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Background and Objective: Translational research is a source of continuous innovation in medicine, more 
particularly for clinical research on new treatment modalities in idiopathic pulmonary fibrosis (IPF) patients. 
However, the heterogeneity of the disease is well recognized, and different pathological and molecular settings 
have been identified. The molecular mechanisms by which IPF proceeds in time and space remains poorly 
understood. Although some IPF features are reminiscent of cancer, the dynamics of malignant divergent clonal 
selective pressure and heterogeneity clearly differ from those occurring in IPF. This is reflected in the absence of 
patient proper selection and stratification to biological agents (pirfenidone, nintedanib) which limit therapeutic 
efficacy. Consequently, increased costs are related to the clinical management of advanced IPF patients. Steady 
collaboration and fluid communication between pneumo-oncologists, radiologists and molecular biologists is a 
clear priority for the correct interpretation of tests and the definition of effective personalized strategies against 
this orphan disease. The present work aims at providing the most relevant hints shared by cancer and IPF. 
Methods: A systematic literature review was performed to identify all relevant data. The examined 
databases were Scopus, Web of Science, Cochrane, Google Scholar, and PubMed. The last search was run on 
January 5, 2022. We have primarily conducted separated research for lung cancer, IPF, genetics, epigenetics, 
surgery in IPF and cancer. 
Key Content and Findings: The data here presented mainly focus on gene mutations, epigenetics and 
novel therapeutic approaches. Moreover, epidemiology, prognostic variables and in new treatment strategies 
adopted in patients with IPF and lung cancer are discussed as well. 
Conclusions: Overall, the findings of this narrative review will be of help in defining the key molecular 
features that could applied in IPF setting with promising rationale to improve therapy and to better manage 

those cases carrying IPF and cancer concomitantly. 
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Introduction

Idiopathic pulmonary fibrosis (IPF) is characterized by 
a proliferative landscape, which recalls—under several 
aspects—that of cancer. This critical issue has been already 
exploited for therapeutic purposes taking advantage from 
know-how and expertise from cancer pharmacology. 
Moreover, IPF diagnosis is associated to a significantly 
higher risk of lung cancer development (1,2). Notably the 
coexistence of IPF is associated to a more unfavourable 
prognosis in lung cancer patients who generally experience 
severe disease exacerbation during antineoplastic therapy 
(3-5). Others and we already described bio-molecular 
similarities and differences between IPF and cancer (6-10) 
(Figure 1), however some points need deeper clarification 
and update.

The concept that interstitial lung diseases (ILDs) 
represent a relevant risk factor for lung cancer development 
is well documented and known (11-20). Within respect to 
IPF, reports indicated a cumulative incidence of cancer in 
IPF patients varying from 3.3%, 15.4%, and 54.7% after 
1, 5, and 10 years of follow-up for IPF (21) to 41% and 
82% at 1 and 3 years, respectively (5). Age and smoking 
habit act as known confounding variables since they 
impact on both lung cancer and IPF onset (19,20,22,23). 
Moreover, many occupational and environmental exposure 
toxics are common risks for the development of both 
the diseases. Notably, IPF patients are at higher risk of 
cancer development if compared to those affected by 
chronic obstructive pulmonary disease (COPD), another 
cancer predisposing pathologic entity (24). The Japanese 

Hokkaido registry data reports an unadjusted risk ratio of 
7.8 for lung cancer in IPF patients vs. COPD ones (25,26). 
Most often tumors in IPF context arise in peripheral lung 
(27,28), although these data need further confirmation (19). 
The mechanistic explanation and the association between 
IPF and cancer are discussed in detail in the next sections 
of the manuscript. However, several issues deserve to be 
here underline. It is conceivable that the pro-proliferative 
landscape that characterizes IPF, should promote the 
selection of those cells carrying oncogenic mutations 
(29-31). Pirfenidone and nintedanib act as antifibrotic 
drugs through different mechanisms. The first essentially 
acts by deregulating a series of cytokines, including 
transforming growth factor (TGF)-β1, connective tissue 
growth factor (CTGF), platelet-derived growth factors 
(PDGF), and tumor necrosis factor (TNF)-α. Moreover, 
it behaves as scavenger of reactive oxygen species (ROS) 
and downregulate angiotensin-converting enzyme (ACE) 
expression (32,33). Nintedanib is a multikinase inhibitor 
which also down-regulates protein and mRNA expression 
of extracellular matrix (ECM) proteins, fibronectin, and 
collagen 1a1 and inhibits (TGF)-β1-induced myofibroblast 
differentiate (34). Notably, both drugs inhibited collagen 
I fibril formation (35). It should be underlined that a 
relationship exists between these main two treatments for 
IPF, namely pirfenidone and nintedanib, and lung as well. 
Several recent studies have shown a prophylactic effect 
of the use of pirfenidone perioperative setting against 
postoperative acute IPF exacerbations in patients with lung 
cancer (36-40). Notably therapy with pirfenidone seems 

A COMMON BIOLOGIC PARADIGM

•	The aberrant proliferative events in IPF resemble that occurring 
during malignant transformation. 

•	The cancer-like molecular nature of IPF is now also being 
exploited for therapeutic purposes 

•	The discovery of pathogenic links between the two diseases 
may have practical consequences in encouraging the use of 
cancer drugs for treating IPF. 

•	The multi-kinase inhibitor nintedanib was initially developed for 
cancer, and has now been approved for the treatment of IPF

•	The actively proliferating fibroblast foci (FF) CONTRAST with 
neighboring areas of relatively normal parenchyma and move 
from subpleural regions towards central ones. 

•	IPF IS A LUNG-SPECIFIC disease, in absence of distant cell 
scattering. 

•	IPF IS A HETEROGENEOUS disease in the age and spatial 
interval of lesions

•	CANCER IS A DISEASE OF GENES, which evolves through a 
dynamic process of CLONAL EXPANSION and selection in of 
advantageous SOMATIC DRIVER lesions

IN DIFFERENT CONTEXTS

IPF & Cancer

Figure 1 IPF and cancer. The two diseases share common pathogenic pathways that should be exploited for novel therapeutic approaches. 
The oncogenic gain behaves as main driver of proliferative and invasive phenotypes. Heterogeneity which characterizes both diseases, refers 
to clonal selection (cancer) and histology (IPF). The specific IPF context impacts on the therapeutic exploitation of targeting oncogenes. 
IPF, idiopathic pulmonary fibrosis. IPF, idiopathic pulmonary fibrosis.
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to be associated to lower incidence of lung cancer in IPF 
patients if compared to non-pirfenidone treated cases (41), 
although this observation should be confirmed by more 
extensive analysis. Some recent observation also underlined 
a potential therapeutic role of pirfenidone against lung 
cancer. In detail, it has been reported in vitro and in vivo 
that it could suppressed activation of non-small-cell lung 
carcinoma (NSCLC) associated myofibroblasts (42), which 
are known to be involved in tumor progression (43-45) 
and impairs epithelial–mesenchymal transition (EMT) by 
acting on exogenous TGF-β1 and on paracrine TGF-β 
produced from NSCLC cells (46). Pirfenidone seems to 
play a synergic effect with conventional chemotherapy 
such as carboplatin (47), whereas studies evaluating effects 
of combination with immune checkpoint (IC) inhibitors 
are ongoing (the NCT04467723 trial evaluating the 
combination of pirfenidone with the programmed death-
ligand 1 (PD-L1) and programmed cell death protein 
1 (PD-1) inhibitor atezolizumab in second-line and 
beyond NSCLC, website at www.clinicaltrials.gov). The 
antiproliferative effect of nintedanib derives to its ability 
to block the vascular endothelial growth factor (VEGF), 
PDGF and the fibroblast growth factor receptor (FGFR). 
Nintedanib in combination with docetaxel is approved 
as second-line therapy for advanced NSCLC (48). It also 

promotes antitumor immunity and antitumor activity in 
combination with PD-1 blockade in mice by targeting 
cancer-associated fibroblasts (CAF) thus attenuating the 
immunosuppressive tumor microenvironment on one 
hand and promoting intratumoural activation of antitumor 
CD8+ T cells (49). Although some reports suggesting a 
positive effect (50-52), it is still unclear if nintedanib could 
play an effective role against lung cancer aroused in IPF 
patients. When associated with corticosteroids, it seems to 
be able to attenuate targeted drug (53) and IC inhibitor-
related pneumonitis in cancer patients (54,55). Thus, 
we—here—report and discuss more recent advances from 
multidisciplinary contexts that will result in significant 
changes in the diagnosis and treatment of IPF patients. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
tlcr.amegroups.com/article/view/10.21037/tlcr-21-880/rc).

Methods

A systematic literature review was performed to identify all 
relevant data. The examined databases were Scopus, Web of 
Science, Cochrane, Google Scholar, and PubMed. The last 
search was run on January 5, 2022. Table 1 summarizes the 
search strategy.

Table 1 The search strategy summary

Items Specification

Date of Search (specified to date, month and year) Last search January 5, 2022

Databases and other sources searched Scopus, Web of Science, Cochrane, Google Scholar, and PubMed. For the 
Google Scholar database, due to the excessive amount of data obtained, only 
the first 200 results for each search were considered, because further results 
rapidly lost relevance 

Search terms used (including MeSH and free text 
search terms and filters) 

Lung cancer, non-small cell lung carcinoma (NSCLC), idiopathic pulmonary 
fibrosis (IPF), epigenetic, genetic, surgery + IPF, ionizing radiation + IPF

Timeframe 5 years

Inclusion and exclusion criteria (study type, language 
restrictions, etc.)

To obtain the highest search sensitivity, the keywords used to identify relevant 
articles were mainly: lung cancer OR NSCLC AND IPF AND genetics OR IPF 
AND NSCLC AND epigenetics; imaging AND IPF OR IPF AND CT AND ionizing 
radiation; IPF OR AND lung cancer AND surgery

Selection process (who conducted the selection, 
whether it was conducted independently, how 
consensus was obtained, etc.)

Two authors (GMS and SL) independently screened the titles of the identified 
studies. GMS, AGC and AB independently screened the titles and the abstracts 
of the studies; then, they read the full text of selected studies. Any disagreement 
was analyzed and overcome by discussion and reaching a mutual agreement

Any additional considerations, if applicable. 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-880/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-880/rc
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Advances on pathogenic mechanisms of 
IPF: what we could learn from molecular 
epidemiology linking lung cancer and fibrosis

Genetics

Several already published data from genome-wide 
association and linkage studies have identified common 
genetic variants that are associated to increased risk of IPF 
onset and progression. Moreover, these IPF-related 
signature activation define a biologic context which 
essentially support clonal selection of transformed cells. 
Consequently IPF-related gene variants can be defined as: 
(I) IPF private; (II) favouring malignant transformation and 
(III) shared by IPF and lung cancer. The first gene set 
mainly affect genes encoding for proteins related to 
inflammatory and immune response, such as TGF-β1 
(56,57), interleukin-1 receptor alpha (IL1RN) (58,59), 
interleukin 8 (IL8) (60), toll-like receptor 3 (TLR3) (61) 
human leukocyte antigen (HLA) DRB1*1501 (62), the cell-
cycle progression related genes Cyclin Dependent Kinase 
Inhibitor 1A (CDKN1A) and tumor protein 53 (TP53) (63) 
and the Telomerase Reverse Transcriptase (TERT) genes. 
All these genes, known to confer a risk for IPF, are known 
to be associated to cancer as well. However, except for the 
tumor suppressor TP53, these genes do not behave as 
oncogenic drivers but rather their activation by genetic 
changes cooperates in sustaining malignant transformation. 
Telomerases are an enzyme that catalyse the addition of 
nucleotides on the ends of chromosomes and IPF is 
characterized by shortening of telomere lengths and 
consequent exhaustion of lung stem cells. Mutations in the 
genes encoding telomerase, TERT and telomerase RNA 
component (TERC), are pathogenetically associated to IPF. 
Mutational frequency affecting each gene is rare, but—
overall—TERT mutations are the most common genetic 
defect found in FPF. The overall penetrance of pulmonary 
fibrosis in TERT mutation carriers is 40% in subjects with a 
mean age of 51 years (64-68). It could be hypothesized that 
the biologic landscape, which is linked to IPF, defined by 
pro-invasive, anti-apoptotic and pro-angiogenic features 
and properties of associated genes and molecules, could be 
exploited by tumour cells (already transformed) to optimize 
their malignant propensity, according to the biologic 
phenomenon already defined by “oncogene expedience” (69). 
In other words, the IPF genetic asset impacts on the risk of 
lung-cancer development although IPF-associated lung 
cancer does not derive from transformation due to mutation 
accumulation of IPF-related cells (70). With the expansion 

of genome-wide association studies (GWAS) novel 
biomarkers and actionable targets have been unveiled and 
new insights have been specifically derived by the 
integration of molecular techniques and conventional 
epidemiology, namely molecular epidemiology (71). This 
approach has been widely exploited in cancer, whereas few 
data are available for IPF (72). The identification of novel 
diagnostic and therapeutic endpoints, quantification of 
genetic damages, definition of genetic susceptibility for IPF 
could potentially derive from comparative studies on IPF-
associated lung cancer. According to standard epidemiologic 
approach the two diseases share relevant environmental and 
occupational risk factors, such as tobacco smoke, dusts, and 
particulates, as well as some therapeutic agents. Moreover, 
IPF and lung cancer present lineage specifiers which 
underline a common cell-fate specification. The thyroid 
transcription factor-1 (TTF-1) also known as NK2 
Homeobox 1 (NKX2.1) is a homeodomain-containing 
transcription factor, that is essential for the morphogenesis 
and differentiation of the thyroid, lung, and ventral 
forebrain. It controls the expression of select genes in the 
thyroid, lung, and the central nervous system. In the lung, 
TTF-1 is a critical regulator of the expression of surfactant 
proteins that are essential for lung morphogenesis, 
homeostasis, and host defence (73). TTF-1 is expressed in 
type II epithelial cells, less abundantly in non-ciliated 
respiratory epithelial cells and basal cells whereas it is not 
expressed in type I cells (29). TTF-1 is expressed lung after 
injury, and it may play a role in epithelial cell proliferation 
and differentiation during the repair processes, as fibrosis 
and cancer. In transgenic mice, increased TTF-1 expression 
caused severe inflammation, pulmonary fibrosis, respiratory 
failure, and death, associated with eosinophil infiltration 
and increased expression of eotaxin and interleukin 6 (IL-6). 
Increased expression of TTF-1 altered alveolarization and 
caused chronic pulmonary inflammation. In adults, TTF-1 
is almost exclusively expressed in thyroid and pulmonary epithelial 
cells. Its expression, determined by immunohistochemistry, is a 
highly specific marker for primary lung adenocarcinomas 
(ADCs) and it must be used for the differential diagnosis 
between primary and metastatic ADCs (74,75). TTF-1 gene 
amplifications can be detected in about 2–4% of primary 
lung and 13% of metastatic lesions (76-78); activated TTF-
1 promotes epidermal growth factor receptor (EGFR) 
driven transformation (79,80). Overall TTF-1 behave as 
oncogene in a lineage specific (ADC) context (81). However, 
opposing, and paradoxical effects have been reported in 
animal models carrying TTF-1 haploinsufficiency being 
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associated with reduction of invasive and metastatic 
potentials because of a suppressive modulation on the genes 
implicated in cytoskeletal regulation, cell-cell organization, 
and motility. Interestingly, it is also associated to the 
enhancement of kirsten rat sarcoma (KRAS)-driven 
adenocarcinogenesis (82-84). TTF-1 is known to repress 
TGF-beta EMT by reducing TGF-beta and the TGF-beta 
related activation of Snail and Slug. On the contrary TGF 
beta represses TTF-1 through miR-365 (85). Lung cancer 
(LC) is genetically characterized by the presence of somatic 
mutations which are known to be selected by a variety of 
environmental exposures (among which tobacco smoke) on 
the  background of  spec i f ic  germl ine  mutat ions . 
Accumulation of somatic mutations affecting the RAS-RAF 
cascade has been reported with significantly higher 
prevalence of v-raf murine sarcoma viral oncogene homolog 
B1 (BRAF) mutations which define a novel potentially 
actionable target (86). Interestingly, growing evidence 
suggests that the occurrence of some germline mutations 
might predispose subjects to the development of IPF and to 
LC as well. The most intriguing changes that have been 
reported in lung tumors associated to IPF familial clusters 
refer to heterozygous missense mutations in pulmonary 
surfactant-associated proteins genes. It is well known that 
variants in the genes encoding for proteins A2 (SFTPA2) (87) 
and A1 (SFTPA1) (88) display pathogenic role and predispose 
to IPF (89) by impairing secretion of surfactant A proteins 
(SP-A) thus leading to protein instability and dysfunction of 
endoplasmic reticulum (ER). The latter induces stress and 
alter differentiation of resident alveolar type II (ATII) cells 
(45,90). Genetic variants of SP-A can, thus, interfere with 
intracellular protein trafficking and promoting cell proliferation 
in both lung fibrosis and malignant transformation (87). 
Similarly, mutations affecting genes encoding surfactant 
protein C (SFTPC) (91,92) are linked to lung fibrosis 
whereas protein-D gene variants (SFTPD) have been 
reported in paediatric cases of diffuse ILD (93). Inherited 
lung fibrosis is also associated to the occurrence of 
mutations affecting the gene encoding for the member A3 
of the ATP-binding cassette family. Withing respect to the 
context of cancer, the ATP transporters are known to 
mediate chemoresistance (94) and, more recently, their role 
in all phases of disease onset and progression has been 
considered and documented (95). A comprehensive analysis 
retrieved from Gene Expression Omnibus (GEO) database 
reported the that genes encoding for peroxisome 
proliferator-activated receptor (PPAR) signalling pathway 
transducers were enriched in IPF associated to LC (96). 

The PPARs define a group of three nuclear receptor 
isoforms, PPAR-γ, PPAR-α, and PPAR-δ, encoded by 
different genes. They act as ligand-regulated transcription 
factors that control gene expression by binding to specific 
response elements (PPREs); they are known to play a 
critical physiological role as lipid sensors and regulators of 
lipid metabolism and are involved in cell proliferation. 
Deregulation of PPAR signalling has been reported in 
several disease including atherosclerosis, inflammation, 
cancer, infertility, and demyelination (97-99). Although the 
exact mechanism of PPARs in lung fibrosis and LC remains 
l a rge ly  unknown,  a  PPARγ  agonis t ,  inc luding  a 
constitutively active PPAR-γ construct (VP16-PPAR-γ), has 
been found to exert antitumorigenic effects in both IPF and 
LC by inhibiting myofibroblast differentiation through the 
blockade of TGF-β and activating phosphatase and tensin 
homolog (PTEN) (100). The Acyl-CoA Dehydrogenase 
Long Chain (ACADL), cluster of differentiation 36 (CD36), 
Lipoprotein Lipase (LPL), and Matrix metalloproteinase-1 
(MMP1) gene signatures in the PPAR pathway have been 
reported to be shared among IPF and LC (96). In vivo 
experiments demonstrated that silencing of CD36 resulted in 
the inhibition of TGF-β activation in a rat silicosis model, 
ultimately blocking silica-induced lung fibrogenesis (101). 
Moreover, a population enriched in CD36+ macrophages  
has been reported in in the lungs of patients affected by  
IPF (102). CD36 promotes adipocytes genesis and 
differentiation (103); in lung fibrosis its expression is 
involved in the transformation of latent TGF-β1 to active 
form (101) and a CD36 synthetic peptide reduces fibrotic 
tissue alteration and collagen accumulation in a mouse 
model of silicosis (104). Increased CD36 copy number has 
been related to tumor progression and increased risk of 
metastatic development (105). Interestingly, the IPF gene 
expression analysis indicates that the genes regulated by 
hypoxia are altered, suggesting a primary role of hypoxia-
inducible factor 1-alpha (HIF-1α) in IPF onset (106). 
Overall,  these data are coherent with most recent 
publications suggesting that a metabolic signature, linked to 
lipid mediators derived from phospholipids, sphingolipids, 
and polyunsaturated fatty acids play an important role in 
the pathogenesis of IPF (107-109). Coherently the ACADL 
gene, encoding for long-chain acyl-CoA dehydrogenase, an 
enzyme involved in fatty acid beta-oxidation and implicated 
in homeostasis of pulmonary surfactant (110), is known to 
be deregulated in IPF and to be a core signature gene that 
differentiates NSCLC from normal tissue. In cancer context 
ACADL seems to behave as tumor suppressor (111) and its 
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expression correlates with aggressive tumor phenotype (112) 
and poor prognosis (113). The LPL gene has been reported 
to be deregulated in IPF where it  is  significantly 
upregulated in NSCLC if compared to surrounding healthy 
tissue (52). In this context the matrix metalloproteinases 
MMPs, a family of 25 secreted and cell surface-bound 
neutral proteinases, play a crucial role. The MMP1 seems 
to be the most significantly altered gene shared across IPF 
and LC. The human MMP1 consists of 10 exons and is 
located on human chromosome 11q22.2-22.3. This gene is 
tightly linked to a cluster of eight MMP genes, including 
MMP3, MMP7, MMP8, MMP10, MMP12, MMP13, 
MMP20, and MMP27, and two pseudogenes (114). MMP1 
participates in several processes which characterize both 
cancer and IPF such as ECM remodelling, cell plasticity, 
cell migration, and angiogenesis (115-117). MMP1 
mutations are associated with COPD (118). A large amount 
of data reported that MMP1 is highly expressed in 
interstitial collagenase degrading fibrillar collagens as well 
as in cancer tissues, where it acts by promoting invasive 
potential and distant spreading (119). Several single 
nucleotide polymorphisms (SNPs) were identified to be 
individually significantly associated with risk of early-onset 
LC (120); notably MMP1 expression, measured by 
immunohistochemical (IHC), was reported to be higher in 
those NSCLC tissues associated with IPF, even in early-
stage diseases. Most recent data emerge regarding the 
common genetic signature between IPF and cancer. Ammar 
et al. analysed samples from Lung Tissue Research 
Consortium (LTRC) and National Jewish Health (NJH) 
cohorts, identified genetic signature able to predict the IPF 
condition. Some genes were already known to be related to the 
pathogenesis of IPF such as matrix metalloproteinases, some 
others identified potentially targetable pathways such as the 
frizzled-related protein 2 (FRP2), a WNT-signalling (121) or 
identify predictive disease biomarkers as the Glutathione 
Peroxidase-3 (GPX3) gene, expressed in epithelial cell from 
bleomycin-induced fibrosis models and upregulated in  
IPF (122). Interestingly, maternal smoking and e-smoking 
negatively affects WNT signalling cascade in mouse 
models.  It affects mRNA expression of the WNT 
transducers frizzled7 (Fzd7) and Ctnnb1 (gene symbol of 
β-catenin) as well as the WNT target gene Fn (fibronectin) 
with significant implication lung development and 
homeostasis which could generate a favourable substrate for 
future onset of interstitial fibrosis (123-125). Moreover, a 
novel set of 12 disease-relevant translational gene markers 
(C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, 

NELL1, PCSK1, PLA2G2A, and SLC2A5) can split IPF vs. 
control patients (126). Another report on 35 matched 
tumor/IPF samples reported that somatic mutations 
occurred with predominant C/T transitions despite 
extensive smoking histories, thus suggesting more 
associations with APOBEC3B-related mutagenesis in the 
process of IPF-LC development, rather than smoking. 
TP53 (62.9%) and BRAF (17.1%) genes were found 
significantly mutated in IPF-LC. Recurrent focal 
amplifications in 3 chromosomal loci (3q26.33, 7q31.2, and 
12q14.3), and 9p21.3 deletion were identified, and genes 
associated with JAK-STAT signalling pathway were 
significantly amplified in IPF-LC (P¼0.012). Moreover, 
one case report on laser-assisted microdissected samples of 
IPF associated to lung cancer identified five mutations 
(KDR, EPHA5, APC, CREBBP, and ERBB2) proper of IPF, 
four mutations (EPHA5, PKHD1, RB1, and KEAP1) proper 
of IPF-associated cancer whereas the only mutated gene 
shared by both the diseases was EPHA5 (118,127). The 
latter belongs to the ephrin receptor subfamily of the 
protein-tyrosine kinase family which are known to play a 
role in several developmental events and in cancer (128) as 
w e l l  a s  i n  m o d u l a t i n g  t u m o r  s u r r o u n d i n g 
microenvironment, being associated to enhanced infiltration 
of CD8+ T cells and M1 macrophages, reduced recruitment 
of immunosuppressive regulatory T cells (Tregs) into the 
tumor site, with prognostic and predictive value (129-131).

Epigenetics

The heterogeneous genetic background which characterized 
IPF cellular populations is and the possible presence of cells 
featuring characteristics of stemness define the genesis, 
maintenance, and plasticity of these cells. In this context 
the process of lung fibrogenesis is extensively regulated 
by epigenetic remodelling. Epigenetic mechanisms which 
modulate the expression of fibrotic genes are emerging 
as driver players in lung fibrogenesis (132-134). Indeed, 
several epigenetic regulators are deregulated in IPF: 
DNA methyltransferases, non-coding RNAs, histone 
demethylases, and histone acetyltransferases (135). Most 
studies aiming at analysing epigenetic profile of IPF have 
been conducted on DNA or mRNA extracted on fixed-
formalin paraffin-embedded (FFPE) or frozen samples that 
are generally mixed before analysis. In this perspective it 
should be remarked that a relevant role is played not only 
by the epithelial cells and fibroblasts, but also by alveolar 
macrophages (AMs). Targeting epigenome represents 
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a potential strategy for fibrosis treatment. Changes in 
the epigenome are associated with the development 
and function of AMsin the IPF lung (136,137). Most 
methylation changes have been identified outside of CpG 
islands and several gene expression signatures have been 
reported known (e.g., collagens, HDAC4, NOTCH1, PDGF, 
SERPINF1, and TOLLIP) and novel candidate (CASZ1) 
genes. Moreover, environmental stimuli contribute to 
epigenetic changes. Several components of cigarette smoke 
have been reported to affect epigenome not only in lung 
cancer but also in IPF (138,139). Exposure to cigarette 
smoking has been associated to increased global levels of 
histone methylation (140). Overall, genes with differentially 
methylated CpG islands in their promoters are involved 
in key biologic processes which are implicated in IPF 
and cancer onset, such as cell assembly, morphology and 
organization, cell growth, proliferation, signalling, and 
apoptosis. Some alterations involve the COL18A1 gene, 
known to be upregulated in IPF (141), genes that modulate 
myofibroblast differentiation and transition from pericytes 
to myofibroblasts as NOTCH1 (142-144) and progressive 
IPF as SMARCA4 (145) as well as the promoter of CXCL3, 
which is involved in bleomycin-induced fibrosis (146). 
Moreover the Serine/Threonine Kinase 17b (STK17B) 
and Serine/Threonine Kinase 3 (STK3) and the histone 
cluster 1 H2ah have been reported to be up-regulated 
in IPF, coherently with the hypo-methylated state of 
their promoter associated CpG islands (147). Moreover 
epigenetic regulation interferes in the capacity of fibroblasts 
from lung fibrosis to up-regulate cyclooxygenase-2 (COX-2)  
expression and COX-2-derived Prostaglandin E2 (PGE2) 
synthesis, through a mechanism involving hypermethylation 
of the transcriptional regulator, c8orf4 (148). Interestingly, 
hypermethylation of the Thy-1 gene promoter region 
causes the loss of this molecule, which in more invasive 
behaviour of cancer and the transformation of fibroblasts 
into myofibroblasts within fibroblast foci in IPF.

Although DNA hypomethylation is a hallmark of cancer 
and common epigenetic traits are shared between IPF and 
cancer, some reported data suggest that the similarities in 
the differentially methylated CpG islands are unexpectedly 
limited global meth being less extensive in IPF (104). This 
observation points out methylation occurs in both diseases 
but should occur through different mechanisms. Excessive 
histone deacetylation is involved in the progression of 
pulmonary fibrosis through a complex interaction between 
histone deacetylases (HDACs) or histone acetyltransferases 
and fibrosis modulators TGF-beta1, small mother against 

decapentaplegic (Smad) 3, Smad7 and Snail (149). At this 
regard histone acetyltransferase EP300, upregulated by 
TGF-beta1, accumulates in lung fibroblasts and, in turn, 
promotes SMAD-mediated TGF-beta signalling. EP300 also 
activates discoidin domain receptor 1 (DDR1), a collagen 
receptor kinase which triggers ECM deposition (150)  
and promotes transcription of profibrotic molecules such 
as alpha-smooth muscle actin (α-SMA), Collagen I (COL1) 
and tissue inhibitor of metalloprotein, which further 
promote production of ECM (151). EPP is also frequently 
mutated in small cell lung cancer (SCLC) (152). Similarly 
to IPF, indeed, histone deacetylation is associated with 
lung cancer progression, resistance to chemotherapy and 
targeted therapy, and is harboured by nickel, chromate, 
arsenite present in smoke tobacco. Histone deacetlylases 
I, I, III, VIII are the most common classes hyperexpressed 
in NSCLC and IPF and their deregulation is associated 
to poor prognosis in lung cancer (153). At higher level, 
histone acetylation is regulated by bromodomain and extra-
terminal (BET) proteins, a family of chromatin readers 
(including BRD2, BRD3, BRD4, and BRDT) that bind 
acetylated histones, regulate gene transcription, and pass 
on epigenomic memory across cell divisions. BET proteins 
are implicated in cancer through activation of oncogenes 
like c-Myc, IL-7R, FOSL1, and E2F; among these, BRD4 
has shown to exert profibrotic action in a variety of organs, 
included lung, by regulating multiple gene programs and 
biochemical pathways in various cell types, although precise 
mechanisms have still to be elucidated. In IPF BDR4 
probably activates specific enhancers and promoters that 
regulate transcription of downstream genes encoding ECM 
proteins such as α-SMA, COL1A1, fibronectin, and factors 
that stimulate trans-differentiation of fibroblasts (154). 
Moreover, BDR4 upregulates the pro-oxidant enzyme 
NADPH oxidase 4 (Nox4), promoter of oxidative stress and 
cellular ageing (155). The similarity between cancer and 
IPF is higher if referred to microRNA expression such as 
in the case of let-7d and hsa-miR-21, which are found to 
deregulated in both diseases (156-159). Let-7d inhibits EMT 
through modulation of signalling mediators downstream 
TGF beta, key orchestrator of fibrogenesis (160). Low 
levels of Let7d have been found in bronchoalveolar lavage-
derived exosomes of IPF murine models compared with 
normal mice (161). Let-7d downregulates FoxM1, a 
transcription factor previously known to promote cell 
proliferation and resistance to apoptosis in cancer cells by 
activation of Wnt/beta catenin and TGF-beta/SMAD3 
pathways (162). Intriguingly, also in IPF high levels of 
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FoxM1 have been found in lung fibroblasts where enhance 
differentiation of pericytes into myofibroblasts and collagen 
production, through activation of pathways common with 
carcinogenesis (70,163). The oncogene Mir-21 promotes 
cell proliferation, invasion, migration and radioresistance in 
various cancers, among which NSCLC, regulating nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
Kb), phosphatase and tensin homolog/akt murine thymoma 
viral oncogene homolog (PTEN/AKT), phosphoinositide 
3-kinases (PI-3K)/AkT/mammalian target of rapamycin 
(mtor) pathways; moreover it induces EMT in cancer cells 
reducing the inhibitory effects of SMAD7 on fibrosis with 
upregulation of TGF-beta signalling (164). Similarly, in IPF, 
TGF-beta-induced overexpression of miR-21 in fibroblasts 
and myofibroblasts creates a positive loop mechanism in 
which negative modulation of SMAD7 and PTEN increases 
the expression of TGF-beta, promoting EMT and matrix 
collagen deposition (165,166). Both miR-29a and miR-185 
have been found downregulated in bronchoalveolar lavage 
fluid (BALf) of IPF and lung cancer patients, probably 
in response to high levels of TGF beta. However, their 
hypoexpression produced different effects on the common 
target COL1A1, whose expression was increased in IPF 
but not in lung cancer, pointing out the peculiar fibrotic 
nature of IPF (167). Despite similarities, some microRNAs 
(miRNAs) are inversely expressed, suggesting the existence 
of disease-specific mechanisms, which complicate the 
identification of actionable targets effective in both 
conditions. For example, the hsa-miR-17-92 miRNA cluster, 
which encodes six miRNAs (hsa-miR-17, -18a, -19a, -19b, 
-20a, -92a), is overexpressed in various solid neoplasms, 
including lung cancer, where behaves as tumor promoter: 
its block by therapeutic agents, such as Docosahexaenoic 
acid, may limit cell proliferation, resistance to apoptosis 
and metastatization (168). However, miR-17-92 cluster has 
a crucial role for a balanced lung cell damage repair and 
for regulation of fibrotic genes such as COL1A1, COL1A3, 
CTGF, VEGF, TGF beta, MMP-1, MMP-7 and MMP-9. 
Levels of the miR 17-92 cluster appear reduced in IPF lung 
tissue and fibroblasts for hypermethylation of promotor 
CpG islands by DNA methyltransferases (DNMTs), 
enzymes that may seem an effective actionable target to 
reduce lung fibrosis, as shown by Dakhlallah et al. (169). 
Unlike miRNA, whose action has been extensively studied, 
regulatory function of long non-coding RNAs (lnc-RNAs) is 
still largely unknown. Lnc-RNAs are single-stranded RNA 
sequences longer than 200 nucleotides, classified in 5 classes 
(intergenic, antisense, intronic, enhancers, and pseudogenes) 

according to the positional relationship with protein-
coding genes (170). Lnc-RNAs form complexes with DNA, 
RNA, and proteins, regulating cellular processes such as 
chromatin modification, transcription, post-transcriptional 
modifications, scaffolding. Transcriptome sequences analyses 
reveal more than 1,800 lnc-RNAs deregulated in IPF (171). 
They upregulate mTOR and TGF-β1/Smad2/3 pathways, 
impair telomerase functions, alter mitochondrial, activate 
oxidative stress-related genes (ROS, superoxide dismutase, 
and catalase) and apoptosis-related genes (cytochrome-c, 
caspase-9, and caspase-3); they can directly bind to miRNAs 
silencing their expression (172). The complex scenario of 
epigenome is further modulated by exosomes, microvesicles 
and extracellular vesicles, membrane-derived vesicles of 
various diameter, released in extracellular microenvironment 
by a variety of cells such as B-cells, T-cells, mast cells, 
stem cells, dendritic cells, platelets, endothelial cells, 
epithelial cells. They convey proteins, lipids, miRNAs, 
long non-coding RNAs, DNA, enzymes and other factors 
responsible of cell-to-cell communication, epigenetic 
modifications. Composition of exosomes is influenced by 
microenvironment and determines the maintenance or the 
rupture of cellular homeostasis (173,174).

It should be remarked that not only smoke exposure 
can affect DNA methylation in both cancer and IPF. This 
issue is even more relevant for the cancer and the rare 
fibrotic cases that arise in non-smoker subjects. Indeed 
environmental or occupational exposure, pathogen infection 
and persistent tissue damage. For instance, polymorphisms 
in CYP1A1 and GTSM1, xenobiotic metabolizing enzymes, 
have been reported to be associated to higher risk of lung 
cancer development whereas polymorphisms in MLH1, a 
mismatch pair enzyme should play a role in the onset of 
the disease in never smokers. Moreover, polymorphisms 
in genes involved in inflammatory cascade such as those 
encoding for interleukin (IL)-10, TNF, IL1-RN and IL-6 
have been reported to be associated to lung cancer risk 
independently from cigarette smoke exposure (175). Within 
respect to IPF, previous reports suggested that SNPs in 
Mucin 5B (MUC5B) promotor region (rs35705950) are 
associated with prognosis of IPF and this fact may be 
related to the reduction of immune defense mechanism 
of MUC5B (176,177). Growing evidence suggests that 
lung microbiome plays a relevant role in maintaining lung 
immune homeostasis and that its alteration and disruption 
might be related to cancer onset by acting on epigenetic 
level such as by causing DNA damage, genomic instability, 
and inducing higher sensitivity to carcinogens (178). 
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Environment factors that can alter lung microbiota might 
promote, mainly through production of bacterial toxins and 
other pro-inflammatory factors, cancer onset and progression 
(179,180). A number of recent observations suggests a 
role for lung bacteria in IPF onset as well (181-184). First 
observation regarded the fact that bacteria (most often 
Streptococcus pneumoniae and Moraxella catarrhalis) are 
frequently isolated from BALF from IPF patients (185) and 
that patients enrolled in clinical trials have better outcomes 
in those arms encompassing treatment with antibiotics 
(186-188). Next generation analysis approaches more 
recently reported that changes in the lung microbiome are 
associated to IPF progression and acute phases (not in those 
patients treated with interferon (189); however, these data 
are too preliminary to define their potential predictive or 
prognostic role (190,191).

Non-invasive diagnostic and monitoring tools

Is there a role for liquid biopsy in IPF setting?

Liquid biopsy is a minimally invasive procedure that 
has been developed in molecular oncology. It allows the 
identification of circulating tumor-derived DNA (ct-DNA) 
that is shed from tumor cell in body fluids. Serial analysis 
of circulating tumor DNA (ctDNA) during treatment will 
provide a dynamic picture of molecular disease changes 
and could be used to monitor the emergence of secondary 
resistance and to identify heterogeneous subclonal 
populations developing during targeted treatments (192). 
This non-invasive sampling issue is overall simple to collect, 
although should present quantity and quality problems and 
representation bias. There is a strong rationale for application 
of this technique in early diagnosis and monitoring of 
IPF patients, although some key differences should be 
underlined. IPF landscape is enriched in neoplastic potential 
expressed in a context of complex genomic polyclonality 
and cellular heterogeneity. Smoking is strongly associated 
with IPF (193) and is a strong negative predictor for the 
occurrence of EGFR activating mutations in lung cancer 
according to previous reports (194). However, no somatic 
changes in coding sequences of driver known oncogenes. 
The latter observation, in therapeutic perspective, results 
in the absence of oncogenic addiction phenomenon. Thus, 
the oncogenic shock phenomenon cannot be exploited for 
therapeutic purposes in IPF. In cancer setting, the application 
of liquid biopsy: (I) ctDNA; (II) circulating tumor cells 
(CTC) for genetic analysis; (III) CTC. Interestingly, the 

level of circulating cell-free double-stranded DNA fragments 
(ccf-dsDNA) is increased in those IPF patients featuring 
rapid progression of the diseases if compared to stable IPF 
and health subjects. Moreover, the high expression of ccf-
dsDNA is associated with that of amino acid, energy, and 
lipid metabolism pathways (195). Very recently, Pallante and 
colleagues (196) demonstrated the concordance between 
ccfDNA and genomic DNA by analyzing and detecting 
the rs35705950 polymorphism of MUC5B gene promoter, 
known to be involved in IPF onset (197). Overall, IPF 
is associated to increased tumor mutational burden 
(TMB) which, in turn, significantly contributes to the 
development of lung adenocarcinoma (198). However, data 
from TMB analysis from IPF-associated lung cancer are 
still controversial, being significantly higher than in lung 
adenocarcinoma alone (86,198). However, data from TMB 
analysis on lung cancer and concomitant ILDs are more 
controversial since some results reported that squamous cell 
carcinoma and adenocarcinoma with ILD do not have high 
TMB values (199). Due to the implication for therapy with 
IC inhibitors, since based on these data patients should not 
be addressed to immunotherapy (200), these preliminary 
observations deserve further validation data. Circulating 
cells have been studied to evaluate their possible role as 
predictive and prognostic markers. Elevated number of 
circulating fibrocytes, sorted by flow cytometry, is reported 
to be associated to higher mortality (201), rather than as 
validated marker of disease progression (202). Levels of 
circulating endothelial cells and endothelial progenitor cells 
have been found to be reduced in patients with IPF and 
treatment with nintedanib and pirfenidone further reduced 
their levels (203). Further validations are required regarding 
the role of circulating monocytes in prediction of disease 
progression (204).

Imaging

The diagnostic algorithm for suspected lung tumor in the 
IPF setting is still unclear. The most recent ATS/ERS/
JRS/ALAT guidelines, updated in 2015, do not address this  
issue (205). Also, more “radiologically-oriented” guidelines 
such as those from the Fleischner society do not specifically 
include management suggestions tailored for IPF patients. 
Since those patients can be considered at high-risk of 
developing a lung tumor the suggested management will 
therefore rely mostly on surgical lung biopsy and resection. 
These approaches can be way too aggressive for an IPF 
patients. For these reasons a recent editorial suggests the 
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following approach: high resolution computed tomography 
(HRCT) once a year in all patients with IPF. For patients 
with nodules less than 8 mm in diameter an HRCT every 
3–6 months can be performed. If HRCT shows progression 
of the nodule, a PET-CT scan is recommended. For 
nodules with diameter of at least 8 mm, PET-CT scan is 
highly recommended. If PET indicates that a significant 
uptake is present, minimally invasive diagnostic procedures 
such as transthoracic needle biopsy or endoscopic approach 
are mandatory. If the patient is not suitable for biopsy, 
a multidisciplinary discussion is suggested (2). Even if 
nowadays early diagnosis of lung cancer mostly relies on 
HRCT and PET scans, which represent the cornerstone 
for timely therapeutic interventions, some new options may 
be available in the future. Magnetic Resonance (MR) and, 
especially, diffusion weighted imaging (DWI) has already 
shown that active lung inflammatory tissue in the IPF 
setting could be assessed effectively (206). It also has shown 
a capability of distinguishing between malignant and benign 
pathologies thanks to apparent diffusion coefficient (ADC) 
values (207). A promising tool may be IVIM (Intravoxel 
Incoherent Motion)-DWI which can also give information 
about perfusion. This may lead in the future to put aside 
data from PET-CT with those from MR. Another possible 
tool to optimize the management of IPF patients with a 
suspected lung cancer can be Radiomics. Radiomics is a 
quantitative approach to medical imaging, which aims, 
through mathematical extraction of the spatial distribution 
of signal intensities and pixel interrelationships, to quantify 
textural information by using analysis methods from the 
field of artificial intelligence. Radiomics has progressively 
gained attention for nodule characterization and, since no 
data are available in the IPF setting, more time is needed to 
distinguish the hope from the hype (208).

A perspective on novel cancer-related therapies 
in IPF

Rationale for immunotherapy in fibrotic lung

It is well known that inflammation plays a relevant 
pathogenic role in IPF even though anti-inflammatory 
drugs as steroids do not impact significantly on disease 
progression (209). This observation points out that the 
role on inflammatory reactions might not be a driver of 
IPF, or more properly, the complex IPF context requires 
a deeper characterization of the inflammatory pathways 
involved to identify effective targets. The inflammatory 

profile of IPF is characterized by type 2 inflammation 
(210,211) involving the interleukin (IL)-13 and IL-4, 
produced by T helper 2 (Th2) cells and type 2 innate 
lymphocytes; both are suggested to play a prominent role 
in fibrosis development (212). Type 2 immune cascade is 
known to drive pathogenic events in allergic asthma and 
several inhibitory molecules have reached the clinical 
use. Among them anti IL-13 monoclonal antibody (mAb) 
lebrikizumab has been recently tested in the randomized, 
multicenter, double-blind, placebo-controlled, parallel-
group study NCT01872689 trial aimed at evaluating its 
efficacy and safety as monotherapy or with pirfenidone in 
IPF subjects. Although the pharmacodynamic biomarkers 
indicated a certain activity of lebrikizumab in association 
to the already known safety profile, lebrikizumab alone 
or in combination with pirfenidone showed no additional 
advantages since it was not able to improve functional 
parameters (213). Similar results have been reported using 
the anti-IL-13 mAb tralokinumab which safety profile 
resulted acceptable in absence of significant advantages 
(NCT01629667, NCT02036580) (214) and the study 
evaluating the mAb dectrekumab in IPF was discontinued 
in absence of significant results (215). These observations 
suggest that IL-13/type 2 immunity might not be the right 
target in IPF onset although a potential role of type 2-driven 
immune response is conceivable in acute exacerbation 
(AE) of disease. Growing evidence point out that many 
important fibrogenic steps should be orchestrated by both 
innate and adaptive immunity and that the innate response 
prevails (216) or, more properly, that the epithelial damage 
plays an important role in inducing immune system 
dysregulation which acts as critical driver for disease 
progression (217). This specific feature is a common 
denominator to cancer (218-220) and sustain a rationale 
for IC blockade therapeutic strategy. Immunotherapy 
has substantially changed the therapeutic strategies for 
cancers such as melanomas, lymphomas, and lung tumors. 
Unfortunately, only 20–50% of patients with advanced 
solid tumors respond to treatment. There is therefore a 
need for the development of methods to identify patients 
who are most likely to respond to immunotherapy. ICs 
are molecules located on the surface of cells that can send 
inhibitory stimuli to attenuate immune responses. Tumors 
express IC proteins on their cell surface to escape detection 
from the immune system. Thus, targeted inhibition towards 
these receptors enhances T cell response against the tumor. 
Tumor cells express checkpoint proteins on their surface to 
evade host immune response. Targeted inhibition towards 
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these receptors enhances T cell response towards the tumor 
(221,222). Cytotoxic T-lymphocyte antigen 4 (CTLA-4),  
PD-1, and PD-L1 are key negative regulators of anti-
tumor T cell reactivity. The development of IC inhibitors 
has revolutionized the treatment of a variety of cancers. 
Several studies have shown that pre-existing tumoral and 
peritumoral immune infiltration correlates with patient 
response to PD-1 and PD-L1 immunotherapy. Three 
distinct immune phenotypes have been described: immune-
inflamed, immune-excluded, and immune-desert. Immune-
inflamed tumors are characterized by dense, functional 
CD8 cell infiltration, increased interferon-γ signaling, 
expression of cell checkpoint markers (such as PD-L1), and 
a high mutational burden. These tumors tend to respond 
to immunotherapy. The detailed description of cancer 
microenvironment and sensitivity to IC inhibitors (ICIs) 
goes beyond the scope of this paper. It should be underlined 
that the cellular heterogeneity which characterizes IPF 
complicates data interpretation and can make elusive data 
interpretation when obtained from tissue homogenates. The 
recently completed study entitled “Immunopathologic Profiles 
and Blood Biomarkers in Patients With IPF” (NCT04187079) 
aimed at IPF tissue and blood profiling also investigating 
the cellular expression of ICs (namely PD-L1) in lung 
epithelial cells. It is known that PD1-PDL1 are expressed in 
IPF lymphocytes (223), AMs (224) and myofibroblasts (159) 
through IHC stain and RNA sequencing. The PD-1/PD-L1 
axis is likely to contribute to lung fibrogenesis (225) anti PD-
L1 Abs significantly reduces pulmonary fibrosis (226). PD-1 
expression on CD4+ T cells is known to lead to activation 
of Signal Transducer and Activator of Transcription 
(STAT) 3 which, in turn, induces IL-17A and TGF-β 
expression (227). Ex vivo blockade of the PD-1/PD-L1 
axis is associated to STAT3-mediated IL-17A and TGF-β 
production by CD4+ T cells (223). PD-L1 inhibitors should 
not be used in conjunction with mesenchymal stromal cell 
(MSC) therapy (228). CTLA-4 is strongly overexpressed 
in IPF CD4- and CD28 null IPF lymphocytes if compared 
to health cells and anti-CTLA-4 antibody treatment was 
shown to aggravate fibrosis in a humanized IPF model 
(173,225,229). Notably, a high level of hypoxia and immune 
activity is associated to worst prognosis in IPF, whereas 
those patients featuring high level of oxygen and low 
immunogenic reactions the best prognosis (230). These 
preliminary findings point out a novel strategy to effectively 
select patients for immunotherapy. Overall, the expression 
of IC molecules in lung fibrotic tissues sustain a rationale 
for a deeper investigation of their pathogenic role and as 

actionable targets. Durable responses to nivolumab in a lung 
cancer patient withs idiopathic pulmonary fibrosis (231-233). 
This observation suggests that in those cases, ICI treatment 
should be considered a potentially effective option even 
though the occurrence of ILD has been identified as a rare 
but potentially severe event induced by immunotherapy (234).  
In this perspective the already reported activation of the 
MET oncogene in IPF should become relevant (9). IPF 
resembles cancer in two critical MET-associated behaviors: 
invasive phenotype and pro-coagulant status. In cancer, 
MET activation occurs as a late event, consequently 
to transcriptional up-regulation driven by unfavorable 
microenvironmental conditions MET (mainly hypoxia) 
amplified cancer clones are selected under therapeutic 
pressure in a context of molecularly heterogeneous lesions 
exposed to targeted therapies or radiotherapy (235,236). 
Thus, this oncogenic expedient (69) can be exploited for 
therapeutic purposes in IPF. Moreover, it has been already 
reported that, in lung cancer mutations occurring in 
several oncogenes among which MET, modulate tumor 
microenvironment and a positive correlation between MET 
amplification and PDL1 overexpression has been already 
reported (237,238). Thus, in a context-specific regulation 
of its expression, MET might become a functional marker 
of IPF and an actionable target, positively associated to 
response to ICIs (Figure 2).

Radiotherapy in lung cancer with IPF

Radiation induced lung injury (RILI) represents one of the 
major issues in the setting of thoracic radiotherapy (239);  
it generally corresponds to radiation-induced pneumonitis, 
an intermediate phase injury after exposure to ionising 
irradiation, which in most cases paves the way for the 
development of late fibrosis. Both pneumonitis and fibrosis 
are dose-limiting toxicities of great concern to the radiation 
oncologist, especially in the scenario of a combined 
chemoradiotherapy approach or in high dose hypo-
fractionated radiotherapy.

Thoracic radiotherapy plays a role in enhancing the 
occurrence of AEs in IPF, even when baseline symptoms 
are trivial. Pre-existing IPF is a well-known risk factor for 
pulmonary toxicity after ionising irradiation (240); previous 
reports have shown that it can raise the risk of severe and 
even life-threatening pneumonitis, whose rates in such 
patients range between 6.3% and 18.2%, in relation to 
different radiotherapy techniques (241). Nevertheless, IPF 
does not constitute an absolute contraindication for thoracic 
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radiotherapy, even if European Organisation for Research 
and Treatment of Cancer (EORTC) guidelines suggest 
avoiding irradiating lung cancer patients with IPF (242). 
While some encouraging data come from some preliminary 
experiences with proton therapy (241), the decision to 
offer radiotherapy to these patients should be made after a 
multidisciplinary approach in which patient’s individual risk 
is evaluated, especially in terms of his/her clinical status, 
disease specific survival and therapeutic index.

Surgery in lung cancer with IPF

Lung resection plays a role in the treatment of patients 
affected by IPF with resectable NSCLC. However, in 
this scenario, two major issues influence significantly the 
surgical procedure and the survival outcomes: the high 
risk of postoperative AEs of IPF in the short-term, and 
the death due to cancer in the long-term (243). Surgery 
is a defined risk factor for AE in IPF patients (16) and 
since its incidence in this group of patients is estimated to 
be approximately 9.3% (244) and no preventive measure 

is known, it is crucial to carefully select the patients to 
properly refer treat the patients. In a study by T. Sato and 
colleagues, a simple scoring system to identify high risk 
patients for AE was derived in order to help in the decision-
making process for surgery selection and predict the patients 
requiring intensive observation postoperatively (245).  
Among the surgical procedures of lung resection, wedge 
resection is associated to the lowest risks of postoperative 
AE compared to segmentectomy, lobectomy, bilobectomy 
and pneumonectomy, since AE risk increases according to 
the resected lung parenchyma volume (244). Death due to 
cancer is the major concern in the long-term: it represents 
the main cause of death in lung cancer patients affected by 
IPF, mostly attributable to cancer recurrence after surgery. 
Contrary to AE risk, lobectomy shows better results for death 
due to cancer in patients with stage IA, while wedge resection 
and segmentectomy were associated to poor outcomes (244).

Lung resection in patients with IPF is challenging 
but required for several patients. The choice of surgical 
procedure must be tailored based on several criteria, such 
as pulmonary function, cancer stage and recurrence risk, 
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postoperative AE risk, and the natural course of IPF.

Percutaneous thermal ablation in lung cancer with IPF

Alternative treatments such as radiofrequency ablation 
could be of therapeutic benefit with relatively minimal 
complications, particularly in patients who are not fit enough 
for surgical interventions. On the other hand, the risk of 
severe complications with stereotactic body radiation therapy 
(SBRT) when treating patients with IPF is widely recognized. 
For these reasons, in the IPF setting, thermal ablation 
procedure, generally performed under CT guidance, can 
be a viable therapeutic option. Radiofrequency ablation and 
SBRT in patients with inoperable stage I NSCLC had similar 
overall survival rates while local progression rates were higher 
for radiofrequency ablation (246). No specific comparison 
had been performed over different types of ablative 
procedures (radiofrequency, microwave, cryoablation) while 
the largest experience came from radiofrequency ablations. 
Every technique has its own advantages and disadvantages 
(e.g., cryoablation is safer near the airways while microwaves 
are powerful and faster than radiofrequency) that can be a 
further strength of minimally invasive procedure. At the same 
time this heterogeneity creates severe difficulties in obtaining 
large databases of procedures outcome and procedures 
performances. For these reasons a multidisciplinary advice 
and centre preferences and expertise are fundamental for 
alternative treatment choice and management.

Advanced cell therapies

Based on the U.S. Food and Drug Administration (FDA) 
cell therapy includes cellular products for immunotherapies, 
cancer vaccines, and other types of both autologous and 
allogeneic cells for certain therapeutic indications (www.
fda.gov). According to this definition, the most clinical 
implications regard clearly cancer, but the recent progresses 
in the knowledge of molecular mechanisms responsible 
of IPF with the evidence of biologic similarities between 
IPF and malignant proliferation give a strong rationale 
for the investigation and development of cell therapeutic 
strategies and tissue engineering to impair fibrotic damages. 
MSCs feature the pluripotent capacity of and their ability 
to differentiate to important lineages that can modulate 
on immunity, impair inflammatory reactions, and promote 
epithelial tissue repair (247); the clinical application of MSC 
therapy has been shown to be feasible and safe in humans with 
IPF (www.clinicaltrial.gov) and several data have been already 

published (248-252). A schematic representation of the 
application of MSCs in lung fibrosis is reported in Figure 3.  
MSCs and fibrocytes can be generated from the bone 
marrow and home to the injured lungs in response to several 
secreted chemokines and growth factor receptors (253,254). 
Lung resident MSCs (LR-MSCs) and mainly myofibroblasts 
precursors have been detected as well (255,256). Allogenic 
MSCs derived from unrelated donors seems to be safe as 
homologous obtained cells when infused in patients carrying 
mild-moderate disease (257). MSCs communicate with 
their surrounding microenvironment and in particular, the 
alveolar niche cells promote alveolar epithelial progenitors 
to regenerate the damaged epithelium (258). Different 
strategies have been explored to the development of 
advanced cellular therapy in IPF. The MSCs quiescence 
or dormancy is a key feature of stem cells; thus, a potential 
target of therapeutic intervention is that of inducing stem 
cells into the cell cycle to start differentiation. In this 
perspective, the Wnt/β-catenin signalling is known to be 
implicated IPF pathogenesis since its activation inhibits 
MSCs to differentiate into epithelium. The pharmacological 
inhibition of the Wnt cascade might be exploited to impair 
myofibroblasts differentiation and proliferation (259,260). 
Moreover, MSCs in IPF become rapidly senescent (261-263)  
and strategies to ameliorate this process are beneficial in 
reducing disease progression. miRNAs are involved in 
mediating MSC senescence by modulating the expression of 
several pathways. Very recently, miR-200 family members 
(miR-200b-3p and miR-200c-3p) and miR-199a-5p has been 
reported to regulate MSC senescence in IPF patients with 
by acting on the Sirtuin 1/AMP-activated protein kinase 
signalling cascade; thus, they emerge as a novel potential 
target to rejuvenate IPF-MSCs and to prevent fibrotic 
damages and to restore proper differentiation (264,265). 
MSCs display immunomodulatory properties and can 
secrete anti-fibrotic factors (Figure 4). It has been reported 
that lung resident MSC can be in IPF lungs and their 
secretome is able to damage fibroblast proliferation while 
promoting enhanced epithelial wound repair via several 
growth factors, among which hepatocyte growth factor 
(HGF) (266,267). Interestingly, inhaled lung spheroid cell-
secretome (LSC-Sec) and exosomes (LSC-Exo) have been 
shown to attenuate bleomycin and silica-induced fibrosis in 
experimental models in a more effective manner that those 
derived from resident MSCs. They seem block EMT acting 
on WNT/beta catenin, Rho/Rock and TGFbeta 1/SMAD 
pathways (268). Other therapeutic targets in the context of 
cell therapy in IPF are represented by MSC-derived growth 
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Figure 3 Stem cells and their application in lung fibrosis. Stem cells can be classified into embryonal stem cells (ESC), adult stem cells (ASC) 
and induced pluripotent stem cells (IPSC) according to their origin. ESCs derive from embryo blastocysts, ASC can be isolated from various 
tissues, such as bone marrow, lung, adipose tissue, umbilical cord blood, umbilical cord tissue and amniotic fluid. IPSC are obtained from 
somatic cells using reprogramming factors (OCT3/4, SOX2, C-MYC, KLF4), responsible for re-programming to pluripotency. Stem cells can 
be administrated intravenously, intratracheally or intraperitoneally. They migrate to the injured sites of the lungs where they differentiate in 
alveolar type II cells and exert anti-inflammatory, antifibrotic and immunomodulant actions. IPF, idiopathic pulmonary fibrosis.

factors, as HGF, which play relevant roles in the repair of 
alveolar epithelial cells, actively contrasts myofibroblasts 
activation and the abnormal deposition of ECM (269). 
Growing evidence indicates that the changes in ECM 
composition and mechanical properties which characterize 
IPF can be exploited for therapeutic purposes. Synthetic 
materials as polyacrylamide, hydrogels, highly cross-
linked polymer networks as well as liposomes, polymeric 
nanoparticles represent engineered platforms which can 
be decorated with cell-adhesive ligands, signalling factors, 
drugs which can modulate lung remodelling (270-272).

Concluding remarks

IPF identifies a specific entity characterized by chronic, 
progressive fibrosing interstitial pneumonia of unknown 
cause, still lacking effective therapies. Growing evidence 
points out that aberrant proliferative events in IPF recall 
malignant transformation given a specific temporal and 

cellular heterogeneity. To look at IPF through cancer 
glass can help in stratifying and addressing patients 
to personalized approaches as well as in analyzing the 
mechanisms of abnormal cell/matrix interactions which 
characterize the disease. Moreover, the advances in cancer 
immunotherapy and the improvement in imaging and 
radiotherapy techniques open the way for treatment of 
those patients carrying both lung cancer and IPF that till 
now have represented a sort of therapeutically orphan 
population. Translational research is a source of continuous 
innovation in medicine more particularly for clinical 
research on new treatment modalities in IPF patients and 
will contribute to improve mechanistic explanation of 
disease onset and progression. To reach this goal, the real 
efficiency of next future studies and trials will depend on 
the integration of proper sample collection, gene expression 
analysis and functional and bio-informatic annotation as 
well as on the coordination of multidisciplinary know how 
and technical platforms.
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Figure 4 Stem cells and secretoma. Lung spheroid cells are round aggregates composed by stem cells and stromal cells. They produce a 
complex of proteins and growth factors, complexify named as secretoma, also including exosomes. Lung spheroid cell-secretome (LSC-
Sec) and exosomes (LSC-Exo) reproduce a regenerative microenvironment and promote differentiation of stem cells towards epithelial 
phenotypes. EMT, epithelial mesenchymal transition.
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