies. A recent study similar 
to ours built a deep learning model to predict spatial change 
of lung tumors to facilitate adaptive radiotherapy and 
achieved good results (29). 

In the management of lung nodules, screening or 
incidental, surveillance or monitoring by follow-up CT 
scans is a major avenue. Studies have shown that many 
more follow-up CT scans were performed than baseline 

CT scans in several national trails of LCS, including 
NLST (30) and NELSON (31). Machine learning has 
been successful in predicting lung nodule malignancy 
based solely on baseline or single CT scans, but it has not 
incorporated the vast amount of follow-up CT scans or did 
not take advantage of the consecutive scans of an individual 
patient to further boost their performance By characterizing 
the growth pattern of lung nodules, follow-up CT scans 
could substantially reduce the false positives identified in 
the baseline CTs (32) and thus help to avoid unnecessary 
continual follow-up CT scans or invasive procedures. 
This characterization of growth pattern, as shown by this 
study, can be modelled by CNN through making full use 
of the CT scans, both initial and follow-up, collected in 
LCS. With a much larger dataset than that in this study, it 
would be promising to enhance the prediction system as 

Figure 3 Linear regression of volume (A), mass (B), CT value (C) and diameter (D) for follow-up nodules by our forecasting system. CT, 
computed tomography.
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Figure 4 Scatter plot of VDT derived from actual CT scans (A,C) and our forecasting system (B,D) for solid nodules (A,B) and GGN (C,D) 
respectively. The red line on the plot indicates the cut-off values, 500 days for solid nodules and 1,500 days for ground-glass nodules. VDT 
ranging from 0 to the cut-off value (red line) indicates fast-growing and thus high-risk nodules, which were plotted on the 1 of x axis. Below 
zero (nodule shrinking) or larger than cut-off value (slow growing) VDT indicates for low-risk nodules, which were plotted on the 0 of x axis. 
VDT, volume doubling time; CT, computed tomography; GGN, ground-glass nodules.

a virtual follow-up CT scan specifically designed for lung 
nodules. This virtual follow-up may even save patients from 
undergoing unnecessary follow-up CT scans if clinically 
validated. 

As our forecasting system is first of its kind in predicting 
the visual constituent and mask of a lung nodules in any 
future point, we explored ways to validate its performance. 
Based on geometric properties like CT value, diameter, 
volume, and mass of lung nodules, our system was fairly 
accurate in depicting the future of a lung nodules in terms 
of both size and composition. More importantly, we 
evaluated our system’s ability in discerning on how likely 
the nodules in question will be malignant and thus require 
further investigation, using growth properties including 
VDT and CTR. The VDT, a shape indicator of nodule 
growth, was found to be significantly associated with nodule 
malignancy and refined cut-offs by model analysis could 
reduce false positive by a large margin (5). That is also why 

we divided the nodules into growth and non-growth groups 
by thresholding VDT. Tumor composition is as important 
as size in characterizing lung nodules. The increasing CTR, 
an index for tumor composition, in GGN has been found to 
be associated with worse survival for high-risk patients (10).  
The development of solid components in GGN was also 
regarded as growth in a study on the natural history of 
GGNs (33). It is therefore reasonable for us to use CTR as 
a possible indictor of nodule malignancy to test our system’s 
performance. As these measures are clinically relevant, the 
evaluation based on them also demonstrates the usefulness 
of our forecasting system. 

This study had several limitations. First, the study 
only included a small number of nodules with limited 
representative capacities and the forecasting system built 
from this sample may not generalize well in the real-world 
scenarios. Lung nodules in the real world vary greatly 
in numerous ways, including shape, size, composition, 
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location, surroundings, as well as growing patterns. A sizable 
dataset is thus essential for building a forecasting system 
that can extrapolate the future appearance of heterogeneous 
lung nodules with decent accuracy. Second, we only 
explored limited ways in evaluating such forecasting system, 
including simple geometric and growth measures. Future 
studies may benefit from incorporating more methods 
for evaluation, such as comparing HU value distribution 
between ground truth and prediction within nodule VOI 
and checking how well radiologists can distinguish between 
ground truth and prediction visually. Comprehensive 
evaluation methods are necessary to pave the way for such 
a forecasting system to enter clinical workflow. Third, we 
used VDT-derived values to categorize lung nodules into 
growth or non-growth groups, which are not as perfectly 
correlated with malignancy as biopsy-based diagnosis. The 
goal of both actual VDT and model prediction-based VDT 
was to distinguish between benign and malignant nodules. 
Thus, it may be more direct to use biopsy-based diagnosis 
as grouping criteria and ground truth in evaluating the 
model’s prediction. 

To conclude, this pilot study demonstrated that a visual 
forecasting system of lung nodules based on follow-up CT 
scans to help health workers manage lung nodules more 
efficiently and intelligently was fairly accurate when training 
on a small dataset. After validation with a larger dataset in 
future studies and integration with automatic segmentation, 
this forecasting system has the potential to become an 
automatic virtual follow-up CT system for lung nodules. 
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